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Abstract. We report on attempts to put an astronomical database — the Sloan Digital Sky Survey science archive — in the cloud.
We find that it is very frustrating to impossible at this time to migrate a complex SQL Server database into current cloud service
offerings such as Amazon (EC2) and Microsoft (SQL Azure). Certainly it is impossible to migrate a large database in excess of a
TB, but even with (much) smaller databases, the limitations of cloud services make it very difficult to migrate the data to the cloud
without making changes to the schema and settings that would degrade performance and/or make the data unusable. Preliminary
performance comparisons show a large performance discrepancy with the Amazon cloud version of the SDSS database. These
difficulties suggest that much work and coordination needs to occur between cloud service providers and their potential clients
before science databases — not just large ones but even smaller databases that make extensive use of advanced database features for
performance and usability — can successfully and effectively be deployed in the cloud. We describe a powerful new computational
instrument that we are developing in the interim — the Data-Scope — that will enable fast and efficient analysis of the largest
(petabyte scale) scientific datasets.
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1. Introduction This is the primary motivation for the cloud exper-
iments described below. As a case in point, the main
site of the SDSS Catalog Archive Server (CAS) [18]
at FermiLab is hosted on a cluster of 25 commod-
ity class servers connected to over 100 TB of storage,
with 2.5-3 FTE (full-time equivalent) operational re-
sources committed to supporting the archive and main-
taining high availability. This includes support for mul-
tiple copies and versions of what is essentially a 5 TB
database.

The CAS is essentially a Microsoft SQL Server
DBMS containing the SDSS Science Archive data. The
Science Archive contains essentially all the reduced
data and science parameters extracted from the raw (bi-
nary) data obtained at the telescope. These data and pa-
rameters are then loaded into the SQL Server database

The hosting of large digital archives of scientific
data, like the Sloan Digital Sky Survey (SDSS) science
archive [17], for indefinite online access by a large and
worldwide user community is a daunting undertaking
for most academic institutions and scientific laborato-
ries, especially because it is inevitably under-budgeted
in the project planning. The economies of scale and
on-demand provisioning enabled by cloud computing
services [1] can potentially make a significant dent
in the operational budgets of large scientific archive
projects that would be most welcome. This will be-
come increasingly important as we go to ever larger
data sizes — from terabytes to petabytes — over the next

few years.
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using a semi-automated loading pipeline called SQL
Loader [15]. There are two views of the Science
Archive data. In addition to the CAS, there is also a
Data Archive Server (DAS) [6] analogous to the CAS
that provides users access to the raw (file) data in a
binary format popular among astronomers. Users can
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download tarballs of the file data from the DAS using
wget and rsync.

The enormous size of the SDSS Science Archive
(information content larger than the US Library of
Congress and a thousand-fold increase in data over all
previous archives combined) made it completely unus-
able only as a file-based archive. The ability to search
the data quickly and extract only the desired parame-
ters was absolutely essential in order to deliver the true
potential of a dataset unprecedented in size and rich-
ness. The SDSS collaboration decided at the outset to
extract the science data into a DBMS and make it avail-
able through the CAS. In addition to the data tables,
the CAS contains extensive usability and performance
enhancements that make its schema quite complex and
difficult to port to other DBMS platforms. This com-
plexity is also a big obstacle for migrating the database
to current cloud platforms.

Although the production configuration of the CAS
at FermiLab deploys multiple copies of a given SDSS
database, e.g., Data Release 6 (DR6), on different CAS
servers for load balancing, for the purposes of the
tests described here, we are comparing a single DR6
database on a single dedicated (and isolated) server to
compare with the cloud instance of the same data. At
least to start with, we wanted to see how one of our
high end servers would stack up against a cloud imple-
mentation.

To date, we have attempted to migrate the DR6 data
to two commercial cloud-computing services that pro-
vide SQL Server database hosting within the cloud —
Amazon Elastic Cloud Computing (EC2) and Mi-
crosoft SQL Azure. We describe below our experi-
ences with each of these cloud services.

Due to the difficulties we encountered with mov-
ing small to modest sized scientific datasets into these
cloud services, we have concluded that moving the
largest current and upcoming datasets to commercial
cloud services for efficient data analysis is not a vi-
able option at the present time. Accordingly, we de-
scribe the Data-Scope, our attempt to build an instru-
ment designed specifically for scientific data analysis
on the largest scales. The Data-Scope will meet the
specific needs of analyzing terabytes of scientific data
at a time with commodity components to reduce cost.
It will seek to maximize sequential disk throughput
while minimizing power consumption so as to avoid
the “power wall” that large-scale computing is about to
hit. The two-tier architecture of the Data-Scope com-
bines the best state-of-the-art technologies to achieve
maximum data throughput at minimal cost and power
usage.

2. SDSS data on Amazon EC2

The primary motivation for deploying SDSS data
in the cloud was to compare cost-effectiveness and
performance of hosting and accessing the data in the
cloud. Although databases have been deployed in the
EC2 cloud before, ours was the first attempt to put a
reasonably large SQL Server database in the cloud. In
fact, this attempt got off the ground when Amazon ap-
proached us and said they were interested in hosting
SDSS as one of the public datasets on the Amazon Web
Services (AWS) site.

Amazon EC2 (http://aws.amazon.com/ec2/) is a
Web service that provides resizable compute capacity
in the cloud. EC2 is billed as a true virtual environment
that provides a Web services interface to:

launch instances of a variety of operating systems,
load them with custom application environments,
manage your network’s access permissions and
run your image (see AMI below) with as many
systems as you like.

Amazon Elastic Block Store (EBS) provides block
level storage volumes for use with Amazon EC2 in-
stances. The storage persists independently of the life
of the instance. EC2 instances and EBS volumes are
created and administered from the AWS Management
Console (http://aws.amazon.com/console/), using your
Amazon account (if you have an account on ama-
zon.com for shopping, you can use that account and
have service charges billed to your Amazon credit
card).

The AWS model is that the database is stored as a
“snapshot” (i.e., a copy taken at a point in time) avail-
able on the AWS site, and if it is a public (free) dataset
like SDSS, it is advertised on the AWS blog (http://
aws.typepad.com/). Although snapshots are suppos-
edly differential backups, they can also be used to
instantiate new EBS volumes. Anyone can then pull
the snapshot into their AWS account to create a run-
ning instance (at this point they start incurring AWS
charges). Multiple instances have to be deployed man-
ually. Since deploying one instance entails a number
of steps (Fig. 1), this can become time-consuming and
cumbersome.

In order to create a running instance of a SQL Server
database on EC2, you first have to create the storage
you need for the database by creating an EBS volume.
This is done by instantiating your snapshot as an EBS
volume of the required size (we selected 200 GB as the
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Fig. 1. Steps needed to create an Amazon EC2 instance of the 100 GB SDSS subset database (numbered from 1 to 5). These steps must be

repeated for each instance in the cloud.

volume size, which is a “big” volume). Then you select
a SQL Server 2005 (now 2008 must be available too)
Amazon Machine Image (AMI) for the dataset snap-
shot available on AWS, and create an instance of this
AMI. Next you attach this instance to the EBS volume,
which creates a running instance. Finally, you create
an elastic IP for this instance so the outside world can
connect to it. It is not possible to set up a SQL Server
cluster within the cloud (i.e., interconnect multiple in-
stances), as far as we know (this may be possible with
Amazon Virtual Private Cloud).

As mentioned above, the full SDSS (Data Release 7)
dataset is 5 TB in size. Amazon EC2 is limited to a
maximum of 1 TB per instance for the size of database
they can host. So right off the bat, it was clear that they
would not be able to host the full SDSS database, since
we did not have an easy way of splitting up the dataset
into 1 TB slices as yet. Although we will have the abil-
ity to partition the dataset in the future, presumably the
layer to reduce these to one logical dataset would have
to be outside the cloud. Regardless, we are still inter-
ested in investigating the current cloud environment to
see how easy it is to deploy a database to it and how
it performs, how usable it is, etc. Indeed, we anticipate
that it should be possible in the near future to deploy
the whole SDSS database to AWS and other cloud en-
vironments.

In order to have a dataset that was large enough to
provide a realistic test of performance and scalability,
but also not be too large so that it would be expen-
sive and time consuming to run our tests, we chose a
100 GB subset of the SDSS DR6 database (the full
DR6 database is about 3.5 TB in size). This ~1/35th
size subset is generated by restricting the sky area cov-

ered by the data to a small part of the total sky cov-
erage for SDSS, i.e. a few 100 sq degrees rather than
thousands of square degrees.

2.1. Migrating the data

With most of the other databases on AWS, the as-
sumption is that users will set up their own database
first and then import the data into it. In our case, since
we had a pre-existing (and large) database with a com-
plex schema, it made much more sense for us to mi-
grate the database in one piece to the EC2 virtual
server. There are two ways to do this — either with a
SQL Server backup of the database at the source and
a corresponding restore in the cloud, or by detaching
the database and copying the data file(s) to the cloud
volume. For the AWS snapshot model, the latter was
the more suitable option, so we chose that.

2.2. Performance testing

We have a 35-query test suite that we routinely use
to test and benchmark SDSS servers [4]. The queries
are all encoded in a single SQL Server stored pro-
cedure — spTestQueries — that can be set up to run
the whole suite as many times as desired. The queries
range from spatial (radial “cone” search) queries to
complex joins between multiple tables. For each query
executed, three performance counters are measured —
the elapsed time, the CPU seconds and the physical IO.

Although the production CAS site at FermiLab con-
tains 25 database servers, each server has one copy of
a given SDSS database, and load-balancing and per-
formance is achieved by segregating different work-
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Fig. 2. Comparison of query elapsed time for the 100-GB SDSS sub-
set on our GrayWulf server (GW) and EC2. We ran 35 test queries
(alternate query numbers are shown) from our test query suite on
each database. The elapsed times are in seconds.

loads among different servers. As such, we only need
to compare the performance of a single instance/server
of the database inside and outside the cloud, at least to
a first approximation.

The test query suite generally assumes that the
server it is running on is isolated and offline, and also
that certain performance enhancements are in installed,
foremost among them being the Hierarchical Triangu-
lar Mesh (HTM) spatial indexing library [14] that pro-
vides fast (O(log N)) spatial searching. The library is
implemented in C# and used the SQL-CLR (Common
Language Runtime) binding along with some SQL
glue functions.

Figure 2 shows the comparison between running this
test suite on our GrayWulf [10] server and on the in-
stance of the database on EC2. Only the query elapsed
time (in seconds) is shown in the plot, and the differ-
ences are large enough that a logarithmic scale was re-
quired to plot the times. The EC2 elapsed times are on
average an order of magnitude larger than the ones we
obtained on the GrayWulf (single) server instance. The
difference could be due a number of factors, such as the
database settings on the EC2 server (memory, recovery
model, tempdb size, etc.) as well as the disk speeds.

The purpose of this comparison is not to draw a
definitive conclusion about the relative performance of
the two types of instances, but rather to indicate that
the performance in the cloud can be disappointing un-
less it can be tuned properly. We only used the default
settings for the most part on EC2, and it might have
been possible (assuming the privileges were available)
to tweak the performance settings to our benefit.

2.3. Data access

The public SDSS dataset on AWS was meant to
serve two kinds of users on:

(a) People who currently use the SDSS CAS.
(b) General AWS users who were interested in the
data.

For (a), we needed to be able to replicate the same
services that SDSS currently has, but using a SQL
Server instance on EC2 and connecting to it with the
elastic IP resulting from the process described in Fig. 1.
This should in theory work fine, although we were un-
able to make the connection work during our tests. Al-
though we were able to log in to the EC2 server fine
using a Windows remote desktop client, we could not
connect to the elastic IP using a SQL OLEDB (a Mi-
crosoft protocol that allows applications to connect to
SQL Server using a connection string) connection, and
hence could not connect a SkyServer Web interface [4]
to it.

For (b), users should have everything they need on
the AWS public dataset page for SDSS, but here was
the rub: it was quite a complex set of maneuvers that
a potential user (by user here we mean someone who
wants to provide access to the SDSS database, not an
end-user; so for example JHU would be a user) would
have to execute is a quite daunting (see Fig. 3). The
most difficult part by far is “porting the SDSS data
to another database (platform)”. SQL Server EC2 in-
stances should not be difficult to create and provide ac-
cess to. (As an interesting aside, AWS also made the
SDSS public dataset available as a LINUX snapshot,
which did not make sense to us since SQL Server can-
not run on LINUX).

2.3.1. Cost of data access

Another important aspect of using EC2 (or any other
cloud) instances of datasets like SDSS is the cost-
effectiveness of the data access. We do not have any

The data set takes the form of a Microsoft SQL Server
MDF file. Once you have created your EBS volume and
attached it to your Windows EC2 instance, you can ac-
cess the data using SQL Server Enterprise Manager or
SQL Server Management Studio. The SDSS makes use
of stored procedures, user defined functions and a spa-
tial indexing library, so porting it to another database
would be a fairly complex undertaking.

Fig. 3. A description of the procedure required to use the SDSS pub-
lic dataset as provided on the AWS blog.
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useful information to contribute on this as yet, partly
because we were unable to get the Web interface con-
nection to work. We incurred charges of nearly $500
for our experiments, without actually providing any re-
mote data access. Basically, all we did was create the
instance and run our performance test queries on it.
The duration of the tests was a few weeks all told, and
the database was idle for part of the time while we were
busy with other commitments. Most of the charges
were for “EC2 running large Windows instance with
Authentication Services”. The EBS storage and other
miscellaneous charges were negligible by comparison,
even though we had a 200 GB EBS volume in use for
all that time. This would indicate that licensing costs
for third party software (in this case Windows Server
and SQL Server) is the dominant factor. If that is in-
deed the case, this could potentially make it infeasible
to put science datasets like SDSS in the cloud.

3. SDSS data on Microsoft SQL Azure

This is really a work in progress. At this time we are
not able to report on performance specifics, but hope-
fully soon. In the meantime, it is instructive to look at
some of the difficulties we have experienced in migrat-
ing the data to the Azure Cloud.

3.1. Migrating the data

Although the creation of a SQL Azure project yields
a SQL Server instance and an IP address for it, there
currently appears no way to directly move a database
“as 1s” or en masse into the cloud, even if the database
is first upgraded to the proper SQL Server version (in
this case SQL Server 2008). The SQL Azure instruc-
tions and labs offer two options for moving data into
the cloud: using the built-in database scripting facil-
ity in SQL Server 2008 to script the schema and data
export, and using the bulk copy utility (BCP) to copy
data from the on-premise database to Azure. Given the
nature of the SDSS schema and data, for example, the
heavy reliance on indexes, stored procedures and user-
defined functions as well as the CLR (common lan-
guage runtime) assemblies used for the spatial index-
ing library, both of these options are fraught with prob-
lems. Using the scripting option, we ran out of memory
while generating the script! In fact, even if the script
had been generated successfully, according to the in-
structions it needs to be then edited manually to re-
move features not supported by SQL Azure.

3.1.1. SOL Azure Migration Wizard

There is, in fact, a third option that the instructions
do not explicitly mention (or if they did, we missed it!).
At the moment, we are using the SQL Azure Migra-
tion Wizard (SAMW - http://sqlazuremw.codeplex) to
move the data into Azure. SAMW actually does an ad-
mirable job of automating the migration task. How-
ever, as we shall see, this does not eliminate our prob-
lems.

As in the case of the first migration option (us-
ing SQL Server built-in scripts), SAMW removes any
schema elements that are not supported by Azure.
Many functions and stored procedures in the SDSS
schema do not get ported to the Azure copy of the
database. This makes it very difficult to compare the
deployment to say the AWS version. One has to go
through the voluminous SAMW trace (Fig. 4) to find
all the errors it encountered. Some of the unsupported
features that prevent these functions and stored proce-
dures from being migrated are:

e References to other databases — this is a mi-
nor inconvenience which we can work around
by simply deleting references to other databases
in most cases. In some cases, it is not so easy
to work around it, for example, where it pre-
vents the use of the command shell from within
SQL Server (the shell must be invoked via the
master database). This means that we cannot run
command (including SQL) script files from SQL
Server. However, for now we are ignoring these
issues and soldiering ahead.

e Global temp objects — this prevents the test query
stored procedure (spTestQueries) from being mi-
grated in its original form. The procedure uses
global temp variables to record the performance
metrics. A workaround for this is not trivial be-
cause this is one of the main functions of the test
script.

e T-SQL directives — these are special directives in
the SQL Server SQL dialect (Transact-SQL or T-
SQL for short) to control how certain commands
or procedures are executed, e.g., to set the level
of parallelism. These are mostly performance re-
lated, but for admin tasks rather than user queries,
so they can be ignored if necessary.

e Built-in T-SQL functions — these are also mostly
in admin functions and procedures, so not a big
concern for now.

e SQL-CLR function bindings — this is a big one,
because this means we cannot use our HTM li-
brary to speed up the spatial searches.
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Fig. 4. Screen shot of SQL Azure Migration Wizard session showing migration trace for SDSS DR6 10 GB subset. Here “Target Server” is the
Azure database server. The wizard is running on our local SDSS server at JHU.

e Deprecated features — since our SQL code was
mostly developed on an earlier version (SQL
Server 2000), it contains some features depre-
cated in SQL Server 2008. These are not sup-
ported in Azure. We will have to remove them,
which is not a major problem since there are very
few such cases, and it is good to remove them
anyway in the long run.

The bottom line is that migrating the data to the SQL
Azure cloud currently involves stripping out several
features that will at the very least impact performance
of our database, and could potentially make some as-
pects of it unusable.

3.2. Performance testing

Since this is a 10 GB subset (the actual size is actu-
ally closer to 6 GB), the performance test results will
be much more difficult to compare with the 100 GB
and full size databases. However, we aim to run the
test query suite on the same database in and out of the
cloud. The major problem here though is the antici-
pated modifications that will be needed during the mi-
gration process due to the features not currently sup-
ported by SQL Azure (see above). If changes are made
to settings which affect the performance in a significant
way, then it will not be possible to obtain a meaning-
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ful performance benchmark. This is indeed emblem-
atic of the difficulties in deploying and benchmarking
large databases in the cloud at the moment.

3.3. Data access

The IP-address that we created for the SQL Azure
server allows us to connect to the server, and we have
been able to connect to the Azure instance of the DR6
subset in two ways:

(1) We can hook up a SkyServer [4] client (Web
interface) from outside the cloud using a SQL
OLEDB connection. Although the full function-
ality of SkyServer queries is not available in the
cloud version (due to the subset of supported fea-
tures as mentioned above), we have been able to
run a good fraction of the SDSS sample queries.

(2) We can also connect to the Azure instance as a
database engine from a remote SQL Server Man-
agement Studio client using the admin user login
that Azure provides. This allows us to configure
the database just as we would a local database.
We are using this mode of access to work around
the Azure limitations, by creating kosher ver-
sions of functions and stored procedures as nec-
essary.

We cannot begin to assess the data access costs until
we address all the migration and functionality issues
listed above. For these tests we purchased a 10 GB de-
velopers’ package which costs ~$100/month and in-
cludes a certain amount of free data transfers in addi-
tion to the 10 GB storage and licensing costs.

The data movement issues for both Amazon and Mi-
crosoft clouds are largely an artifact of migrating a
(large) dataset that already exists outside the cloud into
the cloud. When cloud services are fully integrated, we
expect that ingesting the data into the database(s) will
also be done inside the cloud, so this will not be a ma-
jor issue. Essentially, the entire catalog archive server
will have to be implemented in the cloud from the out-
set to make the most effective use of cloud services.

4. Data-Scope

From the experiences described above with moving
data in and out of the Amazon EC2 and SQL Azure
cloud services, it is clear that commercial cloud com-
puting platforms are not yet the solution to the prob-
lems posed by the largest scientific datasets. Apart

from the logistical problems with moving and access-
ing the data, the economics are also not favorable as
yet. The data storage, and especially the data move-
ment and access fees are excessive compared to pur-
chasing physical disks, the IO performance they offer
is substantially lower (~20 MBps), and the amount of
provided disk space is often woefully inadequate (e.g.,
~50 GB per Azure instance). The cloud may be an at-
tractive alternative for modest sized datasets that can
either be generated within the cloud or that can be mi-
grated into the cloud without too many technical hur-
dles. The data size, schema complexity, advanced fea-
ture requirements, and performance demands associ-
ated with the largest scientific datasets make it infeasi-
ble to port them to commercial cloud computing plat-
forms at the present time.

We believe that there is a vacuum today in data-
intensive scientific computation regime, similar to the
one that led to the development of the BeoWulf clus-
ter: an inexpensive yet efficient template for data in-
tensive computing in academic environments based on
commodity components. The Data-Scope instrument
that we are developing aims to fill this gap. This instru-
ment is intended to provide an immediate solution to
the challenges posed by the largest scientific datasets,
but we also expect that its development, use and testing
(e.g., benchmarking) will inform future adaptations of
commercial platforms for data intensive science at the
highest scales. Data-Scope resources will be free to use
for scientific data experiments subject to availability.

4.1. The design concept

The Data-Scope we are building at the Johns Hop-
kins University Institute for Data Intensive Engineer-
ing and Science (IDIES) is an instrument optimized
for analyzing petabytes of data in an academic setting
where cost and performance considerations dominate
ease of management and security. The Data-Scope will
form a template for other institutions facing similar
challenges, at least until cloud services catch up to the
needs of the largest datasets in science.

The following requirements guide the Data-Scope’s
design:

(a) Provide at least 5 petabytes of storage, with a
safe redundancy built in.

(b) Keep the ratio of total system to raw disk costs
as low as possible.

(c) Provide maximal sequential throughput, ap-
proaching the aggregate disk speed.
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(d) Allow streaming data analyses on par with data
throughput (i.e., 100 s of TFlops).

(e) Maintain total power requirements as low as
possible.

This ordered list maps well onto the wish list of
most academic institutions. The tradeoff is in some
aspects of fault tolerance, the level of automation in
data movement and recovery and a certain complex-
ity in programming convenience since the high stream-
processing throughput at a low power is achieved
by using Graphics Processing Units (GPUs). These
tradeoffs, combined with maximal use of state of the
art commodity components, will allow us to build a
unique system, which can perform large data analysis
tasks simply not otherwise possible. The Data-Scope
will enable JHU scientists and their collaborators to:

e Bring their 100 TB+ data sets to the instrument,
analyze them for several months at phenomenal
data rates and take their results “home”.

e Create several long-term, robust and high perfor-
mance services around data sets in the 10-200 TB
range, and turn them into major public resources.

e Explore new kinds of collaborative research in
which even the shared, temporary resources can
be in the hundreds of terabytes and kept alive for
several months.

e Explore new data-intensive computational and
data analysis paradigms enabled by the intersec-
tion of several technologies (HPC, Hadoop, GPU)
and toolkits like CUDA!-SQL and MPI-DB.

In the paragraphs that follow we describe the Data-
Scope’s hardware and software designs. The hardware
layout is shown in Fig. 5.

4.2. The hardware design

The driving goal behind the Data-Scope design is to
maximize stream processing throughput over TB size
datasets while using commodity components to keep
acquisition and maintenance costs low. Performing the
first pass over the data directly on the servers’ PCle
backplane is significantly faster than serving the data
from a shared network file server to multiple com-
pute servers. This first pass commonly reduces the data
significantly, allowing one to share the results over

ICUDA stands for Compute Unified Device Architecture and
is a parallel computing architecture developed by NVIDIA that is
optimized for GPUs (http://www.nvidia.com/object/what_is_cuda_
new.html).

the network without losing performance. Furthermore,
providing substantial GPU capabilities on the same
server enables us to avoid moving too much data across
the network as it would be done if the GPUs were in
a separate cluster. Since the Data-Scope’s aim is pro-
viding large amounts of cheap and fast storage, its de-
sign must begin with the choice of hard disks. There
are no disks that satisfy all three criteria. In order to
balance these three requirements we decided to divide
the instrument into two layers: performance and stor-
age. Each layer satisfies two of the criteria, while com-
promising on the third. Performance Servers will have
high speed and inexpensive SATA drives, but com-
promise on capacity: Samsung Spinpoint HD103SJ
1 TB, 150 MB/s (see [12], verified by our own mea-
surements). The Storage Servers will have larger yet
cheaper SATA disks but with lower throughput: Sam-
sung Spinpoint HD203WI 2 TB, 110 MB/s. The stor-
age layer has 1.5x more disk space to allow for data
staging and replication to and from the performance
layer.

The rest of the design focuses on maintaining the ad-
vantages from these two choices. In the performance
layer we will ensure that the achievable aggregate data
throughput remains close to the theoretical maximum,
which is equal to the aggregate sequential IO speed of
all the disks. As said before, we achieve this level of
performance by transferring data from the disks over
the servers’ local PCle interconnects rather than slower
network connections. Furthermore, each disk is con-
nected to a separate controller port and we use only
8-port controllers to avoid saturating the controller.
We will use the new LSI 9200-series disk controllers,
which provide 6 Gbps SATA ports and a very high
throughput (we have measured the saturation through-
put of the LS92111-8i to be 1346 MB/s). Each per-
formance server will also have four high-speed solid-
state disks (OCZ-Vertex2 120 GB, 250 MB/s read,
190 MB/s write) to be used as an intermediate storage
tier for temporary storage and caching for random ac-
cess patterns [9].

The performance server will use a SuperMicro
SC846A chassis, with 24 hot-swap disk bays, four in-
ternal SSDs, and two GTX480 Fermi-based NVIDIA
graphics cards, with 500 GPU cores each, offering an
excellent price-performance for floating point opera-
tions at an estimated 3 teraflops per card. The Fermi-
based TESLA 2050 has not been announced yet, we
will reconsider if it provides a better price performance
as the project begins. We have built a prototype system
according to these specs and it performs as expected.
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Fig. 5. The network diagram for the Data-Scope.

In the storage layer we maximize capacity while
keeping acquisition costs low. To do so we amortize
the motherboard and disk controllers among as many
disks as possible, using backplanes with SATA ex-
panders while still retaining enough disk bandwidth
per server for efficient data replication and recovery
tasks. We will use locally attached disks, thus keeping
both performance and costs reasonable. All disks are
hot-swappable, making replacements simple. A stor-
age node will consist of 3 SuperMicro SC847 chas-
sis, one holding the motherboard and 36 disks, with
the other two holding 45 disks each, for a total of 126
drives with a total storage capacity of 252 TB. On the
storage servers we will use one LSI-9211-8i controller
to drive the backplane of the 36 disks, connecting 2 x 4
SATA ports to the 36 drives, through the backplane’s
port multiplier. The two external disk boxes are con-
nected to a pair of LSI 9200-8e controllers, with 2 x 4
ports each, but the cards and boxes are cross-wired
(one 4-port cable from each card to each box), for re-
dundancy in case of a controller failure, as the split
backplanes automatically revert to the good controller.
The IO will be limited by the saturation point of the

controllers and the backplanes, estimated to be approx-
imately 3.6 GB/s.

Both servers use the same dual socket SuperMicro
IPMI motherboard (X8DAH+FO) with 7 PCleGen2
slots. The CPU is the cheapest 4-core Westmere, but
we will be able to upgrade to faster dual 6-cores in
the future, as prices drop. In our prototype we tried
to saturate this motherboard: we exceeded a sequential
throughput of 5 GB/s with no saturation seen.

The network interconnect is 10 GbE. Three 7148S
switches from Arista Networks’ are used at the “Top
of the Rack” (TOR), and a high performance 7148SX
switch is used for the “core” and the storage servers.
The TOR switches each have four links aggregated to
the core for a 40 Gbps throughput. We deploy Chelsio
NICs, single port on the performance servers and dual
port on the storage side.

4.2.1. Hardware capabilities

The Data-Scope will consist of 90 performance and
12 storage servers. Table 1 shows the aggregate proper-
ties of the full instrument. The total disk capacity will
exceed 5 PB, with 3 PB in the storage and 2.2 PB in
the performance layer. The peak aggregate sequential
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Table 1

Summary of the Data-Scope properties for single servers and for the
whole system consisting of performance (P) and storage (S) servers

1P 1S 90P 128 Full

Servers 1.0 1.0 90 12 102

Rack units 4.0 12.0 360 144 504

Capacity 24.0 252.0 2160 3024 5184 TB
Price 8.5 22.8 766 274 1040 $K
Power 1.0 1.9 94 23 116 kW
GPU 6.0 0.0 540 0 540 TF
Sequential IO 4.6 3.8 414 45 459  GBps
Network 10.0 20.0 900 240 1140 Gbps
bandwidth

10 performance is projected to be 459 GB/s, and the
peak GPU floating point performance will be 540 TF.
This compares rather favorably with other HPC sys-
tems. For example, the Oak Ridge Jaguar system, the
world’s fastest scientific computer, has 240 GB/s peak
IO on its 5 PB Spider file system [11]. The total power
consumption is only 116 kW, a fraction of typical HPC
systems, and a factor of 3 better per PB of storage ca-
pacity than its predecessor, the GrayWulf. The total
cost of the parts is $1.04M. The projected cost of the
assembly + racks is $46K, and the whole network-
ing setup is $114K, for a total projected hardware cost
of about $1.2M. In the budget we reserved $200K for
contingency and spare parts. The system is expected to
fit into 12 racks.

4.3. Data ingestion and recovery strategies

The storage servers are designed for two purposes,
Data Replication and Recovery, incremental and full
dataset copies and restores (large and small), and Im-
port/Export of Large Datasets, where users show up
with a couple of boxes of disks and should be able to
start experiments within hours, and keep their data on-
line over the lifetime of the experiment (e.g., months).

Individual disk failures at the expected standard rate
of about 3%/year are not expected to cause much of a
problem, for the performance servers — this amounts to
one failure every 6 days. On our 1 PB GrayWaulf server
we experienced a much lower disk failure rate (~1%)
so far. These can be dealt with fairly easily, by refor-
matting simple media errors automatically with data
recovery and manually replacing failed disks.

The bigger challenge is that most of the time the
storage servers do not need much bandwidth (e.g., dur-
ing incremental copies), but there is occasionally a
need for considerably more bandwidth for a large re-

store. Our solution is to design the network for the rou-
tine scenarios (i.e., incremental backups and small re-
stores). Both the performance servers as well as the
storage servers are configured with hotswappable disks
so atypical large restores can be performed by physi-
cally connecting disks to the servers (i.e., sneakernet
[2]). Given that moveable media (disks) are improv-
ing faster than networks, sneakernet will inevitably be-
come the low cost solution for large ad hoc restores,
e.g., 10-1000 TBs.

The hot-swap disks are also useful for importing and
exporting large datasets (~100 TBs). The Data-Scope
is intended to encourage users to visit the facility and
bring their own data. For practical reasons, the data set
should be small enough to fit in a few 50 pound boxes
(~100 TBs). With the hot swappable feature, users
could plug in their disks and have their data copied
to the performance servers in a few hours. When vis-
itors leave after a few weeks/months, their data could
be swapped out and stored in a bookshelf, where it
could be easily swapped back in if the visitor needs
to perform a follow-up experiment remotely. Both the
performance servers and especially the storage servers
could be configured with a few spare disk slots so one
can swap in his data without having to swap out some-
one else’s data.

Remote users can transfer data using the fast Open
Cloud Consortium (OCC) network [8] — currently a
dedicated 10 GbE to MAX and Chicago and soon
much higher. OCC has also dedicated network links to
several Internet NAPs. Finally, the JHU internal back-
bone is already running at 10 Gbps and in the next
few months the high throughput genomics facilities at
JHMI will be connected to this network.

4.4. Usage scenarios

We envisage about 20-25 simultaneous applica-
tions, which can use the Data-Scope in four different
ways. One can run stable, high availability public web
services, allowing remote users to perform processing
operations on long-lived data sets. These would be typ-
ically built on several tens of TB of data and would
store data in a redundant fashion for both safety and
performance. Examples of such services might be the
Virtual Observatory (e.g., usvao.org) cross-match ser-
vices in astronomy, or the JHU Turbulence database
services. Other applications can load their data into
a set of large distributed shared databases, with ag-
gregate sizes in tens to a few hundred TB. The users
can run data intensive batch queries against these data
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sets and store the intermediate and final results in
a shared database and file system space. We have
developed a parallel workflow system developed for
database ingest of data sets in the 100 TB range for the
Pan-STARRS project [10]. This can be turned into a
more generic utility with a moderate amount of work.
Hadoop is an open source implementation of Google’s
MapReduce [3], which provides a good load balancing
and an elegant data-parallel programming paradigm.
Part of the instrument will run Hadoop over a mul-
titude of data sets. We will experiment with running
the most compute-intensive processing stages (bioin-
formatics, ray-tracing for image simulations in astron-
omy) on the GPUs using CUDA code. Finally, when
all else is inadequate, certain users can request access
to the “bare metal”, running their own code end-to-end
on the performance servers.

4.4.1. User application toolkits and interfaces

We will provide users with several general-purpose
programming toolkits and libraries to maximize appli-
cation performance. We have already developed some
of the key software components. For example, the cus-
tom collaborative environment built for SDSS, Casjobs
[5,7], has been in use for seven years, by more than
2500 scientists. The component we need to add is a
shared 100 TB intermediate term storage, which has
been designed but remains to be built.

We have designed and implemented a generic
SQL/CUDA interface that enables users to write their
own user defined functions that can execute inside the
GPUs, but are called from the database. Since all the
data flow is on the backplane of the same server, one
can achieve a stunning performance. This was demon-
strated in our entry for the SC-09 Data Challenge [16].

We have implemented our own S3/Dropbox looka-
like, which has been connected to various open source
S3 bindings downloaded from SourceForge. This in-
terface is simple, scalable, well-documented, and will
provide a convenient way for users to up- and down-
load their smaller data sets.

On the applications side we have already ported sev-
eral key applications to CUDA, but most of the devel-
opment work will materialize as users start to migrate
their applications to the Data-Scope. The expectations
are that we will need to customize them for the Data-
Scope and integrate them to each other. Other com-
ponents, such as the integration between MPI and the
SQL DB, have been prototyped but will need to be
fully developed.

In summary, the components that we have devel-
oped allow novel high-throughput data analyses. For

example, users can, using the SQL-CUDA integration,
access powerful analysis patterns like FFT, within a
database query. Likewise, Linux MPI applications can
read/write data from/to databases using the MPIDB
API. During the initial stages of the Data-Scope’s de-
velopment we will use some of the performance and
storage servers for software development and testing.

4.4.2. Data lifecycles

We envisage three different lifecycle types for data
in the instrument. The first would be persistent data,
over which permanent public services will be built
for a wide community, like OpenSkyQuery, the Tur-
bulence database or the Milky Way Laboratory. The
main reason to use the Data-Scope in this case is the
massive performance gains from the speed of the hard-
ware and parallelism in execution. These data sets will
range from several tens to possibly a few hundred TB.
The second type of processing will enable truly mas-
sive data processing pipelines that require both high
bandwidth and fast floating point operations. These
pipelines will process hundreds of TB, including repro-
cessing large images from high throughput genomic
sequencers, for reduced error rates, and massive image
processing tasks for astronomy or cross correlations of
large environmental data sets.

Data will be copied physically by attaching 2 TB
disks to the Data-Scope, while results will be extracted
using the same method. These datasets will be active
on the system for one to a few weeks. Another typical
user of this pattern would be the LHC data analysis
group.

The third type of usage will be community analy-
sis of very large data sets. Such datasets will be in the
200-500 TB range. We will keep the media after the
dataset has been copied into the instrument and use
them to restore the input data in the case of a disk
failure. Once such a massive data set arrives, its parti-
tioning and indexing will be massive endeavor there-
fore it makes only sense if the data stays active for an
extended period (3—12 months). Intermediate, derived
data sets could also reach tens or even 100 TB. Exam-
ples of such datasets include a massive set of simula-
tions (500 cosmological simulations with a high tem-
poral resolution) coupled with an analysis campaign by
a broad community.

4.4.3. System monitoring, data locality

There will be a data locality server, monitoring the
file systems, so the system is aware what’s where with-
out depending on a user to update tables manually
when disks are swapped in and out. There will be a
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special file on every disk that tells the system what is
on the disk, and a bar code on the outside of disks that
would make it easy to locate disks. As for software,
we plan to use open source backup software (such as
Amanda), as much as possible. Both the operating sys-
tem software and applications (including Hadoop, SQL
Server, etc.) will be deployed using a fully automated
environment, already in use for several years at JHU.
Since the performance servers are identical, it is very
easy to dynamically change the node allocations be-
tween the different usage scenarios.

5. Conclusions

We have so far migrated a 100 GB subset of a large
astronomical database — the Sloan Digital Sky Survey
science archive — to the Amazon EC2 cloud. EC2 has
a size limit of 1 TB per instance, so it was not possi-
ble for us to migrate the whole SDSS database (sev-
eral TB) to it and perform a full test. After much help
from the Amazon experts, we were able to install an
instance of the SDSS data in EC2 and run our test
suite of 35 test queries on it. With only the default set-
tings and a single EC2 instance, we found the query
performance to be an order of magnitude slower than
our on-premise GrayWulf server. This was indicative
of the need to either tune the EC2 performance settings
or create more than one instance to get better perfor-
mance. Creating an EC2 instance was a multi-step pro-
cess that needed to be followed for each instance. After
successfully creating an instance and testing its perfor-
mance, we were unable to access the instance with the
public IP-address (elastic IP) generated using the AWS
instructions. As such, the instance was not accessible
from the outside world.

We have also migrated a much smaller (10 GB)
subset of the same dataset to the Microsoft SQL
Azure cloud (10 GB is the current size limit for Win-
dows/SQL Azure). The challenge with SQL Azure —
other than the 10 GB size limit which is really too
small to do any realistic tests — is that direct migra-
tion of the data is not possible at the moment, since
SQL Azure supports a subset of database features and
hence database migration must be scripted or done us-
ing special purpose utilities. Even with these tools, the
version of the database in the cloud is significantly al-
tered and cannot support the full functionality of the
original database. It certainly cannot match the perfor-
mance of the original version. In fact it is not even
possible to measure the performance of the migrated

database in the same way as the original so as to make
a meaningful comparison. In the near future, we aim
to experiment with larger subsets to reflect the recently
increased data size limits in SQL Azure (50 GB cur-
rently).

At this time, it is not possible to migrate and ac-
cess a scientific SQL Server database in the Amazon
and SQL Azure clouds, at least based on our admit-
tedly incomplete experiments. Even as the limits on the
database size expand in the near future, there are prob-
lems with migrating the data itself, and then providing
the type of performance and access possible desired.
Beyond that, the licensing costs for software used in
the cloud could become a significant issue. We hope
to have a more positive report soon as we continue to
explore migrating science data to the cloud.

To address the analysis needs of the petabyte-scale
scientific datasets that are nearly upon us, and rec-
ognizing that commercial cloud services do not at
present provide a solution to this problem, we are
building the Data-Scope — a powerful new instrument
designed specifically for this challenge. Intended to be
the successor to GrayWaulf, Data-Scope will combine
vast storage capacity with maximal sequential disk
throughput and minimal power requirements. It will
achieve these performance goals by choosing, tailor-
ing and optimizing specific technologies best suited for
large data movement. To meet competing disk require-
ments, for instance, the Data-Scope will have a two-
tiered architecture consisting of a performance layer
and a storage layer. These are the kinds of specializa-
tions and customizations required for high-end scien-
tific data analysis that simply are not possible within
the commercial cloud services at the moment. The
Data-Scope will also accomplish these technical goals
while keeping hardware and maintenance costs as low
as possible to meet academic budgets.
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