
Scientific Programming 19 (2011) 107–119 107
DOI 10.3233/SPR-2011-0324
IOS Press

Performance and cost analysis of the
Supernova factory on the Amazon
AWS cloud

Keith R. Jackson ∗, Krishna Muriki, Lavanya Ramakrishnan, Karl J. Runge and Rollin C. Thomas
Lawrence Berkeley National Lab, Berkeley, CA, USA

Abstract. Today, our picture of the Universe radically differs from that of just over a decade ago. We now know that the Universe
is not only expanding as Hubble discovered in 1929, but that the rate of expansion is accelerating, propelled by mysterious
new physics dubbed “Dark Energy”. This revolutionary discovery was made by comparing the brightness of nearby Type Ia
supernovae (which exploded in the past billion years) to that of much more distant ones (from up to seven billion years ago).
The reliability of this comparison hinges upon a very detailed understanding of the physics of the nearby events. To further this
understanding, the Nearby Supernova Factory (SNfactory) relies upon a complex pipeline of serial processes that execute various
image processing algorithms in parallel on ∼10 TBs of data.

This pipeline traditionally runs on a local cluster. Cloud computing [Above the clouds: a Berkeley view of cloud computing,
Technical Report UCB/EECS-2009-28, University of California, 2009] offers many features that make it an attractive alternative.
The ability to completely control the software environment in a cloud is appealing when dealing with a community developed
science pipeline with many unique library and platform requirements. In this context we study the feasibility of porting the
SNfactory pipeline to the Amazon Web Services environment. Specifically we: describe the tool set we developed to manage a
virtual cluster on Amazon EC2, explore the various design options available for application data placement, and offer detailed
performance results and lessons learned from each of the above design options.

Keywords: Cloud computing, AWS cloud, Supernova factory

1. Introduction

The goal of the Nearby Supernova Factory (SNfac-
tory) experiment is to measure the expansion history
of the Universe to explore the nature of Dark Energy
with Type Ia supernovae, and also to improve our un-
derstanding of the physics of these events to improve
their utility as cosmological distance indicators. Oper-
ating the largest data-volume supernova survey from
2004 to 2008, SNfactory made and continues to make
heavy use of high performance computing. SNfactory
maintains and operates a complex software pipeline us-
ing a local PBS cluster. However, as the volume of data
increases, more resources are required to manage their
application.

Cloud computing is an attractive alternative for this
community of users for a variety of reasons. The

*Corresponding author: Keith R. Jackson, Lawrence Berkeley
National Lab, 1 Cyclotron Road MS:50B-2239, Berkeley, CA,
USA. Tel.: +1 510 486 4401; Fax: +1 510 486 6363; E-mail:
krjackson@lbl.gov.

pipeline consists of code packages developed by mem-
bers of the community that have unique library and
platform dependencies (e.g., preference of 32 over
64 bit to support legacy code). This often makes it
difficult to run in shared resource environments like
supercomputing centers where the software stack is
pre-determined. In addition, the signal extraction algo-
rithms that are a major component of the pipeline are
constantly evolving and users need the ability to use
a fixed environment and make minor changes before
running a new experiment. Thus, providing access to
a shared environment to collaborators is critical to the
user community.

Cloud computing provides the ability to control soft-
ware environments, allows users to control access to
collaborators that need to access a particular setup
and enables users to share environments through vir-
tual machine images. These features address some of
the challenges faced by the science users today. The
requirements for the SNfactory community are not
unique and represent the needs of a number of scien-

1058-9244/11/$27.50 © 2011 – IOS Press and the authors. All rights reserved

108 K.R. Jackson et al. / Performance and cost analysis of the Supernova factory on the Amazon AWS cloud

tific user communities. Earlier studies have evaluated
performance implications for applications on cloud en-
vironments and experimented with specific choices of
deployment [10,11,13,16]. However, significant effort
is required today for scientific users to use these envi-
ronments and it is largely unclear how applications can
benefit from the plethora of choices available in terms
of instance types and storage options.

In the context of the SNfactory we study the feasi-
bility of Amazon Web Services (AWS) [2] as a plat-
form for a class of scientific applications, and detail the
impact of various design choices. Specifically, (a) we
describe the tool set we developed to manage a virtual
cluster on Amazon EC2, (b) we explore the various
design options available for application data storage,
(c) we offer detailed performance results and lessons
learned from each of the above design options.

Our paper is structured as follows: Section 2 pro-
vides background on the SNfactory application. Sec-
tion 3 describes the design decisions made to port the
SNfactory data pipeline to AWS. Section 4 details the
experiments run, and their results. Section 5 describes
a series of microbenchmarks run to better understand
the application level performance. Section 6 describes
related work, and we present our conclusions in Sec-
tion 7.

2. Background

Cosmology is the science of mapping out the history
of the Universe back to the instant of its creation in the
Big Bang. A complete history of the Universe spells
out the origin of matter, formation of galaxies and clus-
ters of galaxies, and the dynamics of space–time itself.
Cosmology sets the stage for the story that explains our
species’ place in the Universe.

Today, our picture of the Universe radically differs
from that of just over a decade ago. We now know
that the Universe is not only expanding as Hubble
discovered in 1929, but that the rate of expansion is
accelerating. This revolutionary discovery was made
by comparing the brightness of nearby Type Ia super-
novae (which exploded in the past billion years) to that
of much more distant ones (from up to seven billion
years ago). The more distant supernovae appeared dim-
mer than expected, and repeated experiments since the
initial discovery have confirmed that the excess dim-
ming is due to acceleration, propelled by new physics
dubbed “Dark Energy” [17,18].

Type Ia supernovae are exploding stars – as bright
as an entire galaxy of normal stars – whose relative
brightness can be determined to 6% accuracy. They
arise from a white dwarf star that accretes gas from
a companion star and explodes around a critical mass
equal to 1.4 times that of our Sun. This standard
amount of fuel makes for a “standard bomb”, hence
Type Ia supernovae make excellent distance indicators
due to the relatively small dispersion in brightness. Un-
derstanding the origin of these supernovae, how they
explode, and how to better calibrate them as distance
indicators is the goal of the US/France Nearby Super-
nova Factory experiment [1].

The SNfactory operated the largest data-volume su-
pernova survey active during 2004–2008, using the
QUEST-II camera on the Palomar Oschin 1.2-m tele-
scope managed by the Palomar-QUEST Consortium.
Typically, over 50 GB of compressed image data was
obtained each night. This data would be transferred
from the mountain via radio internet link (on the
High-Performance Wireless Research and Education
Network) to the San Diego Supercomputing Center,
and from there to the High Performance Storage Sys-
tem (HPSS tape archive) at the National Energy Re-
search Scientific Computing Center (NERSC) in Oak-
land, California. The next morning, the night’s data
were moved to the Parallel Distributed Systems Facil-
ity (PDSF) cluster for processing, reduction and im-
age subtraction. Software identified candidates in sub-
tractions using a variety of quality cuts, and later, ma-
chine learning algorithms to identify real astrophysical
transients and reject image/subtraction artifacts. Hu-
mans performed the final quality assessment step, sav-
ing and vetting candidates using historical and context
data using a custom scientific workflow tool, SNware-
house [7]. The entire process, from the start of data
collection to human identification of candidates, took
approximately 18 h.

Candidates in SNwarehouse were scheduled for
follow-up on the SNfactory’s custom-designed, and
custom-built, SuperNova Integral Field Spectrograph
(SNIFS) installed permanently on the University of
Hawaii (UH) 2.2-m telescope atop Mauna Kea. The
SNIFS instrument and UH 2.2-m telescope were re-
motely controlled over a Virtual Network Computing
(VNC) interface, typically from France where day-
time corresponds to Hawaiian nighttime. An agree-
ment with the University of Hawaii ensured that the
SNfactory had 30% of the total observing time on the
UH 2.2-m for its supernova follow-up program. The
result is that the SNfactory collaboration discovered,

K.R. Jackson et al. / Performance and cost analysis of the Supernova factory on the Amazon AWS cloud 109

observed in detail, and is currently analyzing a new set
of Type Ia supernovae in greater numbers and, through
SNIFS, with greater precision than was ever possible
before. Over 3000 spectroscopic observations of nearly
200 individual supernovae are now ready for study,
and it is possible that SNIFS could be operated beyond
2012, meaning that new data processing will be needed
over the next several years. This data set represents a
wholly new potential for understanding Type Ia super-
novae and using them to better measure the properties
of Dark Energy.

SNIFS was designed for the express purpose of ob-
taining precise and accurate spectrophotometric time-
series observations of supernovae. This strategy is in
marked contrast to other supernova surveys which uti-
lize spectroscopy primarily as a one-shot means of
classifying objects, and rely on multi-band photomet-
ric imaging observations (a lower-dimensionality data
set) as principal science product. The challenge of
precise spectrophotometry dictated SNIFS design and
the follow-up strategy. For example, SNIFS basic de-
sign is that of an integral field spectrograph, mean-
ing that the entire field of view containing a super-
nova is segmented into spatial chunks that are each
dispersed to produce a spectro-spatial data-cube. Most
supernova spectroscopy is performed with a slit spec-
trograph, where care must be taken to avoid wave-
length dependent slit-loss of photons that the SNIFS
design avoids completely by capturing all the super-
nova light. Also, the decision to pursue guaranteed
telescope time and permanently mount SNIFS means
that SNfactory has unfettered access to it at almost
any time for any type of calibration experiment that
can be conceived and executed remotely. However, the
custom design of the instrument means that the exten-
sive software code-base for reduction and analysis of
the data is designed and implemented by collabora-
tion members (scientists, postdocs, and students), from
robotic instrument/telescope control to data reduction
and analysis. Several candidate implementations for
various steps in data reduction may need extensive val-
idation before one is selected (alternatives developed
may also be held in reserve for hot-swapping). The
general picture of the SNIFS data reduction “pipeline”
(referred to here as “IFU”) seems quite typical of many
other scientific collaborations which depend heavily
on software, computing, and data analysis with cus-
tom instrumentation: Codes and scripts, running in a
Linux/Unix batch-queue environment, controlled by
scripting (e.g., Python) wrappers that coordinate work
through a database or meta-data system.

SNIFS reduction tasks include standard CCD image
preprocessing (bias frame subtraction to remove elec-
tronics artifacts, flat-fielding to map pixel-to-pixel re-
sponse variations and bad pixels, scattered-light back-
ground modeling and subtraction), wavelength and in-
strument flexure corrections (solving for 2D instru-
ment distortions using arc-lamp exposures), mapping
2D CCD pixel coordinates into 3D (wavelength, x, y)
data cubes. Low-level operations include digital fil-
tering, Fourier transforms, full matrix inversions, and
nonlinear function optimization. These lower level op-
erations are mostly performed in a mixture of C, C++,
Fortran and Python. The current raw data set is ap-
proximately 10 TB, but after processing this balloons
to over 20 TB and is expected to continue to grow.
The pipeline is heavily dependent on external pack-
ages such as CFITSIO [9], the GNU Scientific Li-
brary (GSL) [12], and Python libraries like scipy and
numpy (which in turn also depend on BLAS citeblas,
LAPACK [6], etc.). The whole pipeline is “process-
level” parallel. Individual codes are not parallel, so par-
allelism is achieved by running large numbers of serial
jobs to perform the same task using different inputs.
Since late 2007 the SNIFS flux-calibration pipeline has
been running on a large Linux cluster at the IN2P3
Computing Center in Lyon, France – a facility shared
with a number of other high-energy physics experi-
ments, most notably ones at the Large Hadron Collider
(LHC).

The SNfactory’s dependence on large, shared Linux
clusters at NERSC and CCIN2P3 revealed a num-
ber of previously unanticipated issues. In both cases,
24/7 support (especially weekends) is unavailable ex-
cept in cases of emergency – and what constitutes an
emergency to a scientific experiment may not register
as such to cluster management personnel. This issue
could be ameliorated if each experiment simply man-
aged its own mid-sized or large cluster, but this would
obviate the economy of scale gained through a central
computing resource. A compromise would be to give
users root or privileged access to the system, but secu-
rity problems obviously rule that out. Also, decisions
made by cluster management are necessarily driven by
general policy and cannot be easily tailored to fit every
need of every experiment. For example, at CCIN2P3,
the entire operating system and software architecture
is rolled over roughly every 18 months – this change
is not transparent to users, and experiments without a
cadre of software experts must draft their scientists into
debugging and rewriting lines of code just to adjust to
newly added or changed dependencies. A cynical in-

110 K.R. Jackson et al. / Performance and cost analysis of the Supernova factory on the Amazon AWS cloud

terpretation by scientists of this practice might be “if
it ain’t broke, break it”, but these users generally rec-
ognize the benefit of adapting to new systems and ar-
chitectures, but want to make those changes when they
can afford to and can profit. From a financial stand-
point, using scientists to debug code is a suboptimal
allocation of limited funds.

Because of these issues and others, the SNfactory
seized the opportunity to experiment with cloud com-
puting and virtualization in general, with the Amazon
Elastic Compute Cloud (EC2) [4]. Key aspects that
were attractive to SNfactory included:

• Ability to select any flavor of Linux operating sys-
tem.

• Options for architecture: 32-bit operating systems
for legacy code.

• Capability to install familiar versions of Linux bi-
nary packages.

• Capacity to conveniently install third-party pack-
ages from source.

• Access as super-user and shared access to a
“group” account.

• Immunity to externally enforced OS or architec-
ture changes.

• Immediate storage resource acquisition through
EBS and S3.

• Economy of scale and reliability driven by market
demands.

3. Design

Porting a scientific application like the SNfactory
pipeline to the Amazon EC2 framework requires the
development of some infrastructure and significant
planning and testing. The pipeline was designed to op-
erate in a traditional HPC cluster environment, hence
we first ported the environment into EC2. Once that
was completed, we began to decide where to locate our
data, what size compute resources to use, and then con-
ducted tests to validate our decisions.

3.1. Virtual cluster setup

The SNfactory code was developed to run on tradi-
tional HPC clusters. It assumes that a shared file sys-
tem exists between the nodes, and that there is a head
node that controls the distribution of work units. How-
ever, the Amazon EC2 environment only supports the
creation of independent virtual machine instances that
boot appropriate instances. To make it easier to port the

SNfactory pipeline, we developed the ability to create
virtual clusters in the EC2 environment. A virtual clus-
ter connects a series of virtual machines together with
a head node that is aware of all of the worker nodes,
and a shared file system between the nodes.

To provide a persistent shared file system, we cre-
ated an Amazon Elastic Block Storage (EBS) vol-
ume [3]. EBS provides a block level storage volume to
EC2 instances that persists independently from the in-
stance lifetimes. On top of the EBS volume we built a
standard Linux ext3 file system. We were then able to
have our head node export this file system via NFS to
all of the virtual cluster nodes.

To setup a virtual cluster we tried two different tech-
niques. The first technique we tried involved customiz-
ing the virtual machine images for each role. A cus-
tom image would be made that knew how to attach the
EBS volume, start all of the worker nodes, and then
export the EBS volume over NFS. While this approach
had the advantage of simplicity for the end user, it
quickly became apparent that it introduced a large bur-
den on changing the environment. Any time a change
was made, a new machine image had to be saved, and
all of the other infrastructure updated to use this new
image.

The process of creating and updating the images re-
quires a fair understanding of Linux system adminis-
tration and is tedious and time consuming. Thus, we
decided to investigate alternative ways to handle the
same setup. We use an EBS volume to store all applica-
tion specific data and binary files. The application bi-
nary and data is then available on the workers through
NFS. Also, it is necessary for the head node to know
about the workers coming up and the workers need to
know its master’s physical address.

Thus, we decided to use a series of bash scripts that
utilize the Amazon EC2 command-line tools, and com-
pletely automate the process of setting up the virtual
cluster. All of the state is now kept in these scripts,
and standard machine images can be used. During the
setup of a virtual cluster, we first instantiate an instance
that will become the head node of the virtual cluster, to
this node we then attach the EBS volume. Once this is
complete, we instantiate each of the worker nodes. For
each worker node, we write its private IP address into
the head nodes /etc/exports file. This file controls the
addresses the NFS server will export to. The private IP
addresses are also written out into a MPI machine file.
The head node uses this file to decide where to send
work units. After these files are written, the NFS server
is started on the head node, and the proper mount com-

K.R. Jackson et al. / Performance and cost analysis of the Supernova factory on the Amazon AWS cloud 111

mands are executed on the worker nodes. At this point
in time, our virtual cluster setup is completed, and we
are ready to begin running the SNfactory jobs.

3.2. Data placement

Once we had developed the mechanisms to create
virtual clusters, we were faced with deciding where to
store our input data, code, and output data. In a tradi-
tional cluster environment all data would be stored on
the shared file system. In the Amazon Web Services en-
vironment we have two main choices for data storage.
We can store data on the EBS volume that is shared be-
tween the nodes, or we can store our data in the Sim-
ple Storage Service (S3) [5]. S3 provides a simple web
services interface to store and retrieve data from any-
where. To decide which of these options would pro-
vide the best performance at the cheapest cost, we ran
a series of experiments that are described below.

4. Evaluation

The goal of our evaluation was to evaluate the vari-
ous choices available to the end user through Amazon
EC2 and study the impact on performance and corre-
sponding cost considerations.

4.1. Experimental setup

We undertook a series of experiments focused on I/O
and CPU data-processing throughput to observe and
characterize performance, explore scalability, and dis-
cover optimal configuration strategies for the SNfac-
tory using a virtual cluster in the Amazon Elastic Com-
pute Cloud. We were particularly interested in study-
ing the EBS versus S3 storage trade-offs, and the ef-
fects of various I/O patterns on aggregate performance
for realistic “runs” of spectrograph data processing. In
addition, we concentrated on approaches that required
only minimal coupling between the existing SNfactory

IFU pipeline and EC2 resources; for example, invasive
changes that would enable the pipeline to access S3
were ruled out but transparent NFS file access was not.

Experiments were organized in a matrix by long-
term storage option employed (EBS or S3), and wheth-
er or not I/O was concurrent with data processing or
segregated into phases that preceded or followed it.
Table 1 summarizes the options used for data place-
ment in the experiments discussed below. Each exper-
iment was first conducted using a cluster of 40 worker
cores and repeated with 80 worker cores. For both ex-
periments, each worker core was assigned one night
of data. In each cluster, an additional node was allo-
cated which attaches an EBS volume and serves it out
to the workers via NFS. This configuration was used
even when processing inputs and/or outputs were writ-
ten to S3 – the NFS server was used to distribute the
SNfactory pipeline’s compiled binary executables and
scripts to workers. We also address the implications of
this strategy in our analysis.

EC2 32-bit high-CPU medium instances (c1.medi-
um: 2 virtual cores, 2.5 EC2 Compute Units each)
were used in all experiments discussed. Test runs with
small instances (m1.small: 1 virtual core with 1 EC2
Compute Unit) demonstrated that a cluster consisting
of those instances is actually less cost-effective by a
factor of two since the cost per core is the same but
the wall-clock time required for processing is twice
as long: 30% of physical CPU resources are available
to a single m1.small instance where nearly 95% are
available to a single c1.medium instance. The rela-
tive cost ratio per core of 1:1 also holds in the Ama-
zon EC2 spot-price market given the observed average
spot-prices to date. However, it should be noted that
this ratio is an ideal in the spot-market, where users
declare a price above spot they are willing to pay.

For profiling our cluster, we found the sysstat
project’s sar command [19] to be a very useful way to
collect information on system performance with very
low overhead (sampling every 15 s results in a load of
essentially 0.00 on an idle machine). The low overhead

Table 1

Experimental setup

Experiment Input data Output data

EBS-A1 EBS via NFS Local storage to EBS via NFS

EBS-B1 Staged to local storage from EBS Local storage to EBS via NFS

EBS-A2 EBS via NFS EBS via NFS

EBS-B2 Staged to local storage from EBS EBS via NFS

S3-A EBS via NFS Local storage to S3

S3-B Staged to local storage from S3 Local storage to S3

112 K.R. Jackson et al. / Performance and cost analysis of the Supernova factory on the Amazon AWS cloud

was not surprising as sar reads kernel data structure
values (i.e., counters) via the /proc file-system. There
are about 200 quantities sar samples in “-A” mode,
which we used excluding collection of interrupt statis-
tics on all 256 interrupts. The sar utility was run on
the NFS server and all worker nodes in each experi-
ment, and its output served as the primary source for
our measurements.

The raw spectrograph data set itself is organized (in
general but also in particular on EBS) in a nested di-
rectory tree by night of observation – all files obtained
in a given 24 h period are contained in a single di-
rectory (an average of about 370 files per directory).
Data files themselves are mostly FITS [21] format, a
standard digital image format widely used in astron-
omy. The input data used to perform our EC2 exper-
iments consists of raw spectrograph CCD images in-
cluding science frames (supernovae and spectroscopic
standard stars) as well as associated instrument cali-
bration frames (internal arc and continuum lamp ex-
posures for flexure and response corrections). The av-
erage size of a typical night’s worth of spectrograph
data is 2.7 GB. Other raw data files from the spectro-
graph include metadata text files, and an entire stream
of FITS files from the photometric imaging channel,
which is currently handled using a separate pipeline.
Nonetheless, operations tested consist of most of the
numerically intensive portions of the SNfactory spec-
troscopic pipeline.

4.2. Experiment results

In our description of the experimental results, we fo-
cus on detailed results from the 80-core runs, and rely
on the smaller 40-core runs to discuss scaling. The 80-
core cluster is a reasonable approximation of the size
of cluster the SNfactory expressed interest in using, as
it puts within reach end-to-end processing of our entire
multi-year data set (over 500 nights) on the timescale
of a day or so. This ability is critical to the analysis,
where differences in how early processing steps prop-
agate down to changes in cosmological results.

4.2.1. Experiments EBS-A1 and EBS-B1
In experiment EBS-A1, the reduction pipeline run-

ning on each worker instance reads raw input files
as they were needed directly from the EBS volume
across NFS via the EC2 internal network. As auto-
mated data reduction proceeded, data output products
(usually further FITS files) were deposited in worker
local ephemeral storage. When all of the processing

was complete on a worker, the output files were copied
back to the EBS volume served by the NFS server
node. Figure 1(a) provides a detailed view of the ob-
served performance during EBS-A1.

Figure 1(a) displays the measured network send and
receive rates, disk read and write rates, and system load
for the NFS server node. The red dashed lines in the
top two panels trace the rates of transfer of input data to
the worker nodes from the EBS volume. The periodic,
decaying spikes of activity are a natural side-effect of
the homogeneity of the input data: each set of files is
the same size and the amount of time to process each
is highly correlated. Perturbations in run-times cause
the peaks to decay and disk access to spread out. File
caching accounts for the difference between the net-
work send and disk read curves, induced by duplica-
tion of nights across some worker cores (duplication is
not used to observe caching in all experiments). Dur-
ing the first 3 h of the experiment, CPU load on the
NFS server (bottom panel) is negligible, but as work-
ers complete tasks and begin sending data back, the
network receive and disk write (black solid lines), and
system load climb rapidly. Data rates of over 40 MB/s
are achieved, and the NFS server load climbs to around
10. This phase lasts for over 4 h, longer than it took
to process the data. The broad spike of data transfer to
the NFS node just before 2 h into the experiment is the
result of a “short” night of data – a worker core com-
pleted processing and was able to send its results back
to the EBS volume before the rest of the nights were
completed.

In Fig. 1(b), we show the profile of disk and network
activity for a typical worker node in the cluster. Disk
writes on the worker (raw files from the NFS server)
occur at punctuated intervals as the pipeline completes
individual tasks on each set of inputs and gets the next
set. During the phase where outputs are sent back to the
NFS server, we see that the worker is competing with
other workers in the cluster for access, as 40 MB/s of
bandwidth must be shared across 80 cores.

Experiment EBS-B1 repeated Experiment EBS-A1,
except that raw input files were staged to worker
ephemeral storage before processing began. In
Fig. 2(a), we see that the NFS server achieves a very
high rate of transfer to the workers – around 60 MB/s
reading from the EBS volume, and 80 MB/s sending
the data out to workers (again caching explains the dif-
ference). The long transfer phase back to EBS is again
observed, as expected. Note in Fig. 2(b), one of the two
cores of the worker node was responsible for a short
night – it was able to send its results back to the NFS

K.R. Jackson et al. / Performance and cost analysis of the Supernova factory on the Amazon AWS cloud 113

(a) (b)

Fig. 1. Experiment EBS-A1. (a) NFS server. (b) Worker. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-2011-0324.)

(a) (b)

Fig. 2. Experiment EBS-B1. (a) NFS server. (b) Worker. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-2011-0324.)

server using all the bandwidth that is later shared by
all 80 cores in the cluster, so here it enjoys superior
network send and disk-read rates. The other night on
the same node took longer to complete, and its output
transfer lasted over an hour instead of a few minutes.

4.2.2. Experiments EBS-A2 and EBS-B2
For Experiment EBS-A2, the pipeline on each work-

er instance reads input files directly from EBS via NFS
as in Experiment EBS-A1, but instead of caching the
results and saving them to the EBS volume at the end
of processing, they are saved back as they are pro-
duced. The point of the experiment is to determine

whether interleaving the I/O with the data processing
spreads out the I/O access patterns naturally to dis-
tribute bandwidth amongst worker cores.

Figure 3 shows this is simply not the case – in
fact, a very strong oscillatory pattern in the data trans-
fer rates and system load on the NFS server. We sus-
pected that the stream of EBS writes to the NFS server
was reducing the ability of workers to read the next
set of inputs, driving a synchronization where tasks
could not begin until all data had been sent to the EBS
volume. Investigating the situation on the workers re-
vealed something similar to this hypothesis but not ex-
actly the same.

114 K.R. Jackson et al. / Performance and cost analysis of the Supernova factory on the Amazon AWS cloud

(a) (b)

Fig. 3. Experiment EBS-A2. (a) NFS server. (b) Worker. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-2011-0324.)

Some SNfactory pipeline components appeared to
be taking a very long time to complete appointed tasks,
but did not seem to be utilizing the CPU heavily. Us-
ing the strace command, we found that in at least one
case, the scripts were taking a very long time to sim-
ply load from the NFS server. In particular, a scattered-
light correction script written in Python was observed
to take 12 minutes simply to load as numerous modules
in the form of shared objects, pure python, or compiled
python were checked. Compiled binaries (say, written
in C or C++) generally launched much faster than the
interpreted scripts (which drove the synchronization).

Experiment EBS-B2 is a variation of EBS-A2, with
raw input data being staged to worker local ephemeral
storage before processing is launched. The same oscil-
latory pattern is observed as in EBS-A2, and the NFS
server network send and disk read rates were compara-
ble to those observed in experiment EBS-B1.

It is interesting to note that the 40-core runs did
not exhibit the clear oscillatory behavior observed in
the 80-core runs. This is true for both cases EBS-A2
and EBS-B2. Evidently the 40-core runs were below
a threshold where the start-up times for interpreted
scripts became noticeably enlarged.

4.2.3. Experiments S3-A and S3-B
With the EBS-based experiments taking upwards of

7 h to complete, with at least as much time spent on
file system access as was spent on CPU usage, we in-
vestigated using Amazon S3 as the persistent storage
mechanism for pipeline inputs and outputs. In Experi-
ment S3-A, raw input data was read from the EBS vol-

ume but the outputs cached to S3 after processing was
done. Experiment S3-B relied upon S3 both to provide
raw inputs staged to worker local ephemeral storage,
and for long-term storage of outputs.

In Experiment S3-A, we again see the decaying net-
work send and disk read rates on the NFS server in
Fig. 4(a). As no outputs are being sent back to the
EBS volume there is no measured net receive or disk
write rate. On the worker, as depicted in Fig. 4(b), pro-
cessing for one of the two nights completes about a
half hour before the other and its transfer to S3 begins
(and the load drops by 1). All data products are sent
to S3, as observed by sar within much less than an
hour. By using S3 as the destination of the output prod-
ucts of the pipeline, each worker apparently is able to
achieve transfer rates of upwards of 6–8 MB/s, greater
than when the workers share a single EBS volume over
NFS. Note that S3’s latency may mean that new data
products sent to S3 may not be accessible by another
node in the cluster or cloud immediately, but this is not
a major concern. Whether or not the files were sent to
S3 one at a time, or as a block, made no significant
difference.

Experiment S3-B merely aggregated the staging of
raw inputs to the front of the experiment and much the
same behavior was observed as in S3-A on the worker
nodes. The EBS volume was still accessed by workers
in order to obtain scripts and binary executables needed
to perform processing operations, however. But, the
data transfer rates to support this across NFS (when no
other appreciable traffic is present) results in no notice-
able anomalous slow start-ups for interpreted scripts.

K.R. Jackson et al. / Performance and cost analysis of the Supernova factory on the Amazon AWS cloud 115

(a) (b)

Fig. 4. Experiment S3-A. (a) NFS server. (b) Worker. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-
2011-0324.)

In the 80-core experiments, the S3 variants clearly
outstrip the EBS variants in terms of performance.
Where a run of processing took around 7 h for the EBS
variants, only 3 h were used in the S3 experiments. The
amount of time spent by workers loading output data
into S3 was an order of magnitude smaller than into
EBS. Possible EBS-based solutions that could improve
EBS performance include – splitting the data across
multiple EBS volumes, or creating a RAID 0 array
from multiple EBS volumes. However, these improve-
ments, unless overwhelmingly cost-effective, would
not be of interest to SNfactory due to increased com-
plexity.

4.2.4. Scaling
Figure 5 compares mean wallclock times for each of

the three main phases of each processing experiment.
For comparison, the 40-core (21 nodes: 20 worker
nodes and 1 NFS/head node) variants are included
along side the 80-core (41 nodes: 40 worker nodes and
1 NFS/head node) results. The “fetch” phase is mea-
sured only for the “B” experiments that have a sepa-
rate initial staging phase. In the other experiments, the
file transfer from NFS to workers is combined with the
processing (or “IFU” phase). The “put” phase is mea-
sured when outputs are sent to long-term storage from
workers after processing is done. The wallclock time
measurements are a mean over all workers in the clus-
ter, and the distribution is dominated by the spread over
the size of each input task, not conditions in EC2.

The scaling results in this figure are interesting. The
S3 experiments scaling performance from 40 to 80-
cores, which are reasonable sizes of interest to the

Fig. 5. Scaling performance. (Colors are visible in the online version
of the article; http://dx.doi.org/10.3233/SPR-2011-0324.)

SNfactory, is excellent. Comparing the EBS-results,
going from the “A” mode of putting outputs on the
EBS volume after all processing to the “B” mode of in-
terleaving transfer back resulted in a decrease of total
time to complete the experiment, but this clearly did
not translate from 40 cores to 80, where basically no
change is observed.

4.2.5. Cost
We now attempt to calculate the rough cost of run-

ning the SNfactory pipeline in the AWS environment
in order to understand if it would be cost effective for
production usage. Figure 6(a) shows the cost, calcu-
lated using February 2010 prices, associated with an-
alyzing one night of data with both 40 and 80 cores.
Each bar represents the total costs. The data costs and
compute costs are shown in different shades for each

116 K.R. Jackson et al. / Performance and cost analysis of the Supernova factory on the Amazon AWS cloud

(a) (b)

Fig. 6. Costs. (a) Cost of analyzing one night of data. (b) Cost per experiment.

bar. We can clearly see that although S3 offers signifi-
cantly better performance, that performance comes at a
cost. Data storage in S3 is more expensive then storing
data in an EBS volume.

Figure 6(b) shows the cost of running a single ex-
periment and storing the data of that single experiment
for one month. More realistic and useful research and
development tasks, such as signal extraction tests on
Monte Carlo simulations of data cubes, generally tend
to be around the same size as the experiments con-
ducted in this study. Data transfers between EC2 and
S3 are free. Because of the cost numbers, it is clear that
we should only use S3 storage for those places where it
impacts performance. Otherwise we are better off us-
ing EBS for our storage. In the case of the SNfactory,
this means that we will store our input data, and our ap-
plication data in EBS. Our output data will be written
to S3.

To date, the SNfactory experiment has around 700
nights of on-sky SNIFS data to process. Adopting a
round figure of $1.50 to process one night of data
(based on Fig. 6(a)), we find that the total cost to re-
duce all the data is around $1K. This assumes that files
created during the data reduction procedure, includ-
ing ancillary by-products, would be stored on S3 for a
month. In practice, SNfactory tends to retain around 3–
4 productions on disk for comparison, and does not re-
process all of its raw data every time (e.g., initial pre-
processing is done once and subsequent productions
can re-use those data products as a starting point). This
complicates the cost estimate, but an upper bound as-
suming all the data were re-processed each time and
kept on disk for up to 4 months would raise the cost

Table 2

Microbenchmark experimental setup

Experiment name Storage name

EC2-Local Local storage (instance root device)

EC2-EBS EBS storage (instance root device)

EC2-EBS-ext3 EBS storage (EBS ext3 mount on instance)

per production to $50K. In view of this potentially very
large cost, SNfactory would have to devise alternate
schemes or prioritize its use of disk space, for example,
only re-running the disk-space heavy pre-processing
when absolutely necessary.

5. Microbenchmarks

To further understand the SNfactory performance on
Amazon AWS, we conducted a series of microbench-
marks designed to measure the performance of the un-
derlying storage systems.

5.1. Experimental setup

We performed a series of experiments to measure the
file system latency and the file system read/write char-
acteristics of Amazon EC2 instances when using both
the local ephemeral storage and the Amazon EBS stor-
age. In all the experiments we used a 32-bit CentOS
image running on the high-CPU c1.medium instance
type. Table 2 shows the various configurations of local
and EBS storage options used for running the experi-
ments.

K.R. Jackson et al. / Performance and cost analysis of the Supernova factory on the Amazon AWS cloud 117

We used a freely distributed GPL micro-benchmark
suite, called lmbench [15], to measure the file system
latencies, and the HPC standard IOR [20] benchmark
for measuring read/write throughputs. lmbench mea-
sures both file creation and file deletion latencies for
varying file sizes and many of the benchmark features
like number of test repetitions, file system selection to
perform creation/deletion tests are easily configurable.
We measured file creation and deletion latencies for
file sizes ranging from 1 KB to 512 MB. To measure
read/write throughput, IOR is configured to perform
single shared file POSIX I/O to the filesystem under
test. Each of the CPUs in the two CPU c1.medium in-
stance is made to write about 1 GB of data to the file in
chunks of 1 MB of data in each data transfer.

5.2. Experimental results

Figure 7(a) shows the file creation latencies as mea-
sured by lmbench. We can see that file creation laten-

cies remain close to zero for file sizes up to 512 KB.
For file sizes after 512 KB the latency increases expo-
nentially. While all storage options show similar laten-
cies, EBS over ext3 mount provides the best latency,
especially as file sizes increase.

Similar to creation, Fig. 7(b) file deletion latencies
remain close to zero for all cases until sizes of 8 MB
are reached. Latencies continue to increase as file sizes
increase, however, for both of the root devices, laten-
cies suddenly drop at 256 MB. We have not been able
to identify a cause for this drop. For the file sizes used
by SNfactory, it is clear from both latency benchmarks
that file creation and file deletion performance is ade-
quate to meet SNfactory needs.

Figure 8(a) shows the read throughput in MB/s as
measured with IOR. The read performance of both the
EBS root device and the mounted EBS volume are sim-
ilar. The local, non-EBS, root devices shows signifi-
cantly poorer performance.

(a) (b)

Fig. 7. lmbench results. (a) File creation. (b) File deletion. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-
2011-0324.)

(a) (b)

Fig. 8. IOR results. (a) Read throughput. (b) Write throughput. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-2011-0324.)

118 K.R. Jackson et al. / Performance and cost analysis of the Supernova factory on the Amazon AWS cloud

Figure 8(b) shows the write throughput in MB/s as
measured with IOR. This graph clearly shows the un-
derlying performance bottleneck that constrained the
SNfactory performance when writing output data to
EBS. The observed write performance in the IOR tests
is less then 40 MB/s. This is less then the performance
achieved via NFS in earlier testing, but we believe the
difference is due to variations in the AWS load and in-
frastructure. The IOR tests were conducted 9 months
after the original tests were conducted.

6. Related work

Various application groups have run scientific com-
putations and pipelines on Amazon EC2 to study the
feasibility of the model for a particular application. In
addition previous work has evaluated performance of
difference Amazon components, e.g., the storage ser-
vice (S3) [5].

Deelman et al. detail the computational and stor-
age costs of running the Montage workow on Amazon
EC2 resources [10]. High-Energy and Nuclear Physics
(HEPN)’s STAR experiments have been run on cloud
environments such as Amazon EC2 [13,14] and iden-
tified certain challenges associated with image man-
agement, deployment context and the management of
virtual clusters. Standard benchmarks have been eval-
uated in the Amazon EC2 environment that experience
communication bottlenecks but small-scale codes [11].

Our work details both the development as well as the
performance impact of various design solutions when
running the SNfactory Experiment on Amazon EC2.

7. Conclusion

While the Amazon Web Services environment can
be very useful for scientific computing, porting your
scientific application into this framework today re-
quires significant effort. Most scientific applications
expect a certain environment to be present. Either
that environment, e.g., an HPC cluster environment, is
replicated in EC2, or the application must be changed
to remove those expectations.

One expectation that most scientific applications
that run in traditional cluster environments have is that
the mean rate of failure is very low. Traditionally this
has been true; hence most scientific applications do
not handle failure well. Our experience with the Ama-
zon Web Services environment is that failures occur

frequently, and the application must be able to handle
them gracefully and continue operation.

The most common failure is an inability to acquire
all of the virtual machine images you requested be-
cause insufficient resources are available. When at-
tempting to allocate 80 cores at once, this happens
fairly frequently. Your application needs to be able to
adapt to the actual number of virtual machines avail-
able, and not expect that it will always acquire all of
the requested resources.

In addition to not being able to acquire all of the re-
quested resources, we saw a wide variety of transient
errors. These included an inability to access the âuser-
dataâ passed in during image startup, failure to prop-
erly configure the network, failure to boot properly, and
other performance perturbations. While none of these
errors occurred frequently, they do in aggregate happen
often enough that it is essential that your application
can deal gracefully with them.

Virtualized environments are attractive to scientific
users since it gives users the flexibility to run custom
software environments specific to a project. This flexi-
bility however comes at a cost. Determining the Ama-
zon cloud services to use and setting up the virtual
cluster configuration for the workflow is non-trivial.
In addition, creating virtual images requires a modest
understanding of Linux system administration. Thus,
porting and running an application in the Amazon
cloud environment requires a good understanding of
the services offered, modest amount of time, middle-
ware pieces to manage the orchestration of the various
services and specialized skills for managing images.

In addition to managing errors, and essential com-
ponent of porting a scientific application into the Ama-
zon Web Services environment is benchmarking. Un-
derstanding how to utilize the various storage compo-
nents available in the environment today to maximize
performance for a given cost requires a significant ef-
fort in benchmarking your application.

From our experiments, we conclude that at least for
the SNfactory, an optimal configuration of Amazon
Web Services resources consists of storing raw input
files on an EBS volume, and sending the outputs to
Amazon S3, capitalizing on S3’s superior scaling prop-
erties. Application code can reside on an EBS volume
shared out over NFS.

Acknowledgements

This work was funded in part by the Advanced
Scientific Computing Research (ASCR) in the DOE

K.R. Jackson et al. / Performance and cost analysis of the Supernova factory on the Amazon AWS cloud 119

Office of Science under contract number DE-C02-
05CH11231. The authors would like to thank Amazon
for access to Amazon EC2. The authors would also like
to thank the Magellan team at NERSC for discussions
on cloud computing.

References

[1] G. Aldering, G. Adam, P. Antilogus, P. Astier, R. Bacon,
S. Bongard, C. Bonnaud, Y. Copin, D. Hardin, F. Henault,
D.A. Howell, J. Lemonnier, J. Levy, S.C. Loken, P.E. Nu-
gent, R. Pain, A. Pecontal, E. Pecontal, S. Perlmutter,
R.M. Quimby, K. Schahmaneche, G. Smadja and W.M. Wood-
Vasey, Overview of the Nearby Supernova Factory, in: The
Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference, J.A. Tyson and S. Wolff, eds, Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series,
Vol. 4836, SPIE, Bellingham, WA, 2002, pp. 61–72.

[2] Amazon Web Services, http://aws.amazon.com/.
[3] Amazon EBS, http://aws.amazon.com/ebs/.
[4] Amazon EC2, http://aws.amazon.com/ec2/.
[5] Amazon S3, http://aws.amazon.com/ebs/s3/.
[6] E. Angerson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKen-

ney, J. Du Croz, S. Hammarling, J. Demmel, C. Bischof and
D. Sorensen, LAPACK: a portable linear algebra library for
high-performance computers, in: Proceedings of Supercomput-
ing’90, IEEE, New York, NY, 2002, pp. 2–11.

[7] C. Aragon, S. Poon, G. Aldering, R. Thomas and R. Quimby,
Using visual analytics to develop situation awareness in astro-
physics, Information Visualization 8(1) (2009), 30–41.

[8] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., Above
the clouds: a Berkeley view of cloud computing, Technical
Report UCB/EECS-2009-28, EECS Department, University of
California, Berkeley, CA, 2009.

[9] CFITSIO, http://heasarc.nasa.gov/docs/software/fitsio/fitsio.
html.

[10] E. Deelman, G. Singh, M. Livny, B. Berriman and J. Good,
The cost of doing science on the cloud: the montage example,
in: Proceedings of SC’08, IEEE, Austin, TX, 2008, pp. 1–16.

[11] C. Evangelinos and C.N. Hill, Cloud computing for paral-
lel scientific HPC applications: Feasibility of running cou-
pled atmosphere-ocean climate models on amazon’s ec2, in:
Proceedings of the Cloud Computing and Its Applications,
Chicago, IL, October 2008.

[12] GSL, http://www.gnu.org/software/gsl/.
[13] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman and M. Tsug-

awa, Science clouds: Early experiences in cloud computing for
scientific applications, in: Proceedings of the Cloud Comput-
ing and Applications, Chicago, IL, 2008.

[14] K. Keahey, T. Freeman, J. Lauret and D. Olson, Virtual
workspaces for scientific applications, Journal of Physics:
Conference Series 78 (2007), 012038.

[15] L. McVoy and C. Staelin, lmbench: portable tools for perfor-
mance analysis, in: Proceedings of the 1996 Annual Confer-
ence on USENIX Annual Technical Conference, Usenix Asso-
ciation, Berkeley, CA, 1996, p. 23.

[16] M. Palankar, A. Iamnitchi, M. Ripeanu and S. Garfinkel, Ama-
zon S3 for science grids: a viable solution?, in: Proceedings of
the 2008 International Workshop on Data-Aware Distributed
Computing, ACM, New York, NY, 2008, pp. 55–64.

[17] S. Perlmutter, G. Aldering, G. Goldhaber, R. Knop, P. Nugent,
P. Castro, S. Deustua, S. Fabbro, A. Goobar, D. Groom et al.,
Measurements of â and Λ from 42 high-redshift supernovae.
The Astrophysical Journal 517 (1999), 565–586.

[18] A. Riess, A. Filippenko, P. Challis, A. Clocchiatti, A. Dier-
cks, P. Garnavich, R. Gilliland, C. Hogan, S. Jha, R. Kirshner
et al., Observational evidence from supernovae for an acceler-
ating universe and a cosmological constant, The Astronomical
Journal 116 (1998), 1009–1038.

[19] Sar, http://pagesperso-orange.fr/sebastien.godard/sw.
[20] H. Shan and J. Shalf, Using ior to analyze the i/o performance

for HPC platforms, in: Cray User Group Conference, Seattle,
WA, May 7–10, 2007.

[21] D. Wells, E. Greisen and R. Harten, FITS-a flexible image
transport system, Astronomy and Astrophysics Supplement Se-
ries 44 (1981), 363–370.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

