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Abstract. A significant open issue in cloud computing is the real performance of the infrastructure. Few, if any, cloud providers
or technologies offer quantitative performance guarantees. Regardless of the potential advantages of the cloud in comparison
to enterprise-deployed applications, cloud infrastructures may ultimately fail if deployed applications cannot predictably meet
behavioral requirements. In this paper, we present the results of comprehensive performance experiments we conducted on Win-
dows Azure from October 2009 to February 2010. In general, we have observed good performance of the Windows Azure mech-
anisms, although the average 10 min VM startup time must be accounted for in application design. We also present performance
and reliability observations and analysis from our deployment of a large-scale scientific application hosted on Azure, called
ModisAzure, that show unusual and sporadic VM execution slowdown of over 4x in some cases and affected up to 16% of
task executions at times. In addition to a detailed performance evaluation of Windows Azure, we provide recommendations for
potential users of Windows Azure based on these early observations. Although the discussion and analysis is tailored to scientific
applications, the results are broadly applicable to the range of existing and future applications running in Windows Azure.
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1. Introduction

Cloud computing has burst onto the high perfor-
mance computing scene in recent years and has es-
tablished itself as a viable alternative to customized
HPC clusters for many users who do not have the re-
sources — either time or money — to build, configure,
and maintain a cluster of their own. The ability to pay
only for resources that are utilized and the apparent
ease by which resources can be expanded, deployed,
and removed from service are very attractive. Many
eScience developers are increasingly looking to create
data-intensive applications that have highly variable re-
source requirements over time and can take advantage
of the pay-as-you-go cost model to lower costs, in-
crease scale, and decrease deployment time.

As more cloud providers and technologies enter the
market, developers are faced with an increasingly dif-
ficult problem of comparing various offerings and de-
ciding which vendor to choose for deploying an appli-
cation. One critical step in the process of evaluating
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various cloud offerings is determining the performance
of the services offered and how those match the re-
quirements of the application. Even in situations where
other factors ultimately dominate the choice regarding
potential cloud platforms (e.g., cost per unit time of a
virtual machine or application-hosting environment in
the particular cloud), it is important to consider per-
formance ramifications of design decisions to ensure
maximum value of cloud applications.

The purpose of this paper is to provide a quan-
titative analysis of the performance of the Windows
Azure Platform [18] using micro-benchmarks as well
as to provide insights gained developing and deploy-
ing a large-scale scientific application for process-
ing satellite imagery in Windows Azure: ModisAzure.
We present the results of performance experiments
we conducted on Windows Azure from October 2009
to February 2010. Through our existing collaborative
partnership with Microsoft Research, we were able to
evaluate the services at scales not readily available
to users of the early Community Technology Preview
(CTP) release — up to 192 concurrent instances. Our
methodology is to assume that Windows Azure has al-
ready been chosen as the target cloud for whatever rea-
son, and that now the developer is facing the challenge
of architecting his/her cloud application to accommo-
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date performance considerations. In other words, to
maintain a reasonable scope of this research effort (and
this paper), we do not directly compare performance
of Windows Azure to other clouds. We also note that
our collaboration with Microsoft Research does not in-
clude us having access to implementation or opera-
tional details of the Windows Azure Platform, so we
treat the service as a black-box.

The Windows Azure Platform is composed of sev-
eral services: Windows Azure, SQL Azure Database,
SQL Azure Reporting, SQL Azure Data Sync, App-
Fabric, Content Delivery Network (CDN) and Win-
dows Azure Connect (also known as the Azure Vir-
tual Network). This paper focuses on Windows Azure,
which encompasses both compute resources and scal-
able storage services. Our evaluation of the Windows
Azure service begins with the performance of its com-
pute resources and its three primary storage services:
blobs, queues and tables. Because these are the basic
storage components that scalable Windows Azure ap-
plications are built upon, it is important to understand
their performance characteristics as scale increases.
We then evaluate virtual machine instantiation time be-
cause instance acquisition and release times are crit-
ical metrics when evaluating the performance of dy-
namic scalability for applications. We also present an
evaluation of direct instance-to-instance TCP perfor-
mance as this mechanism provides an alternative to the
other storage services for communication between in-
stances that has lower latency. In general, we have ob-
served good performance of the Windows Azure mech-
anisms, although the average 10 min VM startup time
must be accounted for in application design if dynamic
resource scaling is required.

We also present some of our experiences develop-
ing the ModisAzure eScience application for the Win-
dows Azure platform. ModisAzure is a data-processing
system satellite imagery that is deployed at a scale of
approximately 200 Azure instances. The application
went online in February, 2010 and has been used to ex-
ecute nearly 2.7 million independent sub-tasks on sev-
eral terabytes of data in a bag-of-tasks architecture. We
specifically describe our experiences with virtual ma-
chine performance variation and how we observed ran-
dom slowdowns of VM execution that led us to ter-
minate execution after 4x the normal execution time.
The purpose of this data is to show real-world diffi-
culties encountered in cloud application development
and their frequency and impact. Finally, we summa-
rize our experimental data into several specific rec-
ommendations for developers using Windows Azure

Platform. In these recommendations we address virtual
machine instances, the storage services, and our expe-
rience in testing and developing cloud applications. Al-
though the discussion and analysis is tailored to scien-
tific applications, the results are broadly applicable to
the range of existing and future applications running in
Windows Azure.

This work extends previous work [11] with the in-
clusion of the ModisAzure application sections, and
where that work included the evaluation of Azure SQL
Services, we have omitted it here due to space con-
straints. The rest of this paper is organized as follows:
Section 2 surveys related work. We start our analysis
of the Windows Azure storage services in Section 3.
We then discuss the results of our experiments with
the Azure computing services in Section 4. Section 5
describes the ModisAzure application very briefly and
presents our performance and failure data from its de-
ployment. We discuss the implications of our results
for both users and cloud providers in Section 6. Finally,
we conclude with Section 7.

2. Related work

In the research community, there is an increasing
recognition of both the usefulness and performance
concerns of clouds and their underlying technologies.
Foster et al. [8] provide an overview of and compari-
son between grid computing and cloud computing and
their architectures, programming models, and manage-
ment issues. For example, Menon et al. [17] and others
[21] evaluated the performance overhead of Xen [3],
a software virtualization technology which is a pop-
ular choice as the low level virtual machine manager
by several cloud providers. Xen has been shown to
impose negligible overheads in both micro and macro
benchmarks [23]. A higher level analysis is provided
by Garfinkel [9], who evaluates some of the cloud ser-
vices that Amazon provides. Our earlier work com-
pared the performance of cloud platforms with local
HPC clusters for scientific applications [12]. Another
report examines the feasibility of using EC2 for HPC
in comparison to clusters at NCSA [22]. This compar-
ison pits EC2 against high-end clusters utilizing Infini-
band interconnects.

There are also studies that focus on a specific scien-
tific application, such as DZero [19] or Montage [5], to
evaluate the possibility of migrating existing applica-
tions and data to the cloud, based on performance and
cost parameters. Workflows [13] and service-oriented
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applications [6] have also been the object of study. An-
other study reports on the possibility of running cou-
pled ocean-atmosphere simulations on EC2 [7]. The
research reported in this article complements this ear-
lier work by providing a direct measurement of the
mechanisms and APIs of a specific cloud, Windows
Azure.

3. Azure storage services

In this section we start our analysis with the per-
formance tests of all three Azure storage services:
blob, table and queue. For each service we measure
throughput in operations/s or MB/s and the scalability
of the service as a function of the number of concurrent
clients, among other service-related metrics. For all
our tests we use from 1 to 192 concurrent clients. The
performance penalty caused by increased concurrency
must be taken into account in order to meet the applica-
tion’s requirements, and we provide several data points
to help the software developer make decisions about
the application’s architecture and scale.

For those unfamiliar with Windows Azure and for
clarity, Windows Azure offers computation resources
(virtual machine instances or VMs) in one of two
“roles”, or configurations: web or worker. The differ-
ence between a “web role” VM instance and a “worker
role” VM instance is the software running in the vir-
tual machine and how it is connected to externally.
Azure “web role” instances are connected to the out-
side world through a load-balancer and run Microsoft’s
Internet Information Services (IIS) to provide web-
serving capabilities. The “worker role” instance is not
connected to a load-balancer and does not run IIS. For
all of our storage service tests the clients we use to test
the services are “worker role” instances running within
Azure.

3.1. Blob storage

In this section we analyze the performance of both
the download and upload of data from the blob ser-
vice. For our blob download test we use a single 1 GB
blob that is stored in Azure. Then, we start a number
of worker roles (1-192) that download the same 1 GB
blob simultaneously from the blob storage to their lo-
cal storage. For the upload test, since the different
worker roles cannot upload the data to the same blob
in Azure storage, a different test is used: the worker
role instances will upload the same 1 GB data to the
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Fig. 1. Average per-client blob download bandwidth as a function of
the number of concurrent clients.

same container in the blob storage, using different blob
name. We run the same test three times each day. Al-
though we have collected data for several days at dif-
ferent times, the variation in performance is small and
the average bandwidth is quite stable across different
times during the day, or across different days.

The maximum server throughput for the blob down-
load operation was 393.4 MB/s, which was achieved
by using 128 clients. For the blob upload operation,
the maximum throughput was 124.25 MB/s, which
was observed in our experiments with 192 concurrent
clients. Figure 1 shows the average client bandwidth
as a function of the number of concurrent clients at-
tempting to download the same blob. The bandwidth
for 32 concurrent clients is half of the bandwidth that
a single client achieves. Using more concurrent clients
—up to 128 — increases the total aggregate bandwidth,
although this comes with the price of much slower
clients. Figure 1 also shows the performance of the up-
load blob operation, which has a similar curve shape
to the download but at about half the bandwidth. For
example, average upload speed is only ~0.65 MB/s for
192 VMs and ~1.25 MB/s for 64 VMs. Lower upload
bandwidth may be due to internal network policies
and/or to constraints on write bandwidth by the com-
plexities involved in creating new blob objects, such as
record generation and replication.

3.2. Table storage

A table in Azure is a set of entities with proper-
ties, where each property can have various types and
the table has no defined schema. We have examined
the performance of 4 operations from the Azure Ta-
ble API: Insert, Query, Update and Delete. We have
run our experiments with different entity sizes: 1, 4,
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16 and 64 kB. In our previous work [11] we showed
that for objects larger than 4 kB blob storage gave bet-
ter performance than table storage in terms operation
latency. Thus, we limit our table evaluation to 64 kB-
or-less entities. The data types of the fields in the data
entity (row) are: {int, int, String, String}, not including
the row key and partition key that are Strings and re-
quired by Azure for uniquely identifying an entity. The
last String field is used to set the size of the entity (1
kB, 4 kB, etc.) by filling it with the appropriately sized
data. We used up to 192 concurrent clients to study
the scalability of each type of table operation. We have
found that the shape of the performance curves for dif-
ferent entity sizes are similar, except for some excep-
tions which are noted below.

For each test case, our experiments performed the
following steps: we start with the Insert experiment
using different numbers of concurrent clients, where
each client inserts 500 new entities into the same table
partition; after the Insert experiment, the table parti-
tion includes ~220 K same-size entities. Next, we per-
form Query operations over the same partition by us-
ing a partition key and row key, and each client queries
the same entity 500 times. This row and partition key-
based query is the fastest query option because they are
used for indexing the table. Azure tables also support
querying on table properties other than the keys, but
we do not evaluate that case here because we are in-
terested in best-case performance. For the Update ex-
periment, each concurrent client updates the same en-
tity in the partition and repeats the operation for 100
times. Here we only tested with the unconditional up-
dates option as it does not enforce atomicity of each
update request, so that different clients can issue up-
date requests to the same table entity at the same time.
Finally, in the Delete experiment, each client removes
the same 500 entities it inserted in the first step of our
experiment.

The result of our experiments is summarized in
Fig. 2. It presents the data from the point of view of
the client, that is, how many operations per second can
concurrent clients sustain? For both Insert and Query,
the performance of the clients decreases as we in-
crease the level of concurrency. However, we think that
even with 192 concurrent clients we have not hit the
maximum server throughput for these two operations.
The Update and Delete tests show more drastic perfor-
mance declines as we increase the number of clients,
though. These two operations has high initial through-
put with only 1 client, but then slow down drastically as
the number of concurrent clients increases. The max-
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Fig. 2. Average per-client table performance as a function of the
number of concurrent clients. Entity size is 4 kB.

imum throughput for these two services is reached at
8 concurrent clients for the Update operation and 128
for the Delete operation.

Our experiments show that the performance curves
for other entity sizes are similar as Fig. 2, except for
the following exceptions during the Insert and Delete
tests: For the Insert test on 64 kB entities with 192
concurrent clients, only 89 clients successfully finished
all 500 insert operations, and the other 103 client have
encountered timeout exceptions from the server. With
128 concurrent clients inserting 64 kB entities, only
94 clients successfully finished all 500 operations. This
indicates that we may hit the table service capability
limit on the above two combinations with large entity
size and high concurrency. We have also observed sim-
ilar behaviors during the Delete tests.

3.3. Queue storage

The main purpose of the queue storage service in
Windows Azure is to provide a communication facility
between web roles and worker roles. For our queue test
we use one queue that is shared among several worker
roles — from 1 to 192. We examine the scalability of
three queue storage operations: Add, Peek and Receive.
For each operation we run the test with different mes-
sage sizes: 512 bytes, 1, 4 and 8 kB. As it was the case
with table, the shape of the performance curve for each
message size is very similar and we choose to show the
results for 512 bytes for simplicity.

Figure 3 shows our results. In general, the opera-
tions Add and Receive display similar trends. Peek is
the fastest operation, since it does not need to alter
the visibility of the message or alter the queue state.
Add and Receive require some sort of synchronization
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Fig. 3. Average Queue client performance as a function of the num-
ber of concurrent clients. Message size is 512 bytes.

to alter the queue state: the Add operation needs to
add the message to the same places in each replica
of the queue; the Receive operation needs to assign
the triple-replicated message to only one client. For
the Add and Receive operations, the maximum service-
side throughput peaks at 64 concurrent clients with
569 and 424 ops/s, respectively. For Peek, however, we
show the throughput that is achieved with 192 concur-
rent clients, but the data suggests that we have not exer-
cised this operation fully because service-side through-
put is still increasing from 128 to 192 instances —
3878 ops/s for 192 clients compared to 3392 ops/s for
128 clients. Limitations on the number of virtual ma-
chines that we can start on Windows Azure prevented
us from running this experiment at a higher scale. We
have also run some experiments to test the influence of
the size of the queue on the performance of the men-
tioned operations, and found that there is not much
variation in performance as the queue grows in size
from 200,000 messages to 2 million messages.

4. Azure computing services

In this section, we discuss computing instance ac-
quisition and release time in Windows Azure and TCP
communication between different virtual machines in-
stances.

4.1. Dynamic scalability

Computing instance acquisition time is a critical
metric to evaluate the efficiency of dynamic scalabil-
ity for cloud applications. We have written a test pro-
gram that uses the Windows Azure management API to

collect timing information about each possible action
on Azure virtual machine instances. We manage both
types of VMs: web roles and worker roles. In addition,
Azure offers four types of VM size: small, medium,
large and extra large. By combining these two param-
eters for each test case we create a new Azure cloud
deployment.

For every run of our test program, the test program
randomly picks a role type and a VM size, and cre-
ates a new deployment. In our test, all the deployment
packages are stored in Azure blob storage services. We
choose the number of instances in each deployment
based on the VM size in order to stay below the 20-
core limit imposed by Azure on normal user accounts
and still allowing the deployment size to double: 4 in-
stances for small, 2 for medium and one for large and
extra large. Then our test program measures the time
spent in all five phases — create, run, add, suspend and
delete. These phases are divided based on Azure de-
ployment and instance status:

(1) Create: we record the wall clock time from appli-
cation deploy request initiation to the time when
Azure indicates the deployment is ready to use.

(2) Run: the test program initiates a “Run” request
to start the VM instances in the deployment. We
measure the time from the start of the request to
the time when all VM instances are ready to use
(the status goes from “stopped” to “ready”).

(3) Add: the test program initiates a “Change” re-
quest and doubles the number of running in-
stances. We measure the time that takes these
newly added instances to become ready, which is
indicated by a status change to “ready”.

(4) Suspend: we suspend all the running instances in
the deployment and measure the time spent to ter-
minate each Azure VM instance (status changes
from “ready” to “stopped”).

(5) Delete: After all the instances are suspended, ini-
tiate a “Delete” request and removes the current
deployment.

From December 17, 2009 to January 09, 2010, we
collected data from 431 successful runs. The VM
startup failure rate, taking into account all of our test
cases, is 2.6%. Starting January 1, 2010, Windows
Azure changed from CTP to commercial platform, and
our observations did not find significant performance
differences between these two periods. The output data
is shown in Table 1. From these tables we draw the
following observations:
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Table 1
Worker role and web role VM request time (s)
Role Size Statistic Create Run Add Suspend Delete
Worker Small AVG 86 533 1026 40 6
STD 27 36 355 30 5
Medium AVG 61 591 740 37 5
STD 10 42 176 12 3
Large AVG 54 660 774 35 6
STD 11 91 137 8 6
Extra large AVG 51 790 N/A 42 6
STD 9 30 N/A 19 5
Web Small AVG 86 594 1132 86 6
STD 17 32 478 14 2
Medium AVG 61 637 789 92 6
STD 10 77 181 17 6
Large AVG 52 679 670 94 5
STD 9 40 155 14 3
Extra large AVG 55 827 N/A 96 6
STD 16 40 N/A 3 8

Web role VM instances need longer time to
startup than worker role instances. For all VM
sizes, web role takes 20—60 s longer than Work
role VMs. Also, large VMs take longer time to
startup than small VMs.

The average time to start a worker role small in-
stance is around 9 min, while the average time
to start a web role instance is around 10 min.
The quickest time we observe is 7.5 min for
worker role and 9 min for web role. For 85% of
our test runs, the first small worker role instance
becomes ready within 9 min, and for 95% the
first small worker role instance becomes ready
within 10 min. For 80%, the first small web role
instance becomes ready within 10 min and for
90%, the first small web role instance becomes
ready within 11 min.

Azure does not serve a request for multiple VMs
at the same time. That is, there is a lag between
the time the first instance becomes available and
the following ones. For both worker role and web
role small instances, we have observed a 4 min
lag between the 1st instance and the 4th instance
of our deployment.

Adding more instances to existing deployment
takes much longer than requesting the same num-
ber of instances initially.

Application deployment performance — create
phase — is largely a function of the application
size. A 1.2 MB application starts 30 s faster than
a 5 MB application. Note that our test deploy-

ment is stored in Azure storage service. If the ap-
plication package is stored locally, the deploy-
ment time could takes much longer because of
the local network bandwidth limit.

(6) Azure shows consistent performance for deploy-
ment deletion, around 6 s for all test cases.

4.2. TCP communication

Windows Azure allows the programmer to define
TCP or HTTP internal endpoints for the virtual ma-
chine instances in the deployment. This type of com-
munication is highly-coupled, works only in a point
to point fashion, and the application needs to define
the protocol. However, it is a good complement to the
Queue service since these internal ports allow the VMs
to talk directly with each other using a low-latency,
high-bandwidth TCP/IP port. Therefore, we have mea-
sured the performance of this feature of Azure VMs
based on latency and bandwidth.

For this experiment, we create a deployment with 20
small VMs. Ten of these VMs measure latency, and the
rest measure bandwidth. Each virtual machine is paired
with another one; each pair contains one server and one
client. In order to measure the latency, the client mea-
sures the roundtrip time of 1 byte of information sent
on the TCP channel, after communication has been es-
tablished. For the bandwidth measurement the client
sends 2 GB of information to the server — each run
of this bandwidth test usually takes around 30 s. Fig-
ures 4 and 5 present our results. We have collected for
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these two graphs a total of 10,000 measurements. Both
figures present the histogram of our samples. Figure 4
shows that approximately 50% of the time the latency
is equal to 1 ms; 75% of the time the latency is 2 ms or
better. In general, the most common case is to find in
the datacenter latency that is similar to our LAN. Fig-
ure 5 summarizes the bandwidth measurements. 50%
of the time we find the bandwidth to be 90 MB/s or
better. We assume that the physical hardware is Gigabit
Ethernet, which has a limit of 125 MB/s. So in our ex-
periments we have seen that is rather common for the
VMs to have good bandwidth. However, for the lower
end of the sample — 15% — the performance drops to
30 MB/s or worse.

5. Experience with a real eScience application in
Windows Azure: ModisAzure

In this section we present our experiences with re-
gard to the performance of Windows Azure for an

eScience application, ModisAzure, since it was de-
ployed in February 2010. We will first briefly describe
the application and its architecture and then introduce
our analysis of its performance on Windows Azure
with attention specifically on what we call “VM task
execution timeouts”. Our description of the application
itself is very brief and interested readers are encour-
aged to examine our other publications for more detail
on the development and design of ModisAzure itself
[15,16].

5.1. Overview of ModisAzure

ModisAzure is a web-based application to integrate
data from ground-based sensors with the Moderate
Resolution Imaging Spectroradiometer (MODIS) [14,
19] satellite data and to allow scientists to execute their
own analysis code on the integrated data. The MODIS
data, generated by the Terra and Aqua satellites, is de-
signed to improve the understanding of global dynam-
ics and processes occurring on the land, oceans, and
lower atmosphere. The dataset is a set of images cov-
ering the entire Earth’s surface in 36 spectral bands, at
multiple spatial resolutions, generated every 1-2 days.
The raw data itself is available via FTP, and the size of
the data for 10 years of the entire continental United
States is approximately 4 TB spread across 585 K input
source files.

The ModisAzure web-application is architected as
a pipeline framework as seen in Fig. 6. Processing is
divided into three stages: data collection, reprojection,
and analysis/reduction. A user enters a processing re-
quest using the web portal and as part of that request
specifies the desired data products to be computed. The
request is stored in an Azure table and the set of inde-
pendent tasks to be completed is determined based on
the specific request. Each task describes a specific re-
gion of the final data product to be computed and tasks
are executed in parallel and do not communicate. The
stages are data dependent, however, and thus collec-
tion must precede reprojection, and reprojection must
precede reduction. Results are saved along the way for
reuse later so that work is not duplicated more than
necessary.

A brief walk-through of how a request is handled
gives a good overview of how the application phases
interact. When a user enters the web portal he spec-
ifies a set of data products to process as a combina-
tion of geographic information (specifically defined re-
gions) as well as a time-span. The request is then added
to a service queue which is monitored by a service
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manager which manages the execution of the requests
and their associated tasks. The service manager pro-
cesses incoming requests and computes how the re-
quest is broken into smaller pieces which are handled
independently by the various worker role instances (the
current deployment uses up to 200 instances concur-
rently). Each independent piece of work, or task, fol-
lows the three principle phases of the pipeline: data
collection, reprojection, and reduction. Worker role in-
stances watch queues to get new tasks to work on and
as soon as they finish one, they retrieve the next. A sin-
gle request may generate hundreds or thousands of
tasks for a single final data product.

Data collection phase: As described in [16], for each
task on a worker role, the data collection stage gath-
ers the required source data based on the specific re-
quest received from the user. This may require down-
loading data files from the satellite data feeds via FTP.
The worker instance checks whether the source data
has already been downloaded and if not it downloads
the data files and stores them in Azure blob storage. If
the source files already exist in blob storage then they
are retrieved to the local instance storage for the next
phase, reprojection. When all source data is available
in local instance storage the reprojection phase is initi-
ated on the instance. A typical task requires 3—4 source
data files, each of which is typically between several
megabytes and tens of megabytes in size.

Reprojection phase: Reprojection is the actual merg-
ing and transforming of the data from multiple sources

into a single data sub-product (think of a tile in an im-
age mosaic). When a reprojection task is begun the first
action is to check to see if this product has been com-
puted and stored previously; and, if it is found then the
task is aborted and the stored result is used instead.
A single reprojection task typically takes several min-
utes of computation on a small-size instance in Azure.
Once reprojection is complete the finished data prod-
uct is stored in blob storage for potential reuse later.
The last stage, reduction, is then triggered.

Reduction phase: The reduction phase is optional,
and works on the data produced by the reprojection
task. This phase allows scientists to run their own code,
in the form of a MATLAB executable or some other
command-line executable on the data for a completely
custom computation phase. Each reduction task may
take several input files and aggregate the data into some
set of image files. Upon completion of the reduction
phase for all tasks of the request, an email is sent to
the user to indicate that the final product data files are
available for download from the data repository.

5.2. VM behavior observations in ModisAzure

ModisAzure has been in operation since February,
2010, and nearly 3 million distinct tasks were executed
between February, 2010 and September, 2010, the time
period of log data over which we present our analy-
sis. Table 2 shows the breakdown of tasks executed for
each phase and type. The number of tasks executed is
not the same as the number of distinct tasks because
in the case of a failure a task is retried, so a single
task may account for multiple execution runs in or-
der to complete successfully. The table shows a type
of task, aggregation, that we have not previously dis-
cussed, but it is simply a precursor task to a reduction
task that groups data together before an additional re-
duction step is performed as a Reduction-type task. Re-
projection and Reduction are the two dominant phases
due to the reuse of both source downloads and aggre-
gation products. In Windows Azure the cost to store
1 GB for 1 month is nearly the same as it does to run a
small VM instance for one hour so storing intermediate
products to conserve computation is a valid strategy as
long as the data is used within a month.

The system experienced task failure for a variety
of reasons, including user-code errors (e.g., bugs in
user-supplied MATLAB code), download failures, VM
startup failures and blob retrieval errors, but here we
focus on one particular class of failure which we found
to be both interesting and difficult to diagnose or pre-
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Table 2

ModisAzure task breakdown and selected failure types

ModisAzure task classification

Task execution count

Percentage of total (%)

Source download 139,609 4.57
Aggregation 8706 0.29
Reprojection 1,704,002 55.79
Reduction 1,202,113 39.36
Total task executions 3,054,430 100.00
Selected types of task errors

Success 2,000,656 65.50
Unknown failure 345,180 11.30
Blob already exists 182,726 5.98
Unknown — null log 139,609 4.57
Download source data failed 125,164 4.10
Connection failure 8966 0.29
VM execution timeout 5300 0.17
Operation timeout 4178 0.14
Corrupt blob read 3107 0.10
Server busy 1287 0.04
Blob read fail 638 0.02
Non-existent source blob 519 0.02
Unable to read input file 20 0.00
Bad image format 15 0.00
Transport error 12 0.00
Internal storage client error 10 0.00
Out of disk space 7 0.00

dict: VM task execution timeout. We found that in
some instances a task would seemingly execute nor-
mally, not fail explicitly, but would be much slower
than other similar tasks. We tested explicitly for this
condition by monitoring each task’s execution and if
it was still executing after 4 x of the average comple-
tion time for that task it would be cancelled and retried.
The VM timeout was triggered in 5300 task executions
over the studied time period of February to Septem-
ber in 2010 representing 0.17% of all task executions.
While that is a small percentage, if left unchecked such
performance problems can significantly hinder perfor-
mance for a given request if even one task experiences
the slowdown. For example, in ModisAzure the time-
out was triggered after a single task executed for more
than 45-60 min, depending on the specific task, but a
normal task execution completed within 10 min.
Figure 7 shows the daily percent of task timeout fail-
ures out of all daily task executions over time. The per-
centage of tasks that experienced timeout ranges from
0% to nearly 16% where the percentage is from the
number of timed-out tasks divided by the total num-
ber of tasks executed that day. This shows the vari-

able nature of the cloud infrastructure and even though
the VM execution timeouts are a small fraction of the
overall task count, on any given day they may cause
an application to take up-to 48% longer to execute
(16% x 4 + 84% = 148%) if 16% of the tasks time-
out after running for 4x their average historical exe-
cution time. Thus, this is an error that is worth moni-
toring for and a good task execution history may allow
even tighter bounds than the 4-5x we used in order to
minimize wasted time and hence cost as well.

We have already discussed the impact of VM Exe-
cution Timeouts on application performance, but there
are other failure types worth examining as well, shown
in Table 2. Connection failures, corrupt blob reads and
blob read failures are all failures that while not com-
mon, must also be accounted for in large scale cloud
applications. We have omitted many other failure types
which were primarily related to user-provided MAT-
LAB code, and hence the table does not represent
100% of all task executions. Due to space constraints,
we will not discuss all of these error types and their
causes. We believe this data is useful for eScience de-
velopers because it shows the kinds of errors that can
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Percent of Tasks Executions Experiencing VM Timeout Over Time
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Fig. 7. Percent of task executions with VM timeout over time.

occur in clouds at scale and that at scale errors which
only occur <1% of the time can still occur many thou-
sands of times.

To address the failures and performance issues we
encountered in ModisAzure we implemented robust
task status tracking and retry mechanisms. Initially we
relied upon queue storage’s retry mechanism in which
a queue message that is not explicitly removed after a
specified time-period will re-appear in the queue auto-
matically. However, we found this to be insufficient in
cases where tasks take longer than the maximum visi-
bility timeout value (2 h) as well as for handling cases
where the a task is being executed slowly and allowing
another worker to execute the same task concurrently
could cause corrupted output. Therefore, we used ex-
plicit task status monitoring by a task manager worker
that was responsible for checking for task timeouts and
killing slow tasks and putting the task back into the
task queue to be re-run by another worker.

6. Recommendations

In this section, we present our recommendation for
developers and users of the Windows Azure cloud.
These recommendations are based upon our experi-
mental results and our experience developing scientific
applications for Windows Azure.

6.1. Azure storage services

We recommend using some extra data caching mech-
anisms on the client-side to expand the per-client band-
width limit, and using data replication on the blob
storage to expand the server-side bandwidth limit.
The blob storage download bandwidth, when accessed
from small instance types, is limited by the client’s
bandwidth for small numbers of concurrent clients. For
1-8 concurrent clients we saw a 100 Mbit/s, or approx-
imately 13 MB/s, limitation. We have observed a per-
client bandwidth drop of approx 1.5 MB/s when we
doubled the number of concurrent clients. The maxi-
mum service-side bandwidth achievable against a sin-
gle blob for a high number of concurrent clients is lim-
ited to approximately 400 MB/s, which is just about
what we would expect from three 1 GB/s links if a blob
is triple-replicated.

In order to get the best performance out of the ta-
ble service, the table entities should be accessed by us-
ing partition keys and row keys only. Particularly, users
should avoid querying tables using property filters un-
der performance-critical or large concurrency circum-
stances. Currently, all tables are indexed on the Par-
titionKey and RowKey of each entity, and creating an
index on any other properties cannot be specified. Per-
formance suffers when querying on non-indexed prop-
erties. In one of our experiments, over a half of the
32 concurrent clients got time-out exceptions instead
of correct results when querying the same table par-
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tition — with ~220,000 entities pre-populated — using
property filters.

Multiple queues should be used for supporting
many concurrent readers/writers. We found that per-
formance degraded as concurrent readers and/or writ-
ers were added, but each client obtained on average
more than 10 operations per second for message sizes
of 512 bytes to 8 kB for up to 32 writers. With 16
or fewer writers each client obtained 15-20 ops/s. We
also found that message retrieval was more affected by
concurrency than message put operations so users can-
not assume similar scale at each end of the queue.

6.2. Dynamic scaling

If fast scaling out is important, hot-standbys may be
required if a 10 min delay is not acceptable, although
this option would incur a higher economic cost. Dy-
namically adding VMs to a deployment at runtime is a
useful feature of Azure enabling dynamic load match-
ing, but you should be aware that it often takes on the
order of 10 min from the time of the request until the
instance is integrated into the deployment. Addition-
ally, web roles took, on average, 60 s longer to come
up for small instance types, and about 30 s longer for
medium to extra large instance sizes.

6.3. Application development and deployment

Build a robust logging and monitoring infrastruc-
ture early in the project. During the development and
deployment of ModisAzure we learned several impor-
tant lessons. Because of the variable and black-box na-
ture of the platform, extensive monitoring and logging
facilities are necessary to not only diagnose problems
but also to determine how the application is behav-
ing. Windows Azure presents particular difficulties be-
cause of its platform-as-a-service nature, which pro-
hibits operating-system level access to the virtual ma-
chine as well as the non-durable nature of the local VM
instance storage. Building a robust logging and mon-
itoring infrastructure early in the project is advanta-
geous because errors that did not occur at lower scale
will begin to become common as scale increases. This
is further enhanced by the ease and speed at which
scaling can occur for a cloud application as opposed
to a traditionally hosted application that would require
additional hardware purchases for scaling and thus
give developers more time to prepare for the problems
inherent with high-scale.

7. Conclusion

In this paper we have presented the results from ex-
periments we have conducted on Windows Azure. We
have shown an exhaustive performance evaluation of
each of the integral parts of the platform: virtual ma-
chines and storage services as well as shown the chal-
lenges in both performance and reliability faced by a
real eScience application. Based on these experiments,
we also provide our performance-related recommenda-
tions for users of the Windows Azure platform. These
cloud services are the building blocks for cloud ap-
plications, and are usually presented to the user as a
black-box, with no performance guarantees. Our main
focus is to provide the community with performance
information and concrete recommendations that help
the design and development of scalable cloud applica-
tions.
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