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Abstract. Text analysis tools are nowadays required to process increasingly large corpora which are often organized as small
files (abstracts, news articles, etc.). Cloud computing offers a convenient, on-demand, pay-as-you-go computing environment for
solving such problems. We investigate provisioning on the Amazon EC2 cloud from the user perspective, attempting to provide a
scheduling strategy that is both timely and cost effective. We derive an execution plan using an empirically determined application
performance model. A first goal of our performance measurements is to determine an optimal file size for our application to
consume. Using the subset-sum first fit heuristic we reshape the input data by merging files in order to match as closely as
possible the desired file size. This also speeds up the task of retrieving the results of our application, by having the output be
less segmented. Using predictions of the performance of our application based on measurements on small data sets, we devise an
execution plan that meets a user specified deadline while minimizing cost.
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1. Introduction

As the amount of available text information in-
creases rapidly (online news articles, reviews, ab-
stracts, etc.), text analysis applications need to process
larger corpora. Increased computational resources are
needed to support this analysis. Building and main-
taining a cluster requires significant initial invest-
ments (hardware, physical space) and operational costs
(power, cooling, management). Amortizing these costs
demands maximizing resource utilization. However,
optimizing for maximum utilization limits the abil-
ity of projects to grow their resource needs on short
notice. Recently, commercially offered cloud comput-
ing [8] solutions (Amazon EC2, GoGrid, SimetriQ,
Rackspace) have become an attractive alternative to in-
house clusters. They offer many advantages: customiz-
able virtual machines, on-demand provisioning, usage
based costs, fault tolerance. Some of the drawbacks
are on the side of performance guarantees and secu-
rity. Also, in a cluster environment, the user typically
delegates the task of resource allocation to the local
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resource manager, while the cloud user can take con-
trol of this step. We see this as an opportunity to steer
application execution in such a way as to meet a user
deadline while also minimizing costs.

A considerable amount of recent work has focused
on analyzing the performance and cost effectiveness
of such platforms for different classes of applications:
CPU intensive or I/O intensive scientific computing ap-
plications [6,10,11,20], service-oriented applications
[7], latency-sensitive applications [2]. Other work has
focused on quantifying the variation in received quality
of service. Some of this work relies on simulations of
a cloud environment, while most of it uses Amazon’s
Elastic Computing Cloud (EC2) as a testbed.

In this paper, we consider typical text processing ap-
plications (grep, part of speech tagging)
and attempt to provide a good execution plan for them
on Amazon EC2. Our input data sets consist of a large
number of small files. We assume knowledge of the
distribution of the file sizes in the input data set, and
no knowledge of the internals of the application we are
running. Our first goal is to quantify the potential per-
formance loss suffered by our applications when con-
suming small files. To achieve this goal we observe
the application’s behavior on Amazon EC2 for differ-
ent file sizes and identify a suitable file size or range
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of sizes. We then reshape our input data by grouping
and concatenating files to match the preferred size as
closely as possible. The text processing applications
we consider do not need to be further modified to be
capable to consume the concatenated larger input files.
This approach will also imply a lower number of out-
put files which results in a shorter retrieval time for
the application results. This, in turn, results in a shorter
makespan for the application. In terms of cost, the per-
byte transferred cost being constant, the main bene-
fit results from saved compute time due to the shorter
makespan. Further, the cost savings are additive for ap-
plications which support multiple transactions.

A second goal of our work is to use our application
as a benchmark on Amazon EC2 to determine a sim-
ple performance model for our application and use it
to generate an execution plan for the entire input data.
In order to devise a schedule we need estimates of the
application runtime on Amazon resources. We observe
the application’s behavior on EC2 instances for small
subsets of our data and then attempt to determine a pre-
dictor of runtime for larger subsets of our final work-
load. We consider linear, power law and exponential
functions as predictors.

1.1. Background

The Elastic Computing Cloud (EC2) from Ama-
zon offers its customers on-demand resizable comput-
ing capacity in the cloud with a pay-as-you-go pric-
ing scheme. Amazon relies on Xen virtualization to
offer its customers virtual hosts with different con-
figurations. The user can request different instance
types (small, medium, large) with different CPU, mem-
ory and I/O performance. The instance classifica-
tion is based on the notion of an EC2 compute unit
which is equivalent to a 1.0-1.2 GHz 2007 Opteron
2007 Xeon processor. The user can choose among a
range of Amazon Machine Images (AMIs) with dif-
ferent configurations (32-bit/64-bit architecture, Fe-
dora/Windows/Ubuntu). Users can modify AMIs to
suit their needs and reuse and share these images.

Amazon allows the user to place an instance in one
of the 3 completely independent EC2 regions (US-east,
US-west, EU-west). This would allow the user to pick
alocation closer to where their data is available. Within
a region, the users can choose to place their instances
in different availability zones which are constructed
by Amazon to be insulated from one another’s fail-
ure. For example, the US-east region has 4 availability
zones (us-east-la, us-east-1b, us-east-1c¢ and us-east-

1d). These zones are defined separately for each user.
Amazon’s SLA commitment is 99.95% availability for
each Amazon EC2 region for every user.

Amazon instances come with ephemeral storage
(160 GB for small instances). Amazon also offers the
possibility to purchase Elastic Block Store (EBS) per-
sistent storage. EBS storage volumes are exposed as
raw block devices that can be attached to an instance
and persist beyond the life of that instance. Multiple
EBS storage volumes may be attached to the same in-
stance, but an EBS storage volume may not be attached
to multiple instances at the same time. The root par-
tition of an instance may be of type instance-store in
which case its contents are lost in case of a crash, or of
type ebs in which case its contents are persistent.

Amazon offers storage independent of EC2 via the
Simple Storage Service (S3). Users can store an un-
limited number of objects each of size of up to 5 GB.
Multiple instances can access this storage in parallel
with low latency, which is however higher and more
variable than that for EBS storage volumes.

The pricing scheme for instances provides a flat rate
for an hour or partial hour of computation ($0.1 x [A]).
This has implications for devising a good execution
plan for an application. Once an instance is up and run-
ning, in most situations we will prefer to let it continue
to run at least to the full hour.

Amazon has also started to offer spot instances.
The price for these instances depends on current sup-
ply/demand conditions in the Amazon cloud. The user
can specify a maximum amount she is willing to pay
for a wall-clock hour of computation and configure her
instance to execute whenever this maximum bid be-
comes higher than the current market offer. This is ad-
vantageous when time is less important of a consider-
ation than cost. However, applications are required to
be able to resume cleanly in order to best take advan-
tage of spot instances. In our work, we are interested in
being able to give cost effective execution plans when
there are makespan constraints and so we use instances
that can be acquired on demand.

2. Motivation

Our work is motivated by the computational needs
of a project analyzing a large collection of online news
articles. While the size of a single article is relatively
small (a few dozen kilobytes), the total number of ar-
ticles (tens of millions) and total volume of text (close
to a terabyte) make the efficient processing of this data
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set challenging. In particular, we consider the idea of
reshaping the original data, characterized by millions
of small fragments with significant size differences,
into large blocks of similar size. Processing these large
blocks in parallel in the cloud is more attractive than
dealing with the original data for two reasons. First,
much of the overhead of starting many new instances
and processes is avoided, making the overall process-
ing more efficient. Second, the execution times for the
similarly-sized blocks of data may also be relatively
similar, thus enabling the estimation of the total run-
ning time and the optimization of the cost for typical
pricing schemes given a deadline.

There are many other large collections of text that
share the same characteristics as our target data set.
For example, social scientists are interested in the ever-
growing myriad of short texts generated by social net-
work activities such as status updates, tweets, com-
ments and reviews. Bioinformatics researchers often
analyze a large number of abstracts, posters, slides, and
full papers in order to extract new and emerging pat-
terns of interactions among proteins, genes and dis-
eases.

3. Experimental setup

In this section, we describe the resources we use on
EC2 and the characteristics of our data sets.

3.1. EC2 setup

Small instances have been shown to be less stable [2,
7,21] but more cost effective for most applications. Our
experiments use small instances since they are most
common and most cost effective. We use a basic Ama-
zon EC2 32-bit small instance running Fedora Core 8.
Each such instance is configured with 1.7 GB memory,
1 EC2 compute unit, 160 GB local storage, 15 GB EBS
root partition. The cost of an instance is $0.1 per hour
or partial hour. Payment is due only for the time when
the instance is in the running state. Time spent starting
up (pending state), shutting down (shutting down state)
or in the ferminated state is cost free.

We use the local instance storage for most of our ex-
periments. Using EBS storage volumes, though adding
to the cost of execution, has the advantage of simpli-
fying how the execution plan would adapt to failure
or bad performance. Although the virtualization layer
promises uniform VM speed, our experience shows
heterogeneity in instance performance. We observe in-

stances behaving consistently slow or fast. Dejun et al.
note in [7] CPU performance variability of up to a fac-
tor of 4 and significant I/O speed variations. If we de-
cide an instance is not performing well, we may de-
cide to let it run to the full hour while starting up an-
other instance and attaching the EBS storage volume
to it once it is ready. For an I/O intensive application,
a simple calculation shows that if working with a slow
instance with an average read speed of 60 MB/s, we
could process approximately 210 GB of data if we let
the instance run for the next hour. If switching to an-
other instance that is likely fast and consistent, even
when paying a penalty of 3 min for the new instance
startup and EBS storage volume attachment, we would
still be able to process an extra 57 GB. If the instance
happens to be slow we miss processing 10 GB.

3.2. Data

We use two data sets in our experiments. The first
is a set of HTML articles that are part of our Newslab
collection. The Newslab data comprises of roughly
75 million news articles collected from Google News
during the year of 2008. We use a subset of this data
that corresponds to English language articles. This set
comprises of approximately 18 million files adding up
to a volume of almost 900 GB. The majority of the
files are less than 50 kB and the distribution of the file
sizes exhibits a long tail. The largest file size is 43 MB.
Figure 1(a) shows the distribution up to files of size
300 kB. The file sizes are considered as multiples of
10K.

The second data set consists of 400,000 English lan-
guage text files, extracted from a subset of HTML En-
glish language articles. The majority of the files are
small (<5 kB), while the largest file is 705 kB in size.
The plot below shows the frequency distribution of the
sizes of the files up to 160 kB. The distribution has a
long tail (Fig. 1(b)).

4. Performance estimation

Any execution strategy for an application on a set of
resources relies on the expectation of how the applica-
tion performs on each resources. Performance estima-
tion can be done through analytical modeling [3,13],
empirically [5] and by relying on historical data [17].
Since the characteristics of our cloud computing en-
vironment are volatile and opaque, we find that deter-
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Fig. 1. Data sets. (a) Frequency distribution for the HTML data set HTML_18mil (10 kB bin). (b) Frequency distribution for the text data set
Text_400K (1 kB bins). (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2011-0322.)

mining an empirical application performance model is
preferable to using historical data or analytical models.

Our approach is to first acquire a stable, well per-
forming instance. This is the case for most instances,
but as noted before, it is possible to receive inconsis-
tent instances or instances behaving consistently slow.
Therefore, we first request a small instance and mea-
sure its performance using bonnie++ [1] to ensure that
it is of high quality (over 60 MB/s block read/write per-
formance). We repeat this performance measurement
to confirm that the instance is stable. We repeat this
procedure until we acquire an instance that performs
well. The application performance model will be de-
termined using this instance using a set of test probes

constructed from our original data set. All performance
measurements are repeated 5 times and the average and
standard deviation are noted.

Next, we show how we derive test probes obtained
by varying their construction along two dimensions:
total volume size and base unit file size. The former is
needed to understand the behavior of the application
on larger inputs while the latter is needed to determine
an appropriate file size for the application to consume.
The procedure is described in detail below.

Our first probe consists of a single file. We designate
it as probe P(}/r?g, where V| represents the volume of
data and the superscript notation indicates that the data
is in its original form. We pick the initial file to send
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to be among the smallest in our data set. For every set
of measurements on test probes, if the average execu-
tion time is small and the standard deviation is large,
we continue to profile the application performance for
larger volumes of data. For very short runs on small
data sets, we note less stable measurements due to the
domination of unstable setup overheads.

Next, varying on the volume dimension, we aim to
construct probes of volume V; = k x 1}, where k
is chosen appropriately based on the amount of time
taken to process the initial probe. We straightforwardly
obtain probe P(}r/ilg from our data set. Then we derive a
further set of probes of the same volume V| by varying
on the dimension of the unit file size. To achieve this,
we use the first fit bin packing algorithm [19] to merge

the original files into desired unit file sizes (sg, . . . , Sn)-
We pick sg larger than the maximum file size in the
original set. We then conveniently choose sy,..., s

as multiples of sg, such that we perform the bin pack-
ing once to obtain PSVO1 and then directly derive the re-
maining probes PSVI' ey PSan. This approach is con-
venient since we avoid rerunning the first fit bin pack-
ing algorithm, but can be sensitive to the quality of the
original bins of size sg. We vary the unit file size up to
the maximum possible size of s, = V. We then an-

alyze the performance of the original probe P(}r/ilg and

contrast it with the results for probes PS‘O/O, e, PXL' in
order to learn of any performance loss or gain that we
would incur if the same data was organized in smaller
or larger files.

If the results for the set of probes (PV1 P;g' , PX‘,

orig’
cees PXL‘) are not yet stable we continue this process
with larger volumes. At the end of this process, we ob-
tain measurements along three dimensions: data vol-
ume, unit file size and execution time.

Collecting the results for all the sets of probes we
have, we can inspect each probe set to identify a possi-
ble preferable unit file size where the execution time is
minimal. Sometimes we do not observe a single global
minimum, but rather a plateau where the execution
time is minimized. We give preference to choosing the
preferred unit file size as the minimum from later probe
sets that are more stable.

5. Static provisioning
Using the performance measurements collected, we

can now proceed to build the application performance
model. The performance measurement experiments al-

low us to determine a single optimal unit file size or a
range of unit file sizes which benefit overall applica-
tion performance. Once a preferred unit file size is se-
lected, we focus strictly on the measurements relevant
to that unit file size. We perform regression to obtain a
predictor for execution times as a function of data vol-
ume consumed. While this is a simple approach, we be-
lieve we can get a satisfactory estimate of the runtime
without investing in determining complex performance
models. Since our data points are not nearly equidis-
tant, we perform the regression in logarithmic space.
We consider the following models:

(1) Linear y = az: In logarithmic space, we would
be fitting Y = Ina + X, where Y = Iny; X =
Inz.

(2) Power law y = az®: In logarithmic space: Y =
Ina + bX. We also fit functions of the form Y =
aX?+bX which correspond to original functions

y = 2% Inz+b
(3) Exponential y = aeb®: In logarithmic space:
Y =1Ina + bx.

If we obtain a good fit through these means, we can
use the predictor to estimate the total execution time
required to process the entire data set.

Further, in constructing a provisioning plan, we
make a few simplifying assumptions. Firstly, we as-
sume all instances are uniform and performing well. As
mentioned earlier, this is not the case in reality. In fu-
ture work, we plan to extend our models to account for
variability in instance performance. Secondly, we con-
sider that for the grep application, the data is already
staged onto EBS storage volumes and for the POS tag-
ging application the data can be staged onto local stor-
age in a constant time per run (assuming that the bot-
tleneck is the maximum throughput available at the up-
load site).

Our goal is to determine the number of instances to
be provisioned such as to process a volume V' of data
while meeting a user set deadline D and minimizing
the cost of the computation. The pricing scheme con-
siders a flat rate r (0.085$ for small instances) for a full
or partial hour of computation.

Then, for a predicted processing time P, a dead-
line D and a linear predictor y = az:

e If D > 1, then the cost is [ P] x . If we ignore
boot up time cost of the instances, then this would
be equivalent to giving an hour’s worth of compu-
tation for each instance and a partial hour to the
last instance. This would also be the case if we
pack | D | hours of computation into each instance
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[T

(since the constant slope “a” ensures we process
the same volume of data in either case).

e If D < 1, D > time taken to process largest (un-
splittable) file, then the cost is [%] x r, where we
have no choice but to pay a full hour for instances
running for time D

r[Pl, d>1,
=112

Further, we may repeat this process on non-over-
lapping subsets of the total volume of data. This would
allow us to explore a larger volume of our data set
through random sampling, at a smaller computational
cost.

In general, we can improve our execution plan by
considering more closely the performance models we
derived. Figure 2 shows possible shapes for the fitted
curves.

Fora > 0,b > 1 (f"” > 0) (Fig. 2(a)), if startup time
is small enough, it will always be better to start a new
instance, since in a one-hour time slot we can process
more data at smaller volumes than at larger volumes.

Fora > 0,b < 1 (f” < 0) (Fig. 2(b)), it will always
be better to pack as much data as possible by | D | than
start a new instance. We will have to compare the vol-
ume of data that can be processed between times | D |
and D to the volume that can be processed in 1 h from
time O to 1 to decide which option is cheaper.

5.1. Grep
We run grep (GNU grep 2.5.1) on our first data

set consisting of HTML files from the NewsLab data.
Grep searches the files provided as input for matches of

a provided pattern. The CPU-I/O mix of grep is heav-
ily influenced by the complexity of the regular expres-
sion we are searching with and the number of matches
found. Complex search patterns can tip the execution
profile towards intense memory and CPU usage. An-
other factor is the size of the generated output which
depends on the likelihood of finding a match and the
size of the matched results.

We restrict ourselves to the usage scenario of search-
ing for simple patterns consisting of English dictionary
words. In our experiments we search for a nonsense
word to increase as much as possible the likelihood
that it is not found in the text. For a word that is not
found we are sure to traverse all the data set regard-
less of other settings for grep, while also isolating from
the cost incurred when also generating large outputs.
We choose this full traversal worst case analysis since
we believe it a processing pattern that occurs often in
basic Natural Language Processing applications (e.g.,
tokenization).

We set our initial probe Fj to a volume of 1 MB.
Figure 3 shows the average execution times. We notice
that the values are very small and the standard devi-
ation over 5 measurements is large. We discard these
results as too unstable and increase the volume of the
probe.

We gradually increase the volume of the probe and
unit file size. We notice that at the unit file size of
10 MB we generally reach a plateau up to 2 GB
(Fig. 4).

A more careful sampling of the file size unit range
reveals that the plateau is not smooth as shown in
Fig. 5. We observed spikes where the performance
was degraded. The results are repeatable and stable in
time, which rules out a contention state for networked
storage. Our hypothesis is that, our probes, while on
the same EBS logical storage volume, were placed in



G. Turcu et al. / Reshaping text data for efficient processing on Amazon EC2 139

0.07

0.06

0.05

0.04

0.03

Wall time (s)

0.02

0.01

100KB

500KB 1MB

Unit file size (B)

Fig. 3. Execution times for grep on a 1 MB volume. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2011-

0322.)
Wall time (s)
120 '
100
80
60 120.6
40 91.8
64.5158.3|57.5(|56.3| | 56.9|| 57
20
N
] %o“’ NSRS N \§ \Q§\ 6@@ ©
o -
Unit file

Fig. 4. Execution times for grep on a 5 GB volume. (Colors are vis-
ible in the online version of the article; http://dx.doi.org/10.3233/
SPR-2011-0322.)

different locations some of which have a consistently
higher access time. We verified that this is indeed a
possible cause by consistently observing that working
with clones of a large sized directory can result in per-
formance variations of up to a factor of 3.

We select the unit file size to be 100 MB, which is in
the minimum range and for which our experiments also
have a small standard deviation. Based on the measure-
ments we have already collected for this unit file size,
we obtain a very good linear fit (R?> = 0.999 and very
small residuals of magnitude <1):

f(x) = —0.974 + 1.324 x 10~ 82 (1)

We perform our experiments on a random 100 GB
volume of the data set HTML_18mil and stage in this
data equally across 100 EBS storage volumes. The

deadline we wish to meet dictates how to attach the
available volumes to the required number of instances.
The unit of splitting of the data across the EBS storage
volumes determines the coarseness of deadlines we can
meet.

Let V be the total volume of 100 GB, V9 = % be
the data volume on each EBS device and f~1(D) =
Vp be the data volume that our model predicts can
be processed by deadline D. If we consider a dead-
line D < 1,if VO > Vp, we can not directly meet
this deadline without reorganizing our data to lower
the unit volume V9. If V0 < Vp, we can provide
L%J EBS devices each of volume V° to an instance.

This would demand that we use [W] =4 in-

stances. We can further improve the likelihood of meet-
ing the deadline by balancing the volume across the
¢ instances or by lowering the deadline to be met and
reevaluating the execution plan as described in the next
section.

Based on our model given by Eq. (1), we predict
that processing 100 GB of data within D = 3600 s
only requires 1387.8 s. The actual execution time is
1975.6 s. Figure 6 shows that we underestimate the
deadline by almost 30%. The figure also shows a 5.6
fold improvement on the execution time when working
with 100 MB files instead of the files in their original
format of a few kilobytes in size.

A possible source of improvement for the predictive
power of our performance model, is to consider ran-
dom samples from our entire data set and reestimate
our predictor. From our data set, we choose 10 ran-
dom samples (without replacement) of 2 GB and mea-
sure the execution time of grep on these samples, and
a few of their smaller subsets. We consider these sam-
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ples already in the chosen 100 MB unit file size. The
measurements show considerable variability: for the
10 samples, at the 2 GB volume, we obtain a minimum
processing time of 23.25 s, a maximum of 45.95 s, av-
erage of 32.2 s. We further refit our model to the new
observations and obtain:

f(x) = 0.208 + 1.503 x 10~ 3z. )

The slightly higher slope of Eq. (2) improves the
predicted execution time to 1576.44 s, but this only re-
duces the error from 30% to 20% of the actual execu-
tion time.

5.2. Stanford Part-of-Speech tagging

The second application we consider is the Stanford
Part-of-Speech tagger [18] which is a commonly used

in computational linguistics as one of the first steps
in text analysis. It is a Java application that parses a
document into sentences and further relies on language
models and context to assign a part of speech label to
each word.

Our goal is to run the Stanford Part-of-Speech tagger
with the 1eft3words model on our second data set
of 1 GB size. We wrap the default POS tagger class
that is set up to parse a single document, such that we
process a set of files avoiding the startup cost of a new
JVM for every file.

We note that over 40% of our files are less than
1 kB in size. Based on this, we pick the initial file size
unit sg to be 1 kB, and let V| = 1000 kB. Using the
subset-sum first fit heuristic [19], we construct probe
sets of volume 1000 KB. The original probe contains
over twice the number of files (2183) as the probe with
unit file size of 1 kB (1000). The average execution
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time over 5 measurements for the probe set is shown in
Fig. 7.

We observe that the original level of segmentation
fairs the best and using a smaller number of larger
files does not provide any benefits. The application is
memory bound and does not benefit from dealing with
larger file sizes.

Keeping the original level of segmentation for the
files, we attempt a linear fit of form f(x) = ax + b for
our measurements. We obtain a good fit on which we
base our predictions:

f(x) = 0.327 + 0.865 x 10~ *z. (3)

Let the total volume of our data set be V, and the
desired deadline be D. For a deadline of one hour
(D = 3600), we solve Eq. (3) for y = 3600 and obtain
the solution xy which represents the amount of data
that can be processed within the deadline according
to our performance model. The solution prescribes we
need ig = [ﬁ] = [26.1] = 27 instances. We then
proceed to pack our data set into 27 bins. For this step,
we consider the input files in their original order. If we
apply the first fit algorithm to the file sizes sorted in de-
scending order, we are more likely to obtain bins that
closely match the prescribed capacity. However, this
will result in the first bins containing a small number
of large files and the latter bins containing many small
files. Our experiments for the POS application show
that the degradation for working with large files is pro-
nounced. Therefore, we consider the files in the order
in which they are provided, though improvements are

possible considering more refined information about
the distribution of the file sizes. With this approach we
obtain the result shown in Fig. 8(a).

We can improve our schedule, by uniformly dis-
tributing the data to each instance (Fig. 8(b)). In this
way, we reduce the chance of missing the deadline,
while still paying the same cost of r X 7. With the new
bins of size % we meet the deadline successfully.

For deadlines larger than 1 h, if we consider per-
formance prediction models that are linear, exponen-
tial or power law and that the instance start up time is
insignificant, then the best strategy is to fit an hour of
computation into as many instances as needed to com-
plete the task. In reality, the instance startup times are
not always insignificant and there are limitations on
the number of instances that can be requested. For this
reason, we want to find a schedule that also limits the
number of instances requested.

When solving Eq. (3) for D = 7200 and distribut-
ing the data uniformly to each instance, we obtain the
results in Fig. 9(a). The deadline is met loosely.

A further improvement for our prediction can be ob-
tained by taking random samples from our data set and
reevaluating our performance model. To achieve this,
we take 3 samples of 5 MB each (without replacement)
and measure the execution times for these samples and
subsets of them. Including the new measurements, we
obtain another linear fit of good quality:

y = 3.086 + 0.725482 x 10~ *z. )

The slope of the new model is lower than that of the
model in Eq. (3), indicating that for the same deadline,
the new model will predict we can process more data.
This matches the observation that based on the sim-
ple linear model from Eq. (3), we meet the deadline
loosely enough that it may be possible that the deadline
can be met with a lower number of instances.

Based on the new model in Eq. (4), we determine we
require 22 instances for D = 3600 (compared to the 27
determined by the earlier model) and 11 instances for
D = 7200 (compared to the 14 instances required by
the earlier model). The results are shown in Figs 8(c)
and 9(b), respectively.

We note that the missed deadlines compensate for
the benefit would have gotten by using a smaller num-
ber of instances. A reason for missing both deadlines
when using the new model (given by Eq. (4)) was that
we obtained very full bins, with little opportunity to
distribute the data evenly across instances to a lesser
volume (and correspondingly lesser deadline) than the
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Fig. 8. POS execution times. (a) POS tagging for D = 1 h, model (3). (b) POS tagging for D = 1 h, uniform bins, model (3). (c) POS tagging
for D = 1 h, random sampling, model (4). (d) POS tagging scheduling for adjusted D = 3124, model (4). (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-2011-0322.)
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one prescribed by D. When fitting with the earlier
model (given by Eq. (3)) we happened to obtain the last
bin relatively empty which permitted distributing the
data uniformly over the instances at a smaller volume
which then corresponds to a lower deadline than that
which we must meet.

Based on the residuals for the model in (4), we con-
sider it is acceptable to assume that the relative residu-

als y_];(x) are normally distributed. We would like to
have a small probability of the residual at the predicted
value exceeding some quantity. This can be translated
in the value y exceeding a deadline. Assume we would
like to have a less than 10% chance to exceed a dead-
line: P(y > D) < 0.1. Or, in terms of the relative
residual: P( y}(];()x ) > D;(];()x)) < 0.1. Since the rela-
tive residual is assumed to be a normal random variable
(call it X, P(X > D;(J;()‘T)) < 0.1) can be standard-
ized relying on the sample mean and sample standard
deviation calculated from the residuals of our model
wx and ox. Then, P(Z > %) < 0.1,
where if P(Z > z) < 0.1, gives z = 1.29.

Then, D = f(z)(1 + a), where a = 1.290 x + px.
For our residuals, we get a = 1.525. This means, that
in order to have a 10% chance of missing the dead-
line D, we need to choose = such that f(x) = 1_%.
For D = 3600, we should lower the deadline to D1 =
3124 and for D = 7200, we should lower the deadline
to D1 = 6247.

The results for the adjusted deadlines are given in
Figs 8(d) and 9(c) respectively. The result for the orig-
inal deadline of 1 h, show that we miss the deadline
fewer times than in Fig. 8(c), but pay for an equiva-
lent 30 instance hours of computation, which happens
to be a worse fit than when using the first model and
consuming 27 instance hours only.

The results for the deadline of 2 h show that we are
no longer missing the deadline and require 26 instance
hours of computation. Without the adjusted deadline
(Fig. 9(b)) we require the same number of instance
hours, but miss the deadline. Both solutions are better
than those predicted by the first linear model (Fig. 9(a))
which demands for 28 instance hours of computation.

Based on the calculation above, a good general strat-
egy can be the following. For an initial deadline D, de-
termine the minimum needed instances as [%] =i
If we are to distribute the data approximately uni-
formly over 7 instances, we would give each at least
(%W = Vp1. The volume Vp; leads to f(Vpy) = DI.
If the adjusted deadline that guarantees a 10% chance
to miss D, i.e. D s higher than D1, we are satis-

1+a
fied with distributing the data into Vp bins over ¢ in-

stances. Otherwise, we will schedule for the adjusted
deadline l—l%'

Another experiment highlights the performance
variability of POS tagging for texts of similar size,
but different language complexity. We choose the
Dubliners novel by James Joyce and Agnes
Grey by Emily Bronte available from the Guten-
berg project [16]. While the difference in document
size is less than 300 words (Dubliners — 67,496 words,
Agnes Grey — 67,755 words), the POS analysis for the
more complex text takes almost twice as long (Dublin-
ers — 6 min 32 s, Agnes Grey — 3 min 48 s).

For our news data set, we do not see a dramatic im-
provement in the predictive power of our model de-
rived by using random sampling. This can be expected
of corpora that are uniform in terms of language com-
plexity (average sentence length is an important pa-
rameter for POS tagging). For other corpora, as seen in
the experiment above, random sampling can be vital to
help capture the variation in text complexity.

6. Related work

A considerable amount of recent work focuses on
investigating different aspects of commercial clouds:
the quality of service received by users, the perfor-
mance stability of the environment, the performance-
costs tradeoffs of running different classes of applica-
tions in the cloud.

Walker [20] and Hazelhurst [10] investigate the ef-
fectiveness of constructing virtual clusters from Ama-
zon EC2 instances for high-performance computing.
Walker [20] relies on standard HPC benchmarks that
are CPU intensive (NAS Parallel Benchmarks) or com-
munication intensive (mpptest) to compare the perfor-
mance of virtual clusters of EC2 instances to a real
HPC cluster. Hazelhurst [10] performs a similar com-
parison using a real life memory and CPU intensive
bioinformatics application (wcd). Both authors con-
clude that large EC2 instances fair well for CPU inten-
sive tasks and suffer performance losses for MPI jobs
that involve much communication over less efficient
interconnects.

There is a lot of work that evaluates Amazon S3’s
[9,15] performance and cost effectiveness for storing
application data. However, there is less literature on
the usage and performance of EBS storage volumes for
large scale applications [4].

Deelman et al. [6] consider the I/O-bound Montage
astronomy application and uses simulation to assess
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the cost vs performance tradeoffs of different execu-
tion and resource provisioning plans. One of the goals
of their work is to answer a question similar to ours
by finding the best number of provisioned instances
and storage schemes to obtain a cost effective schedule.
Their simulations do not take into account the perfor-
mance differences among different instances and Ama-
zon’s flat hourly rate pricing scheme which discour-
ages having an excessively large number of instances
that run for partial hours.

Other work by Juve et al. [11] builds on [6] to ad-
dress the more general question of running scientific
workflow applications on EC2. They consider Mon-
tage as an I/O intensive application, and two other ap-
plications that are memory bound and CPU bound re-
spectively and contrast the performance and costs of
running them in the cloud with running on a typical
HPC system with or without using a high performance
parallel file system (Lustre). They note that I/O bound
applications suffer from the absence of a high per-
formance parallel file system, while memory-intensive
and CPU-intensive applications exhibit similar perfor-
mance. Their experiments are isolated to a single EC2
instance.

Wang and Ng [21] note the effect of virtualization
on network performance, especially when the virtual
machines involved are small instances that only get at
most 50% of the physical CPU. They conclude that
processor sharing and virtualization cause large net-
work throughput and delay variations that can impact
many applications.

Dejun et al. [7] analyze the efficacy of using Ama-
zon EC2 for service oriented applications that need
to perform reliable resource provisioning in order to
maintain user service level agreements. They find that
small instances are relatively stable over time, but
different instances can exhibit performance of up to
4 times from each other, which complicates provision-
ing.

Continuing research on scheduling under time and
cost constraints [22], recent work [12,14] investigates
auto-scaling of resources or scheduling bag-of-tasks
under these constraints.

7. Future work

On the performance modeling side, we would like
to explore the improvements of using more complex
statistics tools to improve the accuracy of our predic-
tions. To account for the larger standard deviation of

measurements at small data volumes, we can build a
performance model using weighted curve fitting de-
manding closer fits in the large data volume range and
allowing for looser fits in the small data volume range.

A further improvement can be made by tracking the
quality of newly acquired instances and including in-
stance quality likelihood estimates when devising an
execution plan. For applications that use local storage,
we may decide to invest in lightweight tests to estab-
lish the quality of the instances and then use different
predictors for each instance quality level to decide how
much data to send to meet the deadline.

We can also monitor application performance dur-
ing execution and make dynamic scheduling decisions.
If we find unresponsive instances, we force their ter-
mination and reassign their task to another instance. If
we find that the application performance is not satis-
factory, depending on the severity level, we can decide
to terminate poor instances right away or to let them
run up to close to a full hour and then reassign the re-
maining work to new or existing instances. Relying on
the persistent nature of EBS storage volumes and their
capability to quickly be attached/detached from com-
pute units, replacing poorly performing instances can
be done easily without explicit data transfers (instances
created in the same zone as an EBS storage volume
should have consistent read/write performance to that
EBS volume) or loss of data.

A direction for our future research is also to de-
vise good execution plans for more complex workflows
arising in text processing. We can schedule such work-
flows while making sure we assign full hour subdead-
lines to groups of tasks [22]. We plan to further explore
data management possibilities for different classes of
text applications we handle.
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