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Abstract. A number of scientific applications are performance-limited by expressions that repeatedly call costly elementary
functions. Lookup table (LUT) optimization accelerates the evaluation of such functions by reusing previously computed results.
LUT methods can speed up applications that tolerate an approximation of function results, thereby achieving a high level of
fuzzy reuse. One problem with LUT optimization is the difficulty of controlling the tradeoff between performance and accuracy.
The current practice of manual LUT optimization adds programming effort by requiring extensive experimentation to make this
tradeoff, and such hand tuning can obfuscate algorithms.

In this paper we describe a methodology and tool implementation to improve the application of software LUT optimization.
Our Mesa tool implements source-to-source transformations for C or C++ code to automate the tedious and error-prone as-
pects of LUT generation such as domain profiling, error analysis, and code generation. We evaluate Mesa with five scientific
applications. Our results show a performance improvement of 3.0× and 6.9× for two molecular biology algorithms, 1.4× for a
molecular dynamics program, 2.1× to 2.8× for a neural network application, and 4.6× for a hydrology calculation. We find that
Mesa enables LUT optimization with more control over accuracy and less effort than manual approaches.

Keywords: Lookup table, performance optimization, error analysis, code generation, scientific computing, memoization, fuzzy
reuse

1. Introduction

Applications in scientific computing are often per-
formance-limited by elementary function calls [28,33].
Such functions are common in scientific code, so de-
signers have long studied how to accelerate them with
lookup table (LUT) hardware [9,29]. Despite hard-
ware support, software libraries often equal or ex-
ceed hardware performance, as shown in Table 1,
possibly because software evolves more quickly than
hardware [9]. Software LUTs can improve elementary
function performance [33], but determining if a soft-
ware LUT is applicable and optimizing its parameters
by hand is cumbersome.

LUT optimization partitions the input domain of ex-
pressions or functions into intervals. Each interval is
represented by a LUT entry that stores a single out-
put value that is shared across all inputs in the inter-
val. The original expression is replaced by an index-
ing function that locates the interval and returns its cor-
responding LUT entry. A LUT optimization is benefi-

*Corresponding author.

Table 1

Performance of elementary function instructions

x86 Execution Math Execution Relative

instruction time (ns) library time (ns) performance (%)

FSIN 35.2 sin 36.5 +3.6

FCOS 33.9 cos 36.9 +8.8

FPTAN 72.9 tan 51.8 −28.9

FSQRT 8.1 sqrt 1.8 −77.7

Note: Intel Xeon E5450, 3.00 GHz, 6 MB L2 cache, single core.

cial when (1) enough fuzzy reuse1 occurs to amortize
the LUT initialization and overhead, (2) the LUT ac-
cess is significantly faster than evaluation of the origi-
nal function, and (3) the LUT can provide the needed
accuracy without excessive memory use, such as is the
case when the input domain is restricted.

Performance tuning methods such as LUT optimiza-
tion require a substantial development effort for scien-
tific programmers [26], because such domain-specific
optimizations are usually applied manually [17]. Man-
ual LUT optimization is time-consuming because of

1Fuzzy reuse is a concept introduced by Alvarez et al. [2] in which
function results are approximated in order to increase reuse.
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the need to explore parameters such as the table size
and sampling method that determine the tradeoff be-
tween performance and accuracy. This paper presents a
methodology and source-to-source transformation tool
that automates the most time-consuming and error-
prone steps required for LUT optimization, including
error analysis, domain profiling and code generation.

Our LUT research was motivated by a collabora-
tion with the Small Angle X-ray Scattering (SAXS)
project [24] at Colorado State University (CSU). For
the project we received R code that simulates the dis-
crete X-ray scattering of proteins. We ported the SAXS
code from R to C++, but its performance still failed to
meet requirements. To reduce execution time we man-
ually incorporated a LUT optimization for the domi-
nant calculation. The result was a significant speed up,
but our ad hoc approach for determining optimal LUT
parameters was costly and had to be repeated for each
architecture of interest. To simplify future LUT tun-
ing we developed the Mesa tool. We have since used
Mesa to tune a continuous version of SAXS scattering,
a molecular dynamics program, a neural network and
a hydrology calculation.

Table 2 shows the performance improvement and er-
ror statistics achieved using Mesa. The top two rows
show variants of the SAXS application [24], the third
row shows the Stillinger–Weber Molecular Dynamics
(SWMD) program [14], the fourth row shows a CSU
neural network application [19] and the fifth row eval-
uates a calculation from a Precipitation-Runoff Mod-
eling System (PRMS) [21]. We attribute the effective-
ness of LUT optimization to the high level of fuzzy
reuse inherent in these applications, which are de-
scribed in more detail in Section 3. Relative error is
listed in all cases except PRMS, which reports absolute
error. The relative error is misleading in this case be-
cause the computation of relative error divides the error
by the original output. If this value is close to zero then
the resulting relative error is huge, despite the small
magnitude of the absolute error.

In a previous workshop paper [31], we described
version 1.0 of the Mesa tool, which lacked support for
domain profiling and linear interpolation and required
a separate specification of candidate expressions out-
side the source code. We used this preliminary version
of Mesa to optimize SAXS discrete scattering with
1D and 2D LUT optimization, and we showed that
performance improvements in the scope of the SAXS
application required the LUT data to fit into mid-
level cache. A programmer using this version had to
(1) manually identify candidate expressions and their
domains, (2) specify the expressions and constituent
variables in a file, (3) run Mesa to generate code and
(4) manually integrate the resulting code back into the
application.

In this paper, we present a pragma-based approach
to apply LUT optimization to expressions in C or C++
source code, thereby extending the reach of Mesa to
full applications. We show that version 1.1 of Mesa
reduces programming effort by automating the gener-
ation and integration of LUT optimization code. We
have added boundary error analysis to improve tool
performance, and linear interpolation sampling to in-
crease accuracy. The major benefit of this work is to al-
low the programmer to more easily find an effective set
of optimizations, while receiving feedback about the
introduced error. We have also evaluated version 1.1 of
Mesa in the context of four additional scientific appli-
cations, as shown in Table 2 and described in Section 3.

The primary contributions of this paper are:

• A methodology for software LUT optimization,
so that programmers will no longer need to de-
pend on ad hoc methods.

• A demonstration of domain profiling, error analy-
sis, and code generation in the context of full ap-
plications using our Mesa tool.

• Additional experimental results that suggest the
LUT data must reside primarily in mid-level
cache to be effective.

Table 2

Mesa performance improvements and error statistics

Application Original Optimized Speedup Maximum Memory

name time time error usage

SAXS discrete algorithm 283 s 41 s 6.9× 5.4 × 10−3% 4 MB

SAXS continuous algorithm 0.726 s 0.239 s 3.0× 1.8 × 10−3% 3 MB

SWMD simulation program 14.7 s 10.3 s 1.4× 2.9 × 10−2% 400 kB

CSU neural network 11.0 s 3.9 s 2.8× 6.2 × 10−2% 4 MB

PRMS hydrologic analysis 234 ns 53 ns 4.6× 3.2 × 10−5 800 kB

Notes: Intel Xeon E5450, 3.00 GHz, 6 MB L2 cache, single core. Relative error is shown for all applications except hydrologic analysis, which
reports absolute error because its results are close to zero.
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• An investigation of the error and performance dif-
ferences between direct access and linear interpo-
lation.

• A case study showing that LUT optimization
maintains its effectiveness in the context of paral-
lel execution on a multicore architecture.

Section 2 introduces our LUT optimization method-
ology and the Mesa tool. Section 3 presents case stud-
ies on the use of Mesa to optimize applications, and
evaluates the effectiveness of the tool in terms of per-
formance and programming effort. Section 4 explores
related work and Section 5 describes limitations. Sec-
tion 6 lists threats to validity and Section 7 concludes.

2. LUT optimization methodology and Mesa

The goal of our research is to help scientific pro-
grammers use LUT optimization in a more effective
and efficient manner. Because the existing literature
lacks a systematic methodology for LUT optimization,
we define our own. We have broken down the process
into the following steps:

(1) Identify elementary functions and expressions
for LUT optimization.

(2) Profile the domain and distribution of the LUT
input values.

(3) Select the LUT size based on the desired input
granularity.

(4) Analyze the error characteristics and memory us-
age of the LUT data.

(5) Generate data structures and code to initialize
and access LUT data.

(6) Insert the generated LUT code into the applica-
tion.

(7) Compare performance and accuracy of the origi-
nal and optimized code.

The current practice for LUT optimization is to write
code manually, often without careful analysis of the

performance or error implications. Our methodology
is independent from its implementation in a tool, for
example we can apply the steps shown above manu-
ally. However, a methodology is especially important
to when considering automation. We developed the
Mesa tool to automate the most time-consuming part
of the methodology shown above, including steps 2, 4,
5 and 6. Mesa can optimize elementary function calls
including sin, cos, tan, exp, log, and sqrt. Mesa also
optimizes expressions identified by pragmas, including
combinations of elementary functions and arithmetic
operators: +, −, ∗ and /. A description of how Mesa
supports the methodology follows.

Mesa does not support identification of candidate
functions and expressions (Step 1), since many suitable
profiling tools such as gprof [13] already exist. Mesa
automates domain profiling (Step 2) by generating an
instrumented version of the application to capture the
domain boundaries and distribution. LUT size selec-
tion is specified on the command line (Step 3), how-
ever Mesa provides detailed error analysis (Step 4) so
that the programmer can iterate size selection and error
analysis until the LUT optimization meets the applica-
tion requirements. Mesa reduces development time by
completely automating code generation and integration
(Steps 5 and 6). The comparison of the original and
optimized code (Step 7) remains manual.

2.1. Elementary function optimization

To demonstrate the methodology with a simple ex-
ample, we show the optimization of a single elemen-
tary function with Mesa. Figure 1 shows command line
and program output from a Mesa run that optimizes
sine calls. The command line specifies the original and
optimized source files, elementary function(s) to be op-
timized, table size and error analysis method. Mesa
uses the Rose compiler infrastructure [16,23] to parse
the file into an abstract syntax tree (AST) on which it
can operate.

. / Mesa o r i g i n a l . cpp o p t i m i z e d . cpp −e x h a u s t i v e − l u t s i n − l u t s i z e 2048
Mesa LUT o p t i m i z a t i o n s t a r t e d
Lower Bound : 0 .000000 e +00
Upper Bound : 6 .383185 e +00
G r a n u l a r i t y : 3 .116790 e −03
Lut s i z e : 2048
E r r o r a n a l y s i s : e x h a u s t i v e
Emax : 1 . 5 3 e −03, Eavg : 4 . 8 8 e −04
Rep laced s i n wi th c l u t . s i n
Mesa LUT o p t i m i z a t i o n comple t ed

Fig. 1. Optimizing elementary functions with Mesa.
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Figure 2 shows the generated code, which is de-
fined and instantiated as a C++ class with everything
needed for the optimization, including a public method
for the LUT approximation function. Mesa inserts the
C++ class at the beginning of the module, and re-
places instances of the original function with a call to
this method. Mesa calls Rose to unparse the modified
AST into an output file with the LUT code. The op-
timized file is substituted for the original file and the
application is rebuilt.

The sine tables in Fig. 3 are generated by running
Mesa with a direct access sampling method, meaning

without any form of interpolation between entries. We
show small LUT sizes of 16 and 32 entries to illus-
trate the error terms. The original function is shown by
f (θ) and the approximation is shown by l(θ). The area
between the original function and approximation rep-
resents the magnitude of the error introduced by the
LUT, which is plotted as e(θ). For direct access, the er-
ror term is the error at the center of each LUT inter-
val, because Mesa evaluates the original function at the
center to compute the output value. The maximum er-
ror occurs at the boundaries of the LUT interval. The
graphs in Fig. 3 show the tradeoff between LUT size

/ / S t a r t o f code g e n e r a t e d by Mesa , v e r s i o n 1 . 1
c o n s t f l o a t f s i n L o w e r = 0 .000000 e +00;
c o n s t f l o a t f s i n U p p e r = 6 .383185 e +00;
c o n s t f l o a t f s i n G r a n = 1 .595796 e −03;
c l a s s CLut {

p u b l i c :
/ / LUT C o n s t r u c t o r
CLut ( ) {

f o r ( double dIn = f s i n L o w e r ; dIn <= f s i n U p p e r ; d In += f s i n G r a n )
l u t s i n . push_back ( s i n ( d In + ( f s i n G r a n / 2 . 0 ) ) ) ;

}
/ / LUT D e s t r u c t o r
~CLut ( ) {

l u t s i n . c l e a r ( ) ;
}
/ / LUT A p p r o x i m a t i o n
f l o a t s i n ( f l o a t f s i n ) {

whi le ( f s i n < 0 . 0 f ) f s i n += ( 2 . 0 f ∗ M_PI ) ;
whi le ( f s i n > ( 2 . 0 f ∗ M_PI ) ) f s i n −= ( 2 . 0 f ∗ M_PI ) ;
i n t uIndex = ( i n t ) ( f s i n ∗ ( 1 . 0 f / f s i n G r a n ) ) ;
re turn ( l u t s i n [ u Index ] ) ;

}
p r i v a t e :

/ / LUT Data
s t d : : v e c t o r < f l o a t > l u t s i n ;

} ;
/ / O b j e c t i n s t a n t i a t i o n
CLut c l u t ;
/ / End o f code g e n e r a t e d by Mesa , v e r s i o n 1 . 1

Fig. 2. Listing of code generated by Mesa.

Fig. 3. Lookup tables for sine function: direct access. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2011-
0329.)
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and accuracy. Tables with more entries exhibit smaller
errors and vice verse.

2.2. Pragma-based expression optimization

Figure 4 shows the workflow for expression opti-
mization, which is a superset of elementary function
optimization. The programmer starts by running the
original code to establish a baseline for performance
and accuracy. Domain profiling and optimization re-
quire the programmer to insert a pragma into the C
or C++ source code to identify the target expres-
sion. Elementary function optimization does not re-
quire pragma insertion because elementary functions
are easily identified by Mesa.

Figure 5 shows a code fragment after addition of the
pragma. The code shown is the dominant calculation
of SAXS discrete scattering. Domain profiling is ini-
tiated with a command line option that creates an in-
strumented version of the unoptimized program. When
the program runs, profiling information is gathered and
written to a data file. The workflow continues by run-
ning Mesa with the same pragma flag, this time re-
questing expression optimization. During optimization
Mesa reads the profiling data, performs an error anal-
ysis, and generates LUT code and data structures. As

with elementary function optimization, the LUT size
must be specified.

Figure 6 shows the Mesa command line and output
for expression optimization. The -pragma flag causes
Mesa to insert code for the specified LUT optimization
into the application, and Mesa optionally performs er-
ror analysis. The programmer may need to run Mesa
several times to determine whether the LUT optimiza-
tion can meet accuracy requirements while fitting into
mid-level cache, but repeated runs can be scripted.
When this is complete the programmer compiles and
runs the generated code and compares its performance
and accuracy against the original version. The next sec-
tions provide detail on domain profiling, error analysis,
and code generation.

2.3. Domain profiling

To determine the extent of LUT data, we must cap-
ture the domain of each input variable. Mesa does this
through a profiling option that generates a transforma-
tion to add instrumentation to the program. The pro-
grammer can characterize the input domain by running
the instrumented program with representative data sets.
Mesa stores domain information in a data file that can
be edited, so that a programmer can use domain exper-
tise to adjust the domain boundaries if necessary. If the

Fig. 4. Workflow diagram for Mesa. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2011-0329.)



218 C. Wilcox et al. / Tool support for software lookup table optimization

/ / I t e r a t e s t e p s ( o u t e r loop )
f o r ( s t e p = 0 ; s t e p < 1000 ; ++ s t e p ) {

/ / I t e r a t e atoms ( m i d d l e loop )
f o r ( atom1 = 0 ; atom1 < vecAtoms . s i z e ( ) ; ++atom1 ) {

/ / I t e r a t e atoms ( i n n e r loop )
f o r ( atom2 = atom1 ; atom2 < vecAtoms . s i z e ( ) ; ++atom2 ) {

. . .
/ / Compute d i s t a n c e be tween atoms
f l o a t f D i s t a n c e = d i s t a n c e ( atom1 , atom2 ) ;
/ / Compute s c a t t e r i n g a n g l e
f l o a t f T h e t a = m_fStep ∗ ( f l o a t ) ( s t e p + 1 ) ;
/ / Combine p a r a m e t e r s t o s c a t t e r
f l o a t r T h e t a = f D i s t a n c e ∗ f T h e t a ;
. . .
/ / O p t i m i z e s u b e x p r e s s i o n shown below
# pragma LUTOPTIMIZE
f I n t e r m e d i a t e = s i n f ( FOURPI ∗ r T h e t a ) / ( FOURPI ∗ r T h e t a ) ;
. . .

}
}

}

Fig. 5. Insertion of a pragma for expression optimization.

. / Mesa o r i g i n a l . cpp o p t i m i z e d . cpp −pragma − l u t s i z e 200000 −e x h a u s t i v e
Mesa LUT o p t i m i z a t i o n s t a r t e d
E n t e r p a r a m e t e r s f o r r T h e t a
Lower bound : 0 . 0
Upper bound : 0 . 2
V a r i a b l e : r T h e t a
Lower Bound : 0 .000000 e +00
Upper Bound : 2 .000000 e −01
G r a n u l a r i t y : 1 .000000 e −06
Lut s i z e : 200000
E r r o r a n a l y s i s : e x h a u s t i v e
Emax : 2 . 7 9 e −06, Eavg : 1 . 0 0 e −06
Mesa LUT o p t i m i z a t i o n comple t ed

Fig. 6. Optimizing an expression with Mesa.

data file is missing, Mesa prompts for domain values.
When the domain is known in advance, the program-
mer can optimize the code without profiling by creat-
ing the data file manually. Mesa additionally supports
the generation of assert statements that halt execution
and report an error condition if the domain is exceeded
during program execution.

Some elementary functions are cyclical, so the in-
put domain is intrinsically known. For example, sine
and cosine tables need only store the interval from 0
to 2π radians. Input values outside of that interval can
be folded back by a modulo operation or iterative ad-
dition and subtraction. This operation is called domain
conditioning or range reduction. Mesa has a command
line option to generate domain conditioning code for
cyclical functions such as sine and cosine, as shown in
Fig. 2.

Mesa captures the domain of input variables and the
number of executions of the expression. The former is
necessary to build LUT data, and the latter is intended
for future support of performance modeling. We have
experimented with a modified version of Mesa that

Fig. 7. Domain distribution for SAXS lookup table. (Colors
are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-2011-0329.)

captures the complete distribution of input data. Fig-
ure 7 shows the distribution of the input variable rTheta
from the SAXS discrete scattering application. Note
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that the left half of the LUT is used much more fre-
quently than the right side.

Figure 7 suggests that some LUT optimizations may
benefit from storing only a partial domain. This re-
quires the generation of conditional code that accesses
LUT data only inside the partial domain. Outside of the
partial domain the original function must be called. For
the applications we have evaluated, the cost of the con-
ditional negates the benefit of the reduced LUT size,
but our preliminary data is too limited to generalize this
result.

2.4. Error analysis

Error analysis computes LUT error statistics by
combining the individual error terms as shown in
Fig. 3. We are primarily interested in the maximum er-
ror Emaximum and the average error Eaverage over the
entire LUT domain. These statistics allow us to char-
acterize the error introduced by the LUT approxima-
tion. Computing error statistics is essentially a prob-
lem of sampling the LUT domain. Within each interval
the error analysis code computes error terms for a set
of samples by evaluating the original and approxima-
tion functions. Mesa implements three different algo-
rithms for sampling: exhaustive, stochastic, and bound-
ary. Each computes the error statistics for all LUT in-
tervals, then combines the results to get values for the
entire LUT.

The exhaustive method performs a brute force nu-
merical traversal of the input domain, at a resolution of
FLT_EPSILON or 1.2 × 10−7. This yields an exact an-
swer for single-precision LUT data, but the method is
very expensive. On our benchmark system (Intel Xeon
E5450, 3.00 GHz, 6 MB L2 cache, single core), ex-
haustive sampling requires approximately 40 s to ana-
lyze the domain [0.0, 20.0] for the SAXS discrete scat-
tering. This fails to meet our goal of performing error
analysis on multiple expressions in real time.

The stochastic method samples the domain ran-
domly. The key drawback for this method is the lack of
a general rule for determining the number of samples
required to converge on an accurate answer. Our exper-
iments show stochastic sampling computes a value of
Eaverage that approaches the exhaustive method with an
order of magnitude fewer samples, however its compu-
tation of Emaximum can vary widely. The performance
of stochastic sampling for the domain listed above is
less than 5 s on the benchmark system. Because of the
inaccuracy of the Emaximum computation, we have dep-
recated the stochastic method in Mesa.

Fig. 8. Error for different sizes of sine tables. (Colors are visible
in the online version of the article; http://dx.doi.org/10.3233/SPR-
2011-0329.)

The boundary method makes the simplifying as-
sumption that the maximum error can be found at the
LUT interval boundaries for direct access, and at the
LUT interval center for linear interpolation, as pro-
posed by Zhang et al. [33]. This computation takes less
than 0.2 s on the benchmark system, and the results are
identical within 1.2 × 10−5 of exhaustive sampling for
the applications we evaluate in this paper. The bound-
ary method computes only Emaximum, since Eaverage re-
quires more extensive sampling. We use the boundary
method for fast determination of error statistics.

Figure 8 shows error statistics generated by Mesa.
We collected the data by calling Mesa from a script for
the series of LUT sizes shown. Exhaustive error anal-
ysis was used to compute both Emaximum and Eaverage.
The graph shows one of the main benefits of Mesa,
which is that the tool allows the programmer to evalu-
ate the accuracy of different LUT sizes. Note the lin-
ear relationship between accuracy and table size. This
is common for smooth functions such as trigonometric
operations. For the sine table we see a 2× decrease in
error for each 2× increase in table size.

We conclude from the graph that LUT sizes that
fit easily within mid-level cache on a modern proces-
sor can produce usable error values. For example, the
256 kB sine table shown in Fig. 8 has a maximum error
of 4.82 × 10−5 and an average error of 1.53 × 10−5.
In Section 3 we show that such tables can significantly
increase performance.

So far we have only discussed the error that occurs
at the time that a function result is approximated. Re-
turning an imprecise function result causes a compu-
tational error, which is propagated through the appli-
cation by further calculations that use the function re-
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sult. The numerical analysis of this error propagation
is beyond the scope of the current version of Mesa, but
measuring the application error is critical to the success
of the LUT optimization. For this reason, our method-
ology includes a manual comparison of the accuracy
of the original and optimized application. For each ap-
plication in this paper, we compute the maximum er-
ror and average error based on the final output of the
application. These statistics, along with the measured
performance improvement, form the basis for deciding
whether a particular LUT optimization is beneficial.

2.5. Code generation

We have shown the code generated by Mesa in
Fig. 2. Mesa uses the Rose compiler [23] to implement
code transformations, thereby leveraging the ability of
Rose to parse and unparse arbitrary C and C++ syn-
tax. Code generation and code integration is done by
the Mesa tool itself. The current implementation in-
serts a C++ object at the beginning of the source mod-
ule being processed. A global declaration ensures that
the object is constructed when the application starts
and destroyed when it ends. The initialization of LUT
data is performed by the constructor, based on a recon-
structed function that mirrors the original computation,
and LUT data is freed by the destructor on application
exit. The LUT approximation function is public and
can therefore be called from anywhere in the applica-
tion.

The current implementation operates on C or C++
code, but the resulting program must be compiled
with C++ because Mesa generates code that contains
C++ objects and containers. Mesa generates single-
precision LUT data, which is sufficient for the ap-

plications and LUT sizes we have studied. Single-
precision uses less cache memory, and we find that lin-
ear interpolation is more effective for increasing accu-
racy than double-precision. However, double-precision
LUT data could potentially benefit applications with
high accuracy requirements and very restricted do-
mains. Further investigation is require to characterize
how such a change of precision would affect accuracy
and performance. The topic of using single-precision
versus double-precision math in scientific computa-
tions is explored by Buttari et al. [4].

2.6. Sampling methods

The sampling method determines how the output
is computed from LUT entries. The simplest form of
LUT optimization uses direct access, which returns the
closest individual LUT entry to an input value. We can
reduce approximation error without increasing mem-
ory usage by employing linear interpolation between
adjacent LUT entries. Interpolation improves the LUT
accuracy but adds computation and an extra LUT ac-
cess for each evaluation, since the LUT value on both
sides of the input value must be fetched.

The sine tables in Fig. 3 are made using direct ac-
cess, while Fig. 9 graphs the same 16 and 32 entry sine
tables using linear interpolation. Linear interpolation
combines the two closest LUT entries based on the rel-
ative distance from the input value. In contrast to direct
access, linear interpolation has zero error at the bound-
aries instead of the center. Conversely the maximum
error is close to the center for linear interpolation. Ac-
curacy can be further improved by techniques such as
polynomial reconstruction, which is commonly used in
hardware solutions where the increased computational

Fig. 9. Lookup table for sine function: linear interpolation. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-2011-0329.)
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load can be handled by additional circuitry. We plan
to add polynomial reconstruction as a future enhance-
ment to Mesa. Mesa supports direct access by default,
and linear interpolation is enabled through a command
line option. We find that linear interpolation improves
the error by approximately an order of magnitude for
the elementary functions. In Section 3 we compare the
accuracy and performance of direct access and linear
interpolation on the SAXS discrete scattering code.

In summary, we have defined a methodology for
LUT optimization and its implementation in the Mesa
tool. Mesa optimizes elementary functions and expres-
sions that combine those functions with basic math.
A programmer uses Mesa by inserting one or more
pragmas to identify candidate expressions. The pro-
grammer then runs Mesa to create a profiling version
of the application that captures and stores domain in-
formation. Mesa reads the domain information and au-
tomatically generates a LUT optimized version of the
application. The process completes when the user eval-
uates the performance and accuracy of the optimized
code versus the original. In the next section we evalu-
ate Mesa on a set of scientific applications.

3. Case studies

We evaluate our methodology in terms of ease of
use, accuracy, and performance by using Mesa to op-
timize five scientific applications. The first two appli-
cations are part of the SAXS project [24], a multi-
disciplinary project at CSU between the Molecular
Biology, Mathematics, Statistics, and Computer Sci-
ence departments. SAXS is an experimental technique
that explores the structure of molecules [11]. SAXS
can be simulated on a computer via discrete or contin-
uous algorithms. A partial discrete scattering simula-
tion was written in the R language by members of the
Statistics department, then ported to C++ and com-
pleted by one of the authors of this paper. A com-
plete simulation of continuous scattering was written
in MATLAB by members of the Math department, then
ported to C++ by various people in the Computer Sci-
ence department. The SAXS code base for both algo-
rithms currently consists of around 5000 lines of C++,
not including documentation, data, and test code. The
third application is SWMD, a molecular dynamics pro-
gram developed and used for research at Cornell Uni-
versity [14]. It consists of slightly more than 3000
lines of C. The fourth application is neural network
code [19] developed by a faculty member in our Com-

puter Science department and used in [3], which con-
tains around 1100 lines of C. We have modified the
C applications minimally to support C++ compilation
and Mesa optimization. The fifth case study evaluates
a computation from the Precipitation-Runoff Modeling
System (PRMS) developed by the United States Geo-
logic Survey [21] for hydrologic modeling. We were
given Java code containing an expensive function that
computes a slope aspect, which we have converted into
approximately 1000 lines of C++. We refer again to
Table 2 for a summary of the performance improve-
ment and error statistics for each application.

3.1. Molecular biology

Our first case study is the SAXS application that
simulates the discrete scattering of a molecular model
using Debye’s formula [11] shown in Eq. (1).

I(θ) = 2
N −1∑
i=1

N∑
j=i+1

Fi(θ)Fj(θ)

× sin(4πrθ)/(4πrθ). (1)

The formula computes the intensity based on the in-
teraction of pairs of atoms in the molecule. The code
with the dominant calculation was shown in Fig. 5.
The fDistance variable represents the distance between
atoms, calculated in the middle loop. The fTheta vari-
able is the scattering angle, which varies for each iter-
ation of the outer loop. The only elementary function
called in the loop is the sine function.

Performance profiles of the SAXS scattering code
show that the expression with the sine call dominates
the computation, so we identify this expression with
a pragma. We invoke Mesa multiple times with the
pragma option, varying the LUT size. Mesa constructs
a LUT optimization of the expression on the right-hand
side of the assignment statement following the pragma.
A previous run using the Mesa profiling option cap-
tured the input domain as approximately 0.0–20.0, so
Mesa builds a LUT over this domain.

For each table size, we run the application and com-
pare the performance and accuracy with that of the
original code. Figure 10 shows the results from this
experiment. The original time Toriginal and optimized
time Toptimized are measured against the right axis. The
vertical line in the graph indicates the amount of L2
cache in the system. The graph shows that the original
time is constant and the optimized time increases with
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Fig. 10. SAXS discrete scattering simulation results (Intel Xeon
E5450, 3.00 GHz, 6 MB L2 cache, single core). (Colors are vis-
ible in the online version of the article; http://dx.doi.org/10.3233/
SPR-2011-0329.)

the memory usage. Amaximum and Aaverage are mea-
sured against the left axis.

Based on the graph in Fig. 10, we select 4 MB as
the optimal LUT size to stay within the biochemists’
requirements for accuracy without overflowing the L2
cache. The performance improvement is 6.9×, with a
maximum error 4.6 × 10−3%. For the SAXS discrete
scattering code we initialize the table by evaluating the
expression approximately 1 million times. The result-
ing table is accessed 4.6 billion times by the applica-
tion, so each table entry is reused more than 4600 times
on the average.

Our second case study uses code that implements
another set of equations that model X-ray scattering,
using a continuous instead of a discrete algorithm. The
C++ code for the inner loop of continuous scattering
is shown in Fig. 11. Note the use of three elementary
functions: exponential, sine, and cosine. The equations
that define continuous scattering are shown in Eq. (2).

I(q, ψ) =
( N∑

j=1

dje−σ2
jq·q/2 cos(q · μj(ψ))

)2

+
( N∑

j=1

dje−σ2
jq·q/2 sin(q · μj(ψ))

)2

.

(2)

Performance profiles of the SAXS continuous code
show that elementary function calls dominate the com-
putation. We invoke Mesa to optimize the sine, cosine,
and exponential function calls, varying the table size.
Figure 12 shows the results of optimizing the contin-
uous scattering code, with the same statistics as for
the discrete case. Optimized performance varies from
4.5× to 2.5× of the original when the LUT fits into L2
cache, then quickly degrades to slower than the orig-
inal code when L2 cache is exhausted. The graph in
Fig. 12 shows 3 MB as the optimal LUT size. The per-
formance improvement at this point is 3.2×, with a
maximum error 1.8 × 10−3%. The LUT size on the
graph represents total memory usage of all three ele-
mentary function tables. During initialization, the con-
tinuous scattering computes 100,000 LUT entries for
each of the three elementary functions, but the appli-
cation calls each function at least 7.9 billion times, for
an average of over 70,000 reuses per LUT entry. LUT
optimization of discrete and continuous scattering im-
proves for larger molecules, as shown in Table 3. The
main reason for this is that LUT initialization is amor-
tized over more computation.

3.2. Molecular dynamics

Our third case study is SWMD [14], a molecular dy-
namics program that models the physical movement of
atoms and molecules by computing the potential en-
ergy and interaction forces of particles. The simula-
tion is performed over a series of time steps to predict
particle trajectories. Many molecular dynamics appli-
cations exist, but we have chosen SWMD because the
code contains a manual LUT optimization done by the
original authors. The dominant calculations in SWMD
are based on the potential energy equations [27] of the
same name, which take into account 2-body (φ2) and
3-body (φ3) interactions that call the exponential func-
tion, as shown in Eqs (3) and (4):

E =
∑

i

∑
j>i

φ2(rij)

+
∑

i

∑
j �=i

∑
k<i

φ3(rijrikθijk), (3)

φ2(rij) = Aijεij

[
Bij

(
σij

rij

)pij
]

× exp

(
σij

rij − aijσij

)
, (4)
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f o r ( i n t j = 0 ; j < m_vecGeometry . s i z e ( ) ; j ++) {
. . .
/ / S c a t t e r i n g e q u a t i o n
dSum0 += m_vecGeometry [ j ] . f D e n s i t y ∗ exp ( dSigma ∗ ( f P r o d u c t / 2 . 0 ) )

∗ s i n ( v e c P r o d u c t [ j ] ) ;
dSum1 += m_vecGeometry [ j ] . f D e n s i t y ∗ exp ( dSigma ∗ ( f P r o d u c t / 2 . 0 ) )

∗ cos ( v e c P r o d u c t [ j ] ) ;
}

Fig. 11. SAXS continuous scattering code.

Fig. 12. SAXS continuous scattering simulation results (Intel Xeon
E5450, 3.00 GHz, 6 MB L2 cache, single core). (Colors are vis-
ible in the online version of the article; http://dx.doi.org/10.3233/
SPR-2011-0329.)

φ3(rij , rikθijk)

= λijkεijk[cos θijk − cos θ0ijk]2

× exp

(
γijσij

rij − aijσij

)
exp

(
γikσik

rik − aikσik

)
.

The original version of SWMD optimized the 2-
body and 3-body calculation by precomputing multi-
ple lookup tables for series of expressions. To evalu-
ate SWMD we removed LUT optimization code from
the original version and inserted straightforward im-
plementations of the Stillinger–Weber equations into
the 2-body and 3-body loops. We used the resulting un-
optimized version of Stillinger–Weber as a baseline for
performance and accuracy. The process required sev-
eral minor modifications before we could run Mesa, in-
cluding type casts to allow C++ compilation and the
coalescing of the 3-body computation into a single ex-
pression. Profiling showed that the 3-body computa-
tion was dominant, with more than 55% of execution

time as compared to 8% for the 2-body, so we focused
on the 3-body code.

We applied the Mesa tool by identifying the 3-body
expression with a pragma and entering the domain lim-
its, which are constant in this application. The perfor-
mance and error results are shown in Table 4. The Mesa
version achieves 4.5× better accuracy with 14× less
memory usage than the original code, but the perfor-
mance is 16% slower. We modified the Mesa-generated
code by hand to include all of the expressions opti-
mized by the original version. By doing so we were
able to closely match the performance of the original
version of SWMD, with 3.5× better accuracy and 2.8×
less memory usage. Mesa currently cannot handle this
combination of expressions, but we are working on a
new version that can.

We also investigated the difference in accuracy be-
tween the original and Mesa versions. We found that
the ad hoc optimization propagates and magnifies er-
ror terms by combining LUT values in successive ex-
pressions. Mesa avoids this problem by optimizing
only the critical expression. The disparity in mem-
ory usage between these versions is because (1) Mesa
stores single-precision values and the original tables
were double-precision, and (2) many fewer expres-
sions were optimized in the Mesa version. Mesa al-
lowed us to experiment with different LUT sizes, and
we discovered that we could improve accuracy sig-
nificantly with a relatively small table. Another ben-
efit from using Mesa is that the entire optimization
required only the addition of a single pragma to the
code.

3.3. Neural networks

Our fourth case study evaluates neural network
code [19] developed by Chuck Anderson at CSU. Pro-
filing showed that the evaluation of transfer functions
in the neural network was a performance bottleneck
that consumed approximately 47% of the execution
time. Two commonly used transfer functions are the
logistics f = 1.0/(1.0 + ex), and hyperbolic tangent
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Table 3

Saxs optimization performance and error on different molecules

Algorithm Molecular Number Speedup Maximum Memory

type model atoms error usage

Discrete scattering 4gcr.pdb 1556 6.8× 3.7 × 10−3% 4 MB

Discrete scattering 1xib.pdb 3052 6.9× 4.6 × 10−3% 4 MB

Discrete scattering 3eqx.pdb 5897 7.7× 9.4 × 10−3% 4 MB

Continuous scattering 4gcr.pdb 1556 2.9× 7.1 × 10−4% 3 MB

Continuous scattering 1xib.pdb 3052 3.0× 1.8 × 10−3% 3 MB

Continuous scattering 3eqx.pdb 5897 3.8× 1.9 × 10−2% 3 MB

Note: Intel Xeon E5450, 3.00 GHz, 6 MB L2 cache, single core.

Table 4

Stillinger–Weber molecular dynamics simulation results

Program Execution Performance Application Memory

version time (s) speedup error (%) usage

Original 8.82 1.67× 0.135 5.6 MB

Mesa (manual) 8.94 1.62× 0.038 2.0 MB

Mesa (automated) 10.29 1.42× 0.030 400 kB

Unoptimized 14.76 1.00× 0.000 0.0 MB

Note: Intel Xeon E5450, 3.00 GHz, 6 MB L2 cache, single core.

Table 5

Mesa results on neural network code

Transfer Original Optimized Speedup Original Optimized Maximum

function time (s) time (s) result result error (%)

Logistics 7.9 3.8 2.1× 0.12407 0.12408 8.8 × 10−2

Hyperbolic tangent 11.0 3.9 2.8× 0.000295 0.000277 6.1 × 100

Note: Intel Xeon E5450, 3.00 GHz, 6 MB L2 cache, single core.

f = tanh(x), both of which call elementary functions.
We optimized both functions, and the results are shown
in Table 5. The error terms may be less significant than
shown, since we conservatively compute them as the
difference of small numbers, instead of scaling them
based on the range of possible solutions. The memory
usage in both cases was 4 MB, but we were also able to
increase the size of the LUT to exceed L2 cache with-
out significant performance degradation. It appears that
the number of LUT accesses is much smaller than the
entire table, thus the LUT data does not actually over-
flow L2 cache.

3.4. Hydrology modeling

Our final case study is a slope aspect computation
from the PRMS application [21] developed by the
United States Geological Survey (USGS). The func-
tion we optimized is used by PRMS to compute the
slope aspect for a single point on a terrain grid based
a variety of parameters including the latitude and dec-

lination. The computation is shown in Fig. 13, and the
results of the optimization are shown in Table 2. The
prevalence of sine and cosine calls make this code a
good candidate for elementary function optimization,
allowing Mesa to achieve a 4.6× speed up with a small
error. The number of variables in the slope aspect com-
putation preclude expression optimization with version
1.1 of Mesa.

3.5. Interpolation versus direct access

The results shown so far were generated with the di-
rect access sampling method. Mesa supports linear in-
terpolation, which samples the adjacent LUT entries
and combines them in a linear fashion according to
their distance from the input value. Figure 14 compares
direct access and linear interpolation using the SAXS
discrete scattering code. Execution time and maximum
application error are shown in the graph for both meth-
ods. The extra computation for interpolation makes it
slower than direct access. For the LUT sizes shown,
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f l o a t C G e o s p a t i a l : : C a l c u l a t i o n ( i n t ju lDay ,
double a s p e c t , double s l o p e , double l a t i t u d e )

{
/ / D e c l i n a t i o n c a l c u l a t i o n
double d e c l i n e = 0 .4095 ∗ s i n ( 0 . 0 1 7 2 0 ∗ ( ju lDay − 7 9 . 3 5 ) ) ;

double s i n _ d e c l i n e = s i n ( d e c l i n e ) ;
double c o s _ d e c l i n e = cos ( d e c l i n e ) ;
double s i n _ l a t i t u d e = s i n ( l a t i t u d e ) ;
double c o s _ l a t i t u d e = cos ( l a t i t u d e ) ;
double s i n _ s l o p e = s i n ( s l o p e ) ;
double c o s _ s l o p e = cos ( s l o p e ) ;
double c o s _ a s p e c t = cos ( a s p e c t ) ;

double s l o p e d =
( s i n _ d e c l i n e ∗ s i n _ l a t i t u d e ∗ c o s _ s l o p e ) −
( s i n _ d e c l i n e ∗ c o s _ l a t i t u d e ∗ s i n _ s l o p e ∗ c o s _ a s p e c t ) +
( c o s _ d e c l i n e ∗ c o s _ l a t i t u d e ∗ c o s _ s l o p e ) +
( c o s _ d e c l i n e ∗ s i n _ l a t i t u d e ∗ s i n _ s l o p e ∗ c o s _ a s p e c t ) ;

double h o r i z o n t a l =
s i n _ d e c l i n e ∗ s i n _ l a t i t u d e + c o s _ d e c l i n e ∗ c o s _ l a t i t u d e ;

double s l o p e A s p e c t = s l o p e d / h o r i z o n t a l ;
re turn s l o p e A s p e c t ;

}

Fig. 13. PRMS slope aspect computation.

Fig. 14. Comparison of interpolation versus direct access (Intel Xeon
E5450, 3.00 GHz, 6 MB L2 cache, single core). (Colors are vis-
ible in the online version of the article; http://dx.doi.org/10.3233/
SPR-2011-0329.)

linear interpolation yields a speed up from 4.5× to
6.1×, as compared to a 6.1× to 10.7× speed up for
direct access. The shape of the performance curves is
almost identical, implying that cache penalties affect
both cases similarly. The maximum error for linear in-
terpolation starts at almost an order of magnitude bet-
ter for the smallest LUT size and improves quickly un-

til an advantage reaches more than two orders of mag-
nitude in the center of the graph. Thus linear interpo-
lation may allow the LUT optimization to meet accu-
racy requirement in cases where direct access would
overflow the mid-level cache.

3.6. Case study summary and evaluation

We define two criteria for evaluating our methodol-
ogy. The first criterion is effectiveness, which we mea-
sure quantitatively by comparing the performance and
accuracy of the Mesa code against the original version.
The second criterion is programming effort, which we
define qualitatively as the effort needed to apply a LUT
optimization with Mesa as compared with the manual
process. We believe that programming effort is reduced
in proportion to ease of use of the tool. The LUT op-
timizations shown in this section are effective because
they achieve a significant speed up while meeting ap-
plication accuracy requirements, as shown by results
of the case studies in Section 3.

Programming effort is greatly reduced over the orig-
inal ad hoc implementation for the SAXS discrete
code, which required several weeks of development
time and experimentation, even after completion of the
original algorithm. Characterization of error was es-
pecially time-consuming, because it required multiple
runs of the entire SAXS application. Mesa error anal-
ysis allowed us to quickly identify efficient set of LUT
parameters without overflowing mid-level cache. The
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SAXS continuous code was never optimized manually
because Mesa was available during its development
period. Optimization of both the SAXS discrete and
continuous code was done in a matter of hours with
Mesa, including the error analyses shown in Figs 10
and 12. We additionally find that the Mesa code very
closely matches the performance of the manually de-
veloped SAXS code. The other applications were just
as easy to optimize with Mesa, requiring at most a sin-
gle pragma. The development time for the manual op-
timization of the SWMD code is unknown, but it is ob-
vious that many complex code changes were required,
along with experimentation with table size versus per-
formance and accuracy. The other applications did not
contain a prior LUT optimization, so no direct compar-
ison of development time is impossible.

3.7. Parallel efficiency

Much of the current research in scientific computing
focuses on multi-core performance and programming
effort. An important trend in multi-core systems is the
decrease in memory access performance relative to
processor throughput. This motivates research on pro-
gram transformations that minimize memory accesses.
Despite this, we see no reason to neglect single-core
performance, as long as the resulting optimizations re-
main equally beneficial in the multi-core environment.
We verify that our optimizations meet this criteria by
comparing multi-core scaling on programs optimized
with Mesa. We have parallelized the SAXS discrete
and continuous scattering loops with OpenMP direc-
tives. Figure 15 shows that our optimizations scale well
on a Cray XT6m computer, and we have replicated

this on several multi-core systems including the bench-
mark system shown throughout the paper (Intel Xeon
E5450, 3.00 GHz, 6 MB L2 cache, eight cores). We
conclude that our single-core optimizations are inde-
pendent from and complementary to parallelization.

4. Related work

Optimizing compilers are efficient at improving the
serial performance of applications. However, the scope
of optimizations provided by compilers is somewhat
limited. Current compilers do not generate algorithmic
improvements or more efficient numerical techniques,
nor can they completely automate parallelization. As a
result, manual tuning consumes a significant amount of
the development effort for scientific applications [26].
Besides increasing programming effort, manual tuning
has the disadvantage of obscuring algorithms [17].

A current research topic in scientific computing is
how to decrease the programming effort [17] required
to parallelize existing codes. Previous models such
as POSIX threads required an intensive programming
effort and special expertise. Current models such as
OpenMP [6] raise the level of abstraction for the pro-
grammer, reducing the amount of code that needs to be
written. Inserting pragmas is well accepted by scien-
tific programmers using OpenMP, so we have adopted
the same model for Mesa. The end goal is automation,
which reduces effort by freeing programmers from low
level details [5].

The LUT optimization approach described in this
paper is motivated by the observation that some appli-
cations evaluate elementary functions repeatedly with
inputs within a restricted domain. This repeated com-

Fig. 15. Parallel efficiency of SAXS application (Cray XT6m, AMD Opteron 6100, 2.5 GHz, 512 kB L2, 6 MB L3, 24 cores). (Colors are visible
in the online version of the article; http://dx.doi.org/10.3233/SPR-2011-0329.)
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putation can be avoided by caching the results of
function evaluation for later reuse. Memoization [1]
is a similar approach that reduces computation by
caching function results. Typically memoization algo-
rithms guarantee precise reuse, meaning that function
results are always exact. Alvarez et al. [2] propose
fuzzy memoization in which fuzzy reuse allows results
to be reused when the input closely matches a previ-
ous evaluation. This achieves a much higher level of
reuse, but introduces error into the computation. The
main difference between LUT optimization and mem-
oization is that LUT methods compute results for the
entire domain in advance, eliminating the overhead of
identifying whether or not a result has been previously
cached.

Considerable research has focused on optimizing the
performance of elementary functions. The idea of ap-
proximating elementary functions in hardware is long
established, for example Gal [10] proposed combin-
ing a LUT with a minimax polynomial. Frequently
cited papers by Tang [29,30] apply similar methods to
implement elementary functions under the IEEE 754
floating-point specification [12]. LUT methods remain
popular because they provide good performance at a
reasonable hardware cost. Much of the recent literature
focuses on variants of polynomial reconstruction to im-
prove the accuracy of function evaluation between ref-
erence points [20].

There are few academic references on software
LUTs, but some books [22] and articles encourage the
use of ad hoc techniques. A series of papers on LUT
hardware for function evaluation in FPGAs [8,25] has
culminated in a paper by Zhang et al. [33] that explores
both hardware and software LUT methods. Zhang et
al. present a compiler that transforms functions writ-
ten in a “MATLAB-like” language into C or C++
code suitable for multi-core execution. Mesa performs
a similar transformation in the context of C or C++
source code, allowing optimization of entire applica-
tions. Similar to our research, Zhang et al. show that
LUT optimizations outperform standard C and C++
code that calls elementary functions in the math library.
Zhang et al. conclude that (1) linear interpolation is a
minimal requirement, (2) LUT size is not a problem
because of modern L2 cache sizes, and (3) the extra ex-
pense of polynomial reconstruction may not be worth-
while in software.

The only other related work that we are aware of
that addresses the impact of cache usage on LUT per-
formance is Defour [7]. Defour concludes that LUT
sizes must fit within L1 cache, however this observa-

tion is based on very small tables in conjunction with
highly accurate polynomial reconstruction. We show
that LUTs up to the size of the L2 cache can improve
the performance of function evaluation. We also extend
the literature by comparing the performance of direct
access and linear interpolation across a range of LUT
sizes, and we find that lower overhead makes direct ac-
cess worthwhile in some cases.

5. Limitations

The primary limitation of the Mesa tool is that it
parses only C and C++ code, and the resulting opti-
mized code must be compiled with a C++ compiler.
Mesa is currently limited to the elementary functions
sin, cos, tan, exp, log and sqrt, but new functions are
easily added. Mesa does not support all possible C++
syntax, thus minor modifications may be required be-
fore using the tool. For example, variables declared as
const are not detected as constants, and must be re-
placed with preprocessor defines, and type casts are not
allowed in candidate expressions. Mesa is also limited
to expressions that depend on a single free variable, so
the tool will not detect and generate multi-dimensional
LUT data.

The main limitation of LUT optimization is that
the technique is suitable only for programs that are
performance-limited by computations with elementary
functions. Such computations are common in scientific
computing, but many applications are performance-
limited by memory accesses. These applications may
not benefit from LUT techniques, and the increase
in memory usage can actually decrease performance.
However, having access to a lightweight performance
tool such as Mesa greatly reduces the effort required to
see whether an application can benefit from LUT op-
timization. A second limitation is that LUT data must
share mid-level cache memory with the application to
avoid cache penalties. In practice this is often done suc-
cessfully, as shown by the case studies in this paper.
The final limitation of LUT optimization is that some
applications may be unable to tolerate the decreased
accuracy inherent to LUT optimization. In contrast,
many scientific simulations are known to be based on
very imprecise data, yet they often make pervasive use
of expensive high-precision floating-point operations.
These applications may be able to achieve a significant
benefit without comprising results. Several precedents
for reducing the precision of elementary functions ex-
ist, including the Enhanced Performance mode of the
Intel Vector Math Library (VML) [15].
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6. Threats to validity

There are four general types of validity relevant
to empirical research: conclusion validity, internal va-
lidity, construct validity, and external validity [32].
A study has conclusion validity if we can conclude that
there is a relationship between study variables of inter-
est. Our study exhibits conclusion validity since we can
safely conclude that, among the programs in our study,
programs with LUT optimization have better perfor-
mance than those without LUT optimization. We can
also safely conclude that it takes more effort to perform
the optimizations by hand than by using Mesa.

Internal validity focuses on whether or not there is a
causal relationship between the treatment and external
variables. Threats to internal validity include having
no rationale for the relationship between treatment and
outcome. In addition, other unmeasured factors that
might be the real cause of the outcome are threats to
internal validity. In our study, there is a clear rationale
for a cause and effect relationship between LUT op-
timization and the dependent variables: performance,
accuracy, and programming effort. Other unmeasured
factors should not affect the outcome, since the only
change to the program is the replacement of function
calls with a LUT access.

A study has construct validity when the treatment
used in the study accurately represents the concepts
that we mean to study, and the measurements of vari-
able attributes are valid. Mesa performs LUT optimiza-
tion in a manner consistent with the descriptions of
manually performed LUT optimization in the litera-
ture. The measures of performance and accuracy are
clearly valid. The measurement of programming ef-
fort in terms of programming time is consistent with
the general notion of effort; a reduction in the time re-
quired to implement a program represents a reduction
in effort.

Results of a study with external validity will gener-
alize beyond the study data itself. External validity is
often an issue with empirical research, because of the
limited number and scope of the applications that can
be evaluated. We would need to study a random sam-
ple of all scientific applications to eliminate all threats
to external validity, but such a sampling is not practi-
cal. Our empirical evaluation consists of case studies
of five such applications in four scientific areas. Fur-
ther research is required to demonstrate applicability
to other scientific domains, and to better understand
where our methodology is most appropriate. However,
we believe that the results in this paper will general-

ize to applications that share the characteristic of be-
ing limited primarily by the evaluation of elementary
functions.

7. Conclusions

This paper presents the Mesa source-to-source trans-
formation tool and an associated methodology for LUT
optimization. We evaluate Mesa on five scientific ap-
plications from four domains, and find that our tool
reduces the effort associated with LUT optimization.
Our approach improves the current practice of man-
ual tuning by allowing programmers to create and ana-
lyze LUT optimizations with very little effort and with-
out writing code. Mesa error analysis lets programmers
improve performance with clear knowledge of the ef-
fect on accuracy, without costly experimentation. The
case studies in this paper provide additional evidence
that software LUT optimization can exploit the fuzzy
reuse inherent in many scientific programs to produce
significant performance gains of 1.4× to 6.9×, while
maintaining reasonable error bounds. The code for ver-
sion 1.1 of Mesa as described in this paper is available
from our web site [18].

Acknowledgements

This project is supported by Award Number
1R01GM096192 from the National Institute Of Gen-
eral Medical Sciences. The content is solely the re-
sponsibility of the authors and does not necessarily
represent the official views of the National Institute Of
General Medical Sciences or the National Institutes of
Health. This project is also supported by grant number
DE-SC0003956 from the Department of Energy. Addi-
tional support comes from seed funding from the Vice
President of Research and the Office of the Dean of
the College of Natural Sciences at Colorado State Uni-
versity and from a Department of Energy Early Career
grant. This research utilized the CSU ISTeC Cray HPC
System supported by NSF Grant CNS-0923386. We
gratefully acknowledge the many partners who have
shared code with us, including Stefan Sillau, Ryan
Croke, and Mark van der Woerd for the SAXS code,
Paulette Clancy for the SWMD program, Chuck An-
derson for the neural network application, and Olaf
David and George Leavesley for the PRMS code, and
the anonymous reviewers from the Scientific Program-
ming journal whose comments helped improve this pa-
per.



C. Wilcox et al. / Tool support for software lookup table optimization 229

References

[1] U.A. Acar, G.E. Blelloch and R. Harper, Selective memoiza-
tion, in: Proceedings of the 30th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL’03,
ACM, New York, NY, USA, 2003, pp. 14–25.

[2] C. Alvarez, J. Corbal and M. Valero, Fuzzy memoization for
floating-point multimedia applications, IEEE Transactions on
Computers 54(7) (2005), 922–927.

[3] C.W. Anderson, S.V. Devulapalli and E.A. Stolz, Determining
mental state from EEG signals using parallel implementations
of neural networks, Sci. Program. 4 (1995), 171–183.

[4] A. Buttari, J. Dongarra, J. Kurzak, P. Luszczek and S. Tomov,
Using mixed precision for sparse matrix computations to en-
hance the performance while achieving 64-bit accuracy, ACM
Trans. Math. Softw. 34(4) (2008), 1–22.

[5] G. Cong, S. Seelam, I. Chung, H. Wen and D. Klepacki, To-
wards a framework for automated performance tuning, in: Pro-
ceedings of the 2009 IEEE International Symposium on Paral-
lel and Distributed Processing, IEEE Computer Society, Wash-
ington, DC, USA, 2009, pp. 1–8.

[6] L. Dagum and R. Menon, OpenMP: an industry standard API
for shared-memory programming, Computational Science En-
gineering, IEEE 5(1) (1998), 46–55.

[7] D. Defour, Cache-optimised methods for the evaluation of el-
ementary functions, Technical Report 2002-38, Ecole normale
superieure de Lyon, 2002.

[8] L. Deng, C. Chakrabarti, N. Pitsianis and X. Sun, Automated
optimization of look-up table implementation for function
evaluation on FPGAs, Proceedings of SPIE 7444 (2009), Arti-
cle ID: 744413.

[9] J. Detrey, F. de Dinechin and X. Pujol, Return of the hard-
ware floating-point elementary function, in: Proceedings of the
18th IEEE Symposium on Computer Arithmetic, IEEE Com-
puter Society, Washington, DC, USA, 2007, pp. 161–168.

[10] S. Gal, Computing elementary functions: a new approach for
achieving high accuracy and good performance, in: Proceed-
ings of the Symposium on Accurate Scientific Computations,
Springer-Verlag, London, UK, 1986, pp. 1–16.

[11] O. Glatter and O. Kratky (eds), Small Angle X-ray Scattering,
Academic Press, London, UK, 1982.

[12] D. Goldberg, What every computer scientist should know
about floating-point arithmetic, ACM Comput. Surv. 23 (1991),
5–48.

[13] B. Gough, An Introduction to GCC for the GNU Compilers gcc
and g++, Network Theory Ltd, Bristol, UK, 2004.

[14] M. Haran, J.A. Catherwood and P. Clancy, Diffusion of group
v dopants in silicon-germanium alloys, Applied Physics Letters
88(17) (2006), 173502.

[15] Intel Vector Math Library, available at: http://software.intel.
com/sites/products/documentation/hpc/mkl/vml/vmldata.htm,
2011.

[16] C. Liao, D.J. Quinlan, T. Panas and B.R. de Supinski, A ROSE-
based OpenMP 3.0 research compiler supporting multiple run-
time libraries, in: IWOMP, Springer-Verlag, Berlin, Germany,
2010, pp. 15–28.

[17] E. Loh, M.L. Van De Vanter and L.G. Votta, Can software engi-
neering solve the HPCS problem?, in: Proceedings of the Sec-

ond International Workshop on Software Engineering for High
Performance Computing System Applications, SE-HPCS’05,
ACM, New York, NY, USA, 2005.

[18] MESA Project, available at: http://www.cs.colostate.edu/hpc/
MESA, 2010.

[19] Neural Network Software, available at: http://www.cs.
colostate.edu/~anderson/meOther.html, 2011.

[20] J.A. Piñeiro, J.D. Bruguera and J.M. Muller, Faithful power-
ing computation using table look-up and a fused accumulation
tree, in: ARITH’01: Proceedings of the 15th IEEE Symposium
on Computer Arithmetic, Washington, DC, USA, IEEE Com-
puter Society, 2001, p. 40.

[21] PRMS Project, available at: http://water.usgs.gov/software/
PRMS, 2010.

[22] J. Riley, Writing Fast Programs: A Practical Guide for Scien-
tists and Engineers, Cambridge International Science Publish-
ing, 2006.

[23] ROSE Project, available at: http://www.rosecompiler.org/,
2011.

[24] SAXS Project, available at: http://www.cs.colostate.edu/hpc/
SAXS, 2010.

[25] K. Sobti, L. Deng, C. Chakrabarti, N. Pitsianis, X. Sun, J. Kim,
P. Mangalagiri, K. Irick, M. Kandemir and V. Narayanan, Ef-
ficient function evaluations with lookup tables for structured
matrix operations, in: 2007 IEEE Workshop on Signal Process-
ing Systems, IEEE Computer Society, Washington, DC, USA,
2007, pp. 463–468.

[26] S. Squires, M. Van De Vanter and L. Votta, Software productiv-
ity research in high performance computing, CTWatch Quar-
terly 2(4A) (2006), 52–61.

[27] F. Stillinger and T. Weber, Computer simulation of local or-
der in condensed phases of silicon, Physical Review B 31(8)
(1985), 5262–5271.

[28] J.E. Stine and M.J. Schulte, The symmetric table addition
method for accurate function approximation, J. VLSI Signal
Process. Syst. 21 (1999), 167–177.

[29] P.-T.P. Tang, Table-driven implementation of the exponential
function in IEEE floating-point arithmetic, ACM Transactions
on Mathematical Software 15(2) (1989), 144–157.

[30] P.-T.P. Tang, Table-lookup algorithms for elementary functions
and their error analysis, in: Proceedings of the 10th IEEE Sym-
posium on Computer Arithmetic, 1991.

[31] C. Wilcox, M. Strout and J. Bieman, Mesa: automatic genera-
tion of lookup table optimizations, in: Proceedings of the 4th
International Workshop on Multicore Software Engineering,
IWMSE’11, ACM, New York, NY, USA, 2011.

[32] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell
and A. Wesslen, Experimentation in Software Engineering:
An Introduction, Kluwer Academic, Boston/Dordrecht/Lon-
don, 2000.

[33] Y. Zhang, L. Deng, P. Yedlapalli, S. Muralidhara, H. Zhao,
M. Kandemir, C. Chakrabarti, N. Pitsianis and X. Sun,
A special-purpose compiler for look-up table and code genera-
tion for function evaluation, in: Design, Automation Test in Eu-
rope Conference Exhibition (DATE), IEEE Computer Society,
Washington, DC, USA, 2010, pp. 1130–1135.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


