
Scientific Programming 18 (2010) 193–201 193
DOI 10.3233/SPR-2010-0309
IOS Press

Acceleration of a CFD code with a GPU

Dennis C. Jespersen
NASA/Ames Research Center, Moffett Field, CA, USA
Tel.: +1 650 604 6742; Fax: +1 650 604 4377; E-mail: Dennis.Jespersen@nasa.gov

Abstract. The Computational Fluid Dynamics code OVERFLOW includes as one of its solver options an algorithm which is a
fairly small piece of code but which accounts for a significant portion of the total computational time. This paper studies some
of the issues in accelerating this piece of code by using a Graphics Processing Unit (GPU). The algorithm needs to be modified
to be suitable for a GPU and attention needs to be given to 64-bit and 32-bit arithmetic. Interestingly, the work done for the GPU
produced ideas for accelerating the CPU code and led to significant speedup on the CPU.

Keywords: GPU, CUDA, acceleration, OVERFLOW code

1. Introduction

Computational Fluid Dynamics (CFD) has a his-
tory of seeking and requiring ever higher computa-
tional performance. This quest has in the past partly
been satisfied by faster CPU clock speeds. The era
of increasing clock rates has reached a plateau, due
mainly to heat dissipation constraints. A boost in com-
putational performance without increasing clock speed
can be supplied by parallelism. This parallelism can
come in the form of task parallelism, data parallelism
or perhaps a combination of the two. Common current
paradigms for implementing parallelism are explicit
message-passing with MPI [6] for either distributed or
shared memory systems and OpenMP [7] for shared
memory systems. A hybrid paradigm is also possible,
using OpenMP within multiprocessor nodes and MPI
for inter-node communication.

A Graphics Processing Unit (GPU) is a processor
specialized for graphics rendering. The development of
GPUs has been mostly driven by the demand for fast
high-quality graphics images for computer games. The
large market for computer games provided resources
for rapid development of more powerful GPUs. The
nature of the graphical display task, highly parallel ren-
dering of many pixels, drove the development of paral-
lel hardware with high computational capability.

GPUs were originally programmed in specialized
graphics programming languages. A few researchers
realized that some non-graphical computing problems
could be expressed as graphical programming tasks,
allowing the power of the GPU to be used in a non-
graphical environment. Using a GPU in this manner

was difficult, with a steep learning curve. In order
to make GPU programming more accessible, several
projects were initiated to develop programming lan-
guages that could exploit the power of GPUs. Some ef-
forts in this area are Brook and BrookGPU [10] and
CUDA [5]. A standardization effort is OpenCL (Open
Computing Language) [9].

The enhanced accessibility of GPUs has led to much
recent work in the area of general-purpose comput-
ing on GPUs. A GPU can produce a very high flop/s
(floating-point operations per second) rate if an algo-
rithm is well suited for the device. There have been
several studies illustrating the acceleration of scientific
computing codes that is possible by using GPUs [2,13,
17]. In this paper we study the issues in accelerating a
well-known CFD code, OVERFLOW, on a GPU.

The viewpoint taken here is that the GPU acts as a
co-processor to the CPU. The contemporary CPU typ-
ically is a 4-core processor. Serial or modestly parallel
(less than 10 threads, say) parts of a code should be ex-
ecuted on the CPU while massively parallel parts of a
code should be executed on the GPU. The paradigm is:
prepare data on the CPU, transfer to the GPU, execute
on the GPU and transfer results back from the GPU
to the CPU. Note that this paradigm implies that per-
formance measures and timing comparisons between a
pure CPU and a CPU + GPU combination should in-
clude the time required for data transfer to and from
the GPU.

A characteristic of GPUs inherited from their use
strictly as graphics rendering engines is the weak sup-
port for 64-bit arithmetic. At the time this work was
performed, 64-bit arithmetic was an order of magni-

1058-9244/10/$27.50 © 2010 – IOS Press and the authors. All rights reserved

194 D.C. Jespersen / Acceleration of a CFD code with a GPU

tude slower than 32-bit arithmetic. This was a strong
factor impelling the examination of judicious use of
32-bit arithmetic.

2. GPU environment

For our purposes here the key issues of GPUs are
massive parallelism, ideally with thousands of threads,
32-bit floating-point arithmetic, and the overhead of
data traffic between the CPU and GPU. For a GPU to
successfully accelerate a code segment the code must
be amenable to large-scale parallelism, must contain
enough computational work to amortize the cost of
transferring data from the CPU to the GPU and trans-
ferring results back from the GPU and should toler-
ate 32-bit floating-point arithmetic. (Recent GPU hard-
ware supports some 64-bit arithmetic but 32-bit arith-
metic is significantly faster.) We will see that the SSOR
algorithm in OVERFLOW is not well suited to a GPU,
but that a Jacobi version of the algorithm might be suit-
able for a GPU.

This work used CUDA (Compute Unified Device
Architecture) to support the use of the GPU. CUDA,
developed by NVIDIA Corp., is a combination of
hardware and software that enables several models of
NVIDIA graphics cards to be used as general-purpose
processors. The “device” (GPU) is physically a set of
multiprocessors, say on the order of 20 multiproces-
sors, each of which is itself a set of cores, perhaps
8–32 cores, giving a total of a few hundred cores.
Logically, the device is organized as a one- or two-
dimensional array of blocks and each block is struc-
tured as a one-, two- or three-dimensional array of
threads. All the threads in a specific block execute in
a specific multiprocessor. All threads execute the same
code, each thread operating on its own data, so this
is a data-parallel programming paradigm. There is a
global memory accessible to all threads. In addition,
threads in a given multiprocessor can cooperate via a
“shared memory” (effectively a cache). Threads in a
given multiprocessor can synchronize with one another
but there is no synchronization across multiprocessors.
The shared memory is small and accesses to it have
low latency. The global memory is large but with high
latency. One can increase bandwidth to global mem-
ory by properly grouping (“coalescing”) memory re-
quests. One hopes that global memory latency can be
covered by using a large number of threads and switch-
ing quickly from one thread to another if a thread is
blocked waiting for data.

The actual programming language for the CUDA ar-
chitecture is C with a small set of extensions. These ex-
tensions consist of keywords to describe where a func-
tion executes and where data reside. In addition each
thread has predefined variables that describe its loca-
tion in its batch and the location of its batch in the
grid of multiprocessors. Finally, there is syntax denot-
ing the execution of a “kernel” (function which exe-
cutes on the device) and the configuration of the device
for the kernel. So a CUDA program consists of C code
interspersed with calls to one or more kernel functions.
There is library support for device initialization, trans-
fer of data to and from the device and other miscella-
neous activities. An example of a CUDA program is
given in the Appendix.

Attractive features of CUDA are the gentle learning
curve, wide availability of CUDA-capable devices, and
large and active user community. A potential weakness
is the tie to a single vendor, resulting in lack of porta-
bility. The OpenCL project [9] is an open standard for
parallel programming of heterogenous systems. When
this work was begun the OpenCL standard had not
been finalized.

A significant feature of CUDA programming, which
might be seen as either a strength or weakness, is the
necessity for the programmer to specify the placement
of data in global and shared memory, which effec-
tively amounts to a requirement to explicitly manage
the cache. This goes along with the necessity to explic-
itly define the layout of the GPU (number of blocks,
number of threads) and gives CUDA programming a
distinct feeling of writing at a low level, close to the
hardware. The mapping of a numerical algorithm onto
the GPU can often be defined in a variety of ways,
each of which might give different performance, and
the only way to evaluate the performance of the various
alternatives is by actual coding and testing.

3. OVERFLOW code

The OVERFLOW code [4,11,12,16] is intended for
the solution of the Reynolds-averaged Navier–Stokes
equations with complex geometries. The code uses fi-
nite differences on logically Cartesian meshes. The
meshes are body-fitted and geometric complexity is
handled by allowing the meshes to arbitrarily overlap
one another.

OVERFLOW uses implicit time-stepping and can be
run in time-accurate or steady-state mode. Implicit
time-stepping is used because implicit methods tend to

D.C. Jespersen / Acceleration of a CFD code with a GPU 195

mitigate severe stability limits on the size of the time
step that arise for explicit time-stepping methods on
highly-stretched grids; such grids are common for vis-
cous flow problems at high Reynolds numbers. A con-
sequence of implicit time-stepping is that some method
is needed to (approximately) solve the large system of
equations that arises when advancing from one time
level to the next.

The OVERFLOW user needs to specify physical flow
inputs, such as Mach number and Reynolds number,
and boundary conditions which typically define solid
walls and inflow or outflow regions. Along with these
physics-type inputs there are inputs which choose par-
ticular numerical algorithms and specify parameters
for them.

The basic equation of fluid motion solved by
OVERFLOW is of the form:

∂Q/∂t + L(Q) = f (Q), (1)

where Q is the vector of flow variables, L(Q) denotes
all the spatial differencing terms, and f (Q) denotes
terms from boundary conditions and possible source
terms.

Equation (1) is discretized and written in “delta
form” [1,15]:

A(ΔQn+1) = R(Qn), (2)

where A = A(Qn) is a very large sparse matrix which
is not explicitly constructed, ΔQn+1 = Qn+1 − Qn is
the vector of unknowns, and R(Qn) involves the dis-
cretization of the L(Q) and f (Q) terms at time level n.
The user of OVERFLOW must choose among several
possible discretizations (e.g., central differencing, To-
tal Variation Diminishing, Roe upwind). Each of these
choices typically requires further user specification of
numerical parameters such as dissipation parameters or
type of flux limiter and parameters for the limiter. Fi-
nally, the user needs to decide which implicit algorithm
to use: some choices are approximate factored block
tridiagonal, approximate factored scalar pentadiagonal
or LU-SGS (approximate LU factorization with Sym-
metric Gauss–Seidel iteration). Over the years the code
evolved and expanded to incorporate six basic choices
for the implicit part of the algorithm.

4. The SSOR algorithm in OVERFLOW

In an attempt to ease the user’s burdensome task of
selecting algorithm options and choosing parameters

which may change for each class of flow problem, re-
cently another option was added for the implicit part of
OVERFLOW, with the hope that it would be widely ap-
plicable and would be almost universally usable [14].
In the reference, this algorithm is referred to as an
SSOR algorithm, but it is strictly speaking a mix of an
SSOR algorithm and a Jacobi algorithm, so it might be
called a “quasi-SSOR” algorithm.

The key step of the algorithm is as follows. At each
grid point with index (j, k, l) one computes a residual
Rjkl and six 5 × 5 matrices A+, B+, C+, A−, B−,
C−; these matrices depend on the flow variables at the
neighboring grid points and are fixed during the SSOR
iterations. Then, with iteration stage denoted by a su-
perscript n and with a relaxation parameter ω, relax-
ation steps are of the form:

ΔQn+1
jkl = (1 − ω)ΔQn

jkl

+ ω
(
Rjkl − A+

jklΔQn
j−1,k,l

− B+
jklΔQn+1

j,k−1,l − C+
jklΔQn+1

j,k,l−1

− A−
jklΔQn

j+1,k,l − B−
jklΔQn

j,k+1,l

− C−
jklΔQn

j,k,l+1

)
(3)

for a forward sweep (assuming the 5-vectors ΔQn+1
j,k−1,l

and ΔQn+1
j,k,l−1 have been computed, and updating all

ΔQjkl as soon as a full line of j values has been com-
puted) and a step of the form:

ΔQn+1
jkl = (1 − ω)ΔQn

jkl

+ ω
(
Rjkl − A+

jklΔQn
j−1,k,l

− B+
jklΔQn

j,k−1,l − C+
jklΔQn

j,k,l−1

− A−
jklΔQn

j+1,k,l − B−
jklΔQn+1

j,k+1,l

− C−
jklΔQn+1

j,k,l+1

)
(4)

for a backward sweep (again assuming ΔQn+1
j,k+1,l and

ΔQn+1
j,k,l+1 have been computed). The forward/back-

ward pair is then iterated. This algorithm is not strictly
speaking an SSOR algorithm; it is Jacobi in j and
SSOR in k and l. We will refer to it as SSOR for sim-
plicity. This algorithm needs the values of ΔQ at the six
nearest spatial neighbors of grid point (j, k, l), some of
them at iteration level n and some of them at iteration
level n + 1.

196 D.C. Jespersen / Acceleration of a CFD code with a GPU

The SSOR algorithm is a modest-sized subroutine
but testing shows it may consume 80% of the total run-
time of the code, so it is a computational hot spot. The
modest size of the subroutine and the large fraction of
total time consumed by the algorithm make using a
GPU as a co-processor to accelerate the code an attrac-
tive idea.

Unfortunately, the algorithm as it stands is not suited
to a GPU due to the dependencies of the iteration,
namely ΔQn+1 appears on the right-hand side of
Eqs (3) and (4). An algorithm that would be suited to a
GPU would be a Jacobi algorithm with relaxation steps
of the form:

ΔQn+1
jkl = (1 − ω)ΔQn

jkl

+ ω
(
Rjkl − A+

jklΔQn
j−1,k,l

− B+
jklΔQn

j,k−1,l − C+
jklΔQn

j,k,l−1

− A−
jklΔQn

j+1,k,l − B−
jklΔQn

j,k+1,l

− C−
jklΔQn

j,k,l+1

)
. (5)

Here we could envision assigning a thread of compu-
tation to each grid point and the threads could com-

pute independently of one another because there are no
ΔQn+1 terms on the right-hand side of (5).

It is important to realize that the Jacobi algorithm
might be less robust or might converge slower than the
original SSOR algorithm. Fully discussing this would
take us too far afield, though we will show some con-
vergence comparisons of Jacobi and SSOR.

The work presented here proceeded in several
stages:

1. Implement a Jacobi algorithm on the CPU using
64-bit arithmetic; compare performance and con-
vergence/stability of Jacobi and SSOR.

2. Implement a Jacobi algorithm on the CPU using
32-bit arithmetic; compare performance and con-
vergence/stability of 64-bit and 32-bit Jacobi.

3. Implement a Jacobi algorithm on the GPU; com-
pare performance of the GPU algorithm with the
32-bit CPU algorithm.

5. Implementation and results

The first stage of the work, implementing the Ja-
cobi algorithm on the CPU using 64-bit arithmetic, was
straightforward. We compare in Fig. 1 convergence for
the SSOR and Jacobi algorithms on two test cases. The

Fig. 1. SSOR and Jacobi convergence, 64-bit arithmetic.

D.C. Jespersen / Acceleration of a CFD code with a GPU 197

first test case is turbulent flow over a flat plate with a
121 × 41 × 81 grid. The second flow is turbulent flow
in a curved duct with a 166 × 31 × 49 grid. Both cases
show, unsurprisingly, that asymptotic convergence of
the Jacobi algorithm is slightly slower than that of the
SSOR algorithm. Both cases reach machine zero (so-
lution converged to 64-bit accuracy). The SSOR algo-
rithm is slightly faster in terms of wallclock seconds
per time step, because the SSOR algorithm updates ΔQ
as the computation proceeds whereas the Jacobi algo-
rithm uses an extra array to store the changes to ΔQ
and then sweeps through the full ΔQ array to form the
new values of ΔQ.

Implementing the Jacobi algorithm in 32-bit arith-
metic for the CPU was tedious but straightforward.
The implementation included making 32-bit versions
of all the subroutines dealing with the computation of
the left-hand side matrices (about 50 subroutines) and
copying, on the front-end, the flow variables and met-
ric terms to 32-bit quantities; in all, 28 words per grid
point were copied from 64-bit to 32-bit representation.
In Fig. 2 we show convergence for the Jacobi algorithm
in 64-bit arithmetic and in 32-bit arithmetic for the two
test cases. To plotting accuracy there is no difference in
convergence between the 32-bit and 64-bit Jacobi al-

gorithms. This verifies for these cases that full 64-bit
solution accuracy can be obtained with a 32-bit Jacobi
algorithm.

Finally, the Jacobi algorithm was implemented on
the GPU. The strategy was to compute all the matri-
ces A+, etc., on the CPU and transfer them to the
GPU. The Jacobi algorithm itself, just one subroutine,
was hand-translated into CUDA code. This strategy
avoided a long error-prone translation of many Fortran
subroutines into CUDA, but this strategy may be sub-
optimal as the matrices themselves could be computed
on the GPU. We found no difference between conver-
gence of the 32-bit Jacobi algorithm on the CPU and on
the GPU, so the slight differences in details of floating-
point arithmetic between the CPU and the GPU have
no impact for these cases.

Now we consider performance of the code. The met-
ric we use is wallclock seconds per step, so smaller
is better. The GPU algorithm was coded in several
slightly different ways, varying in the data layout on
the GPU and whether or not shared memory on the
GPU was used. Data shown are for the best-performing
GPU variant.

The work here was done on two platforms. The first
platform was a workstation equipped with a 2.1 GHz

Fig. 2. Jacobi convergence, 64-bit and 32-bit arithmetic.

198 D.C. Jespersen / Acceleration of a CFD code with a GPU

Table 1

Implicit solver times (lower is better)

Algorithm G machine T machine

Plate Duct Plate Duct

SSOR CPU (s/step) 3.51 2.14 3.83 2.33

Jacobi GPU (s/step) 1.43 0.91 1.35 0.76

GPU/CPU ratio 0.41 0.43 0.35 0.33

Table 2

Total time for CPU and GPU (lower is better)

Algorithm G machine T machine

Plate Duct Plate Duct

SSOR CPU (s/step) 6.96 4.21 7.93 4.85

Jacobi GPU (s/step) 4.41 2.66 5.04 3.12

GPU/CPU ratio 0.63 0.63 0.64 0.64

quad-core AMD Opteron 2352 processor. The host
compiler system was the Portland Group compiler
suite version 8. The GPU card was a 1.35 GHz
NVIDIA GeForce 8800 GTX with 128 cores and
768 MB of global memory. The connection between
CPU and GPU was a PCI Express 16X bus. The pro-
gramming interface was CUDA version 1.0. This plat-
form will be referred to as the “G machine”.

The second platform was a workstation equipped
with two 2.8 GHz dual-core AMD Opteron 2220
processors. The GPU card was a 1.30 GHz NVIDIA
Tesla C1060 with 240 cores and 4 GB of global mem-
ory. For this machine, the source code was cross-
compiled on the first machine using the Portland Group
compiler. This platform will be referred to as the
“T machine”.

Tables 1 and 2 give performance data for the two test
cases on the two machines. The implicit solver times in
Table 1 (which include a small amount of work on the
CPU as well as the actual relaxation algorithm) show a
speedup on the GPU by about a factor of between 2.5
and 3. The reason the T machine times are only slightly
better than the G machine times is that the times shown
here include some CPU work and for some unknown
reason the CPU routines involved ran faster on a sin-
gle CPU of the G machine than on a single CPU of the
T machine. The wallclock time for the full code, which
is the quantity of ultimate interest to the code user, de-
creases by about 40%, as seen in Table 2. Again, a sin-
gle CPU of the G machine is overall faster than a single
CPU of the T machine.

Table 3 gives GPU total time (kernel plus time for
data transfer) and GPU kernel time for these cases. For
the 8800 GTX device, the kernel which gave the best

Table 3

GPU kernel and data transfer times, s/step (lower is better)

8800 GTX Tesla C1060

Plate Duct Plate Duct

GPU total 0.904 0.576 0.314 0.193

GPU kernel only 0.784 0.499 0.142 0.082

Data transfer 0.120 0.077 0.172 0.111

overall code performance was a kernel which mapped
each grid point to a different thread on the GPU (thanks
to Jonathan Cohen of NVIDIA for showing a nice
way to do this) and which used some shared mem-
ory. For the Tesla device, the kernel which gave the
best overall code performance was a kernel involving a
two-dimensional mapping of the first two grid dimen-
sions onto the device, a loop in the 3rd dimension and
16 threads per grid point with the 5 × 5 matrices on
the CPU stored in an array of size 32. For both the
Tesla and the 8800 GTX devices there are data lay-
outs which give better performance of the GPU consid-
ered in isolation, but these layouts involve data motion
on the CPU and this data motion loses more wallclock
time than is gained by the faster kernel. From this ta-
ble it can be seen that the time for data transfer to and
from the GPU is relatively small for the 8800 GTX but
is significant (more than the time for the kernel itself)
for the C1060.

6. Impact of GPU work on CPU code

These results are encouraging. It seems that the Ja-
cobi GPU algorithm is significantly faster than the
SSOR CPU algorithm, since Table 2 shows a speedup
for the whole code of about 40%. This is a significant
speedup considering that the only code being executed
on the GPU is a small piece of the implicit side and
there are no changes to the flow explicit side or to the
turbulence model.

However, further reflection indicates that more per-
formance can be gained from the CPU. Specifical-
ly, the SSOR CPU algorithm could be changed to
use 32-bit arithmetic. Experience has shown that
OVERFLOW is a bandwidth-limited code, so use of
32-bit arithmetic (where applicable) should signifi-
cantly speed up the code due to the effective doubling
of bandwidth. This motivated the implementation of
a 32-bit SSOR algorithm on the CPU. Convergence
for this algorithm, for the plate and duct test cases,

D.C. Jespersen / Acceleration of a CFD code with a GPU 199

Table 4

SSOR performance on CPU, 64-bit and 32-bit (lower is better)

Algorithm G machine T machine

Plate Duct Plate Duct

SSOR-64 CPU (s/step) 6.96 4.21 7.93 4.85

SSOR-32 CPU (s/step) 5.55 3.34 6.30 3.87

SSOR-32/SSOR-64 ratio 0.80 0.79 0.79 0.80

Table 5

SSOR and OpenMP performance on CPU, s/step (lower is better)

Algorithm OpenMP
threads

G machine T machine

Plate Duct Plate Duct

SSOR-64 1 6.96 4.21 7.93 4.85

SSOR-64 2 5.53 3.27 6.76 4.11

SSOR-64 4 4.60 2.80 5.94 3.60

Revised SSOR-64 1 7.79 4.70 8.41 5.14

Revised SSOR-64 2 4.79 2.85 4.76 2.96

Revised SSOR-64 4 3.36 2.04 3.27 1.99

SSOR-32 1 5.55 3.34 6.30 3.87

SSOR-32 2 4.23 2.55 4.72 2.89

SSOR-32 4 3.45 2.11 3.92 2.41

Revised SSOR-32 1 6.07 3.65 6.92 4.20

Revised SSOR-32 2 3.63 2.18 3.79 2.37

Revised SSOR-32 4 2.38 1.47 2.50 1.52

was identical to convergence for the 64-bit SSOR al-
gorithm. Single-core performance for the 32-bit SSOR
algorithm is compared with performance for the 64-bit
SSOR algorithm in Table 4. Total wallclock time is re-
duced by 20% by the use of 32-bit arithmetic; this is
a significant speedup for such an unsophisticated code
modification.

Even more performance can be gained on the
CPU by taking advantage of multiple CPU cores.
OVERFLOW has long had OpenMP capability, thereby
using multiple CPU cores, but the SSOR algorithm as
originally coded in OVERFLOW was not amenable to
OpenMP parallelism (as mentioned in Section 4, the
original coding was Jacobi in the j index and Gauss–
Seidel in the k and l indices, while the OpenMP par-
allelism in OVERFLOW is parallelism in l). Revising
the algorithm to be Jacobi in l and Gauss–Seidel in j
and k allowed the use of OpenMP for the SSOR algo-
rithm. The revised SSOR algorithm had the same con-
vergence characteristics as the Jacobi algorithm for the
duct and plate test cases. The revised algorithm can
also be coded in 64-bit or 32-bit arithmetic. We show
in Table 5 performance for these algorithms and var-

Table 6

Jacobi on GPU + OpenMP on CPU, performance (lower is better)

No. of
OpenMP
threads
on CPU

8800 GTX Tesla C1060

Plate Duct Plate Duct

(s/step) (s/step) (s/step) (s/step)

1 4.39 2.66 4.58 2.85

2 3.10 1.78 2.92 1.83

4 2.32 1.42 1.90 1.18

ious numbers of OpenMP threads; these are all CPU
performance numbers, the GPU is not involved here,
and this is performance for the full code.

For a single OpenMP thread the revised SSOR algo-
rithm is slower than the original, due to poorer cache
utilization, but for 2 or 4 OpenMP threads the revised
algorithm is faster than the original.

Finally, Table 6 gives performance data for the two
platforms using the Jacobi algorithm on the GPU and
OpenMP parallelism on the CPU. To compare the code
with and without GPU but otherwise using all the
computational resources, the best numbers in Table 5
should be compared with the best numbers in Table 6.
The result is that for the workstation with the 8800
GTX GPU, the best time with GPU is just a few per-
cent faster than the best time without GPU, whereas
for the workstation with the Tesla C1060 GPU, the best
time with GPU is about 25% better than the best time
without GPU. The ultimate reason for the better per-
formance of the Tesla C1060 on this code is the relaxed
alignment restrictions for coalesced loads as compared
to the 8800 GTX.

Even this is not the end of the story, as there are
further opportunities for moving computation from the
CPU to the GPU. For example, the matrices can be
computed in parallel, so this part of the computation,
which is now executed by the CPU, can be moved to
the GPU. These and other optimizations are currently
under investigation.

7. Conclusions

The work presented in this paper has shown a
speedup by a factor of between 2.5 and 3 for the SSOR
solver in OVERFLOW, and a total wallclock time de-
crease of about 40%, for a GPU as compared to a sin-
gle CPU. The GPU work gave ideas and motivation for
accelerating the code on multi-core CPUs, so that cur-
rently the CPU + GPU code is about 25% faster than
the multi-core CPU code.

This study has until now focused on obtaining im-
proved performance with a one CPU + one GPU com-

200 D.C. Jespersen / Acceleration of a CFD code with a GPU

bination. This is the first step to enhancing OVERFLOW

performance via GPUs on realistic problems. How-
ever, for almost all realistic cases, OVERFLOW is
used with MPI (Message-Passing Interface) and many
CPUs. The work here extends naturally to any clus-
ter with a number of multi-core nodes, each node also
containing a GPU. OVERFLOW could be used in hy-
brid mode, with each node corresponding to an MPI
process, and each MPI process would have multiple
OpenMP threads. The hyperwall-2 at NASA/Ames Re-
search Center [8] is such a cluster and the version
of OVERFLOW with GPU capability has run on the
hyperwall-2 as a proof of concept.

It is worthwhile to note that the work done here
has affected the OVERFLOW code. Official release ver-
sion 2.1ac of OVERFLOW completely abandoned the
64-bit version of the SSOR algorithm in favor of the
32-bit version, and the revised SSOR algorithm (32-bit
arithmetic only) is available as an option. The speedups
due to 32-bit arithmetic were so compelling that 64-bit
arithmetic is no longer even an option in these portions
of the code. This may give food for thought when con-
sidering the need for 64-bit arithmetic on GPUs.

Acknowledgements

This work was partially supported by the Fundamen-
tal Aeronautics Program of NASA’s Aeronautics Re-
search Mission Directorate. NVIDIA Corporation do-
nated the Tesla C1060 hardware.

Appendix

As an example of a CUDA program, consider the
simple vector addition z = x + y where x, y and z are
vectors of dimension n. In standard C, this might be
written as:

void s_add_vecs(int n, float *x,
float *y, float *z) {

int i;
for (i=0; i<n; i++)

z[i] = x[i] + y[i];
}

and called via

void serial_add_vecs() {
// define scalar n; allocate and
// initialize arrays x, y, z
s_add_vecs(n, x, y, z);

}

This could be written in CUDA as follows:

__global__
void p_add_vecs(int n, float *x,

float *y, float *z) {
int myi = blockIdx.x*blockDim.x

+ threadIdx.x;
if (myi < n) z[myi] = x[myi] + y[myi];

}

with calling code

void parallel_add_vecs {
// define scalar n; allocate and
// initialize arrays x, y, z
// transfer arrays x, y, z
// from CPU to GPU
int nThreads = 256;
int nBlocks = ceil(n/nThreads);
p_add_vecs <<<nBlocks,nThreads>>>

(n, x, y, z);
}

The arguments between the triple angle brackets de-
fine the execution configuration of the function call.
The first argument is a structure specifying the layout
of the grid of blocks; in this simple case an integer
is silently promoted to a structure specifying a one-
dimensional layout. The second argument is a struc-
ture specifying the thread layout within each block;
again an integer is a shortcut for a one-dimensional lay-
out. So if n = 100,000 there would be 391 blocks of
256 threads each. The __global__ keyword defines
p_add_vecs as a function which will execute on the
GPU. The location of the variables x, y, z is not
specified, so by default they reside in the global mem-
ory of the GPU. The structures blockIdx, block-
Dim and threadIdx are automatically defined when
the kernel function is called and serve to define the log-
ical organization of the device. Given these structures,
each thread computes an index myi into the global ar-
rays, and if that index is less than the dimension of the
arrays, the thread does work. With n = 100,000 there
are 100,096 threads and the last 96 threads do no work,
but this is much less than 1% of the total number of
threads. The number 256 of threads here is just one
possibility. Each particular model of NVIDIA card has
defined upper limits on the grid and block dimensions
and the number of threads per block. In addition, each
thread requires some hardware resources, so for any
given kernel there may be further restrictions. Mean-
while, each block should have “many” threads for ef-
fective parallel use of the available resources. Opti-
mal choice of the number of threads typically requires
some experimentation for each particular problem. In
our CFD application, the best choice for number of

D.C. Jespersen / Acceleration of a CFD code with a GPU 201

threads and blocks might depend on the dimensions of
the CFD spatial grid.

References

[1] R. Beam and R.F. Warming, An implicit finite-difference al-
gorithm for hyperbolic systems in conservation law form,
J. Comp. Physics 22(1) (1976), 87–110.

[2] T. Brandvik and G. Pullan, Acceleration of a 3D Euler solver
using commodity graphics hardware, in: AIAA 46th Aerospace
Sciences Meeting, Reno, NV, USA, 2008, paper no. AIAA-
2008-607.

[3] I. Buck, T. Foley, D. Horn, J. Suferman, K. Fatahalian,
M. Houston and P. Hanrahan, Brook for GPUs: stream com-
puting on graphics hardware, in: SIGGRAPH 2004, 2004.

[4] P.G. Buning, I.T. Chiu, S. Obayashi, Y.M. Rizk and J.L. Steger,
Numerical simulation of the integrated space shuttle vehicle
in ascent, in: AIAA Atmospheric Flight Mechanics Conference,
1988, paper no. 88-4359-CP.

[5] http://www.nvidia.com/object/cuda_home.html.
[6] http://www-unix.mcs.anl.gov/mpi.
[7] http://www.openmp.org.
[8] http://www.nas.nasa.gov/News/Releases/2008/06-25-08.html.
[9] http://www.khronos.org/opencl.

[10] http://graphics.stanford.edu/projects/brookgpu.
[11] W. Kandula and P.G. Buning, Implementation of LU-SGS al-

gorithm and roe upwinding scheme in OVERFLOW thin-layer

Navier–Stokes code, in: AIAA 25th Fluid Dynamics Confer-
ence, Colorado Springs, CO, USA, 1994, paper no. AIAA-94-
2357.

[12] R.L. Meakin, Automatic off-body grid generation for domains
of arbitrary size, in: AIAA 15th Computational Fluid Dynamics
Conference, Anaheim, CA, USA, 2001, paper no. AIAA-2001-
2536.

[13] J. Michalakes and M. Vachharajani, GPU acceleration of nu-
merical weather prediction, Parallel Processing Letters 18(4)
(2008), 531–548.

[14] R.H. Nichols, R.W. Tramel and P.G. Buning, Solver and tur-
bulence model upgrades to OVERFLOW 2 for unsteady and
high-speed applications, in: AIAA 24th Applied Aerodynamics
Conference, San Francisco, CA, USA, 2006, paper no. AIAA-
2006-2824.

[15] T.H. Pulliam and D.S. Chaussee, A diagonalized form of an
implicit approximate factorization algorithm, J. Comp. Phys.
39(2) (1981), 347–363.

[16] K.J. Renze, P.G. Buning and R.G. Rajagopalan, A comparative
study of turbulence models for overset grids, in: AIAA 30th
Aerospace Sciences Meeting, Reno, NV, USA, 1992, paper no.
AIAA-92-0437.

[17] J.C. Thibault and I. Senocak, CUDA implementation of a
Navier–Stokes solver on multi-GPU desktop platforms for in-
compressible flows, in: AIAA 47th Aerospace Sciences Meet-
ing, Orlando, FL, USA, 2009, paper no. AIAA-2009-758.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

