
Scientific Programming 18 (2010) 1–33 1
DOI 10.3233/SPR-2009-0296
IOS Press

State-of-the-art in heterogeneous computing

Andre R. Brodtkorb a,∗, Christopher Dyken a, Trond R. Hagen a, Jon M. Hjelmervik a and
Olaf O. Storaasli b

a SINTEF ICT, Department of Applied Mathematics, Blindern, Oslo, Norway
E-mails: {Andre.Brodtkorb, Christopher.Dyken, Trond.R.Hagen, Jon.M.Hjelmervik}@sintef.no
b Oak Ridge National Laboratory, Future Technologies Group, Oak Ridge, TN, USA
E-mail: Olaf@ornl.gov

Abstract. Node level heterogeneous architectures have become attractive during the last decade for several reasons: compared
to traditional symmetric CPUs, they offer high peak performance and are energy and/or cost efficient. With the increase of
fine-grained parallelism in high-performance computing, as well as the introduction of parallelism in workstations, there is
an acute need for a good overview and understanding of these architectures. We give an overview of the state-of-the-art in
heterogeneous computing, focusing on three commonly found architectures: the Cell Broadband Engine Architecture, graphics
processing units (GPUs), and field programmable gate arrays (FPGAs). We present a review of hardware, available software tools,
and an overview of state-of-the-art techniques and algorithms. Furthermore, we present a qualitative and quantitative comparison
of the architectures, and give our view on the future of heterogeneous computing.

Keywords: Power-efficient architectures, parallel computer architecture, stream or vector architectures, energy and power
consumption, microprocessor performance

1. Introduction

The goal of this article is to provide an overview of
node-level heterogeneous computing, including hard-
ware, software tools and state-of-the-art algorithms.
Heterogeneous computing refers to the use of differ-
ent processing cores to maximize performance, and
we focus on the Cell Broadband Engine Architecture
(CBEA) and CPUs in combination with either graph-
ics processing units (GPUs) or field programmable
gate arrays (FPGAs). These new architectures break
with the traditional evolutionary processor design path,
and pose new challenges and opportunities in high-
performance computing.

Processor design has always been a rapidly evolv-
ing research field. The first generation of digital com-
puters were designed using analog vacuum tubes or
relays and complex wiring, such as the Atanasoff–
Berry Computer [69]. The second generation came
with the digital transistor, invented in 1947 by Bardeen,
Brattain and Shockley, for which they were awarded
the 1956 Nobel prize in physics. The transistor dra-
matically reduced space requirements and increased

*Corresponding author: André R. Brodtkorb, SINTEF ICT, De-
partment of Applied Mathematics, P.O. Box 124, Blindern, N-0314
Oslo, Norway. E-mail: Andre.Brodtkorb@sintef.no.

the speed of logic gates, making computers smaller
and more power efficient. Noyce and Kilby indepen-
dently invented the integrated circuit in 1958, leading
to further reductions in power and space required for
third generation computers in the early 1960-ies. The
integrated circuit rapidly led to the invention of the mi-
croprocessor by Intel engineers Hoff, Faggin and Ma-
zor [15] in 1968, the TMS1802NC from Texas Instru-
ments [30], and the Central Air Data Computer CPU
by Holt and Geller [83] working for AiResearch. The
trend to decrease space and power requirements con-
tinues even today, with smaller feature sizes with every
new production technique. As size and power con-
sumption per logic gate have been reduced, there has
been a proportional growth in computational power.
The two main contributors are the number of transis-
tors and the frequency they run at.

In 1965, Moore predicted that the number of tran-
sistors inexpensively placed on a single chip would
double every two years [122], a trend followed for
over thirty years [121]. With a state-of-the-art 32 nm
production process, it is now possible, though not in-
expensive, to place 16 billion transistors on a single
chip [102, p. 92], and there are currently no signs sug-
gesting that this exponential growth will stop.

Traditionally, the processor frequency closely fol-
lows Moore’s law. However, physical constraints have

1058-9244/10/$27.50 © 2010 – IOS Press and the authors. All rights reserved

2 A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing

stopped and even slightly reversed this exponential fre-
quency race. A key physical constraint is power den-
sity, often referred to as the power wall. Kogge et
al. [102, p. 88] state the relationship for power density
as

P = CρfV 2
dd, (1)

where P is the power density in watts per unit area,
C is the total capacitance, ρ is the transistor density,
f is the processor frequency, and Vdd is the supply
voltage. The frequency and supply voltage are related,
as higher supply voltages allow transistors to charge
and discharge more rapidly, enabling higher clock fre-
quencies. It should be noted that the formula ignores
leakage power, which typically amounts to 30–40% of
the total power consumption [102, p. 93]. The power
density in processors has already surpassed that of a
hot plate, and is approaching the physical limit of what
silicon can withstand with current cooling techniques.
Continuing to ride the frequency wave would require
new cooling techniques, for example liquid nitrogen
or hydrogen, or new materials such as carbon nan-
otubes. Unfortunately, such solutions are currently pro-
hibitively expensive.

The combination of Moore’s law and the power wall
restrains processor design. The frequency cannot be
increased with today’s technology, so performance is
primarily boosted by increased transistor count. The
most transistor-rich CPU yet, the Intel Itanium Tuk-
wila [158], uses two billion transistors. It is increas-
ingly difficult to make good use of that many transis-
tors. It is the trade-off between performance gain and
development cost that has evolved processors into their
current design, and most transistors are currently de-
voted to huge caches and complex logic for instruction
level parallelism (ILP). Increasing the cache size or in-
troducing more ILP yields too little performance gain
compared to the development costs.

The “rule of thumb” interpretation of (1) is that if
you decrease the voltage and frequency by one per-
cent, the power density is decreased by three percent,
and the performance by 0.66%. Thus, dual-core de-
signs running at 85% of the frequency with 85% of
the supply voltage offer 180% better performance than
single-core designs, yet consume approximately the
same power. Consequently, major silicon vendors now
spend their transistor budget on symmetric multi-core
processors for the mass market. This evolutionary path
might suffice for two, four and perhaps eight cores, as
users might run that many programs simultaneously.

However, in the foreseeable future we will most likely
get hundreds of cores. This is a major issue: if sil-
icon vendors and application developers cannot give
better performance to users with new hardware, the
whole hardware and software market will go from sell-
ing new products, to simply maintaining existing prod-
uct lines [14].

Todays multi-core CPUs spend most of their transis-
tors on logic and cache, with a lot of power spent on
non-computational units. Heterogeneous architectures
offer an alternative to this strategy, with traditional
multi-core architectures in combination with accelera-
tor cores. Accelerator cores are designed to maximize
performance, given a fixed power or transistor budget.
This typically implies that accelerator cores use fewer
transistors and run at lower frequencies than traditional
CPUs. Complex functionality is also sacrificed, dis-
abling their ability to run operating systems, and they
are typically managed by traditional cores to offload
resource-intensive operations.

Algorithms such as finite-state machines and other
intrinsically serial algorithms are most suitable for
single-core CPUs running at high frequencies. Em-
barrassingly parallel algorithms such as Monte Carlo
simulations, on the other hand, benefit greatly from
many accelerator cores running at a lower frequency.
Most applications consist of a mixture of such ser-
ial and parallel tasks, and will ultimately perform best
on heterogeneous architectures. The optimal type and
composition of processors, however, will vary from
one application to another [13,80].

With the recent emphasis on green computing, it be-
comes essential to use all possible resources at every
clock cycle, and the notion of green algorithms is
on the doorstep. Both academia and industry realize
that serial performance has reached its zenith, lead-
ing to an increased focus on new algorithms that can
benefit from parallel and heterogeneous architectures.
Further insight into these different architectures, and
their implications on algorithm performance, is essen-
tial in algorithm design and for application developers
to bridge the gap between peak performance and expe-
rienced performance. The field of heterogeneous com-
puting covers a large variety of architectures and ap-
plication areas, and there is currently no unified theory
to encompass it all. Fair comparisons of the architec-
tures are therefore difficult. Our goal is to give thor-
ough comparisons of the CBEA and CPUs in combi-
nation with GPUs or FPGAs, and to contribute new
insight into the future of heterogeneous computing.

We begin with an overview of traditional hardware
and software in Section 2, followed by a review of the

A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing 3

three heterogeneous architectures in Section 3. In Sec-
tion 4 we discuss programming concepts, followed by
an overview of state-of-the-art algorithms and applica-
tions in Section 5. Finally, we conclude the article in
Section 6, including our views on future trends.

2. Traditional hardware and software

In this article, we use the term chip to denote a sin-
gle physical package, and core to denote a physical
processing core. The term processor has, unfortunately,
become ambiguous, and may refer to a chip, a core or
even a virtual core. We begin by describing parallelism
and memory hierarchies, and then give an overview
of relevant CPU architectural details, and shortfalls re-
vealing why they cannot meet future performance re-
quirements. Finally, we give a short summary of pro-
gramming concepts and languages that form a basis of
knowledge for heterogeneous computing.

There are multiple layers of parallelism exposed in
modern hardware, including the following:

Multi-chip parallelism is having several physical
processor chips in a single computer sharing re-
sources, in particular system memory, through
which relatively inexpensive communication is
done.

Multi-core parallelism is similar to multi-chip par-
allelism, but the processor cores are contained
within a single chip, thus letting the cores share
resources like on-chip cache. This makes com-
munication even less expensive.

Multi-context (thread) parallelism is exposed within
a single core when it can switch between multi-
ple execution contexts with little or no overhead.
Each context requires a separate register file and
program counter in hardware.

Instruction parallelism is when a processor can exe-
cute more than one instruction in parallel, using
multiple instruction units.

Current CPUs use several of these techniques to
decrease cycles per instruction and to hide mem-
ory latency. Examples include hardware pipelining,
where multiple instructions are simultaneously in the
pipeline; vector parallelism, where an instruction is
replicated over an array of arithmetic units; and su-
perscalar processors, where multiple instructions are
dispatched to different execution units either automati-
cally in hardware, or explicitly using very long instruc-
tion words (VLIWs). Techniques that target the mem-

ory latencies are also plentiful. Out-of-order execution
reorders an instruction stream to minimize the num-
ber of processor stalls caused by latencies of data de-
pendencies. Hardware multi-threading lets a set of ex-
ecution contexts share the same execution units. The
CPU instantaneously switches between these contexts
when memory requests stall, decreasing the impact of
latencies. This should not be confused with software
threads, where the different execution contexts typi-
cally are stored in main memory. Such techniques are
usually combined, and make program execution com-
plex and hard to predict.

Traditionally, floating-point operations were con-
sidered expensive, while retrieving data was practi-
cally free. However, this conventional wisdom has
changed [13], and memory access has grown to be-
come the limiting factor in most applications. Data is
moved in or out of the processor using a limited num-
ber of pins running at a limited frequency, referred
to as the von Neumann bottleneck [17]. In addition,
there is a significant latency to initiate data transfers.
From 1980 to 1996, the gap between processor and
memory performance grew annually by 50% [142]. To
bridge this gap, large memory hierarchies have been
developed, addressing both the von Neumann bottle-
neck and memory latency by copying requested data
to faster memory. This enables rapid access to re-
cently used data, increasing performance for applica-
tions with regular memory access. In the following, we
classify a memory hierarchy according to latency:

Registers are the closest memory units in a processor
core and operate at the same speed as the com-
putational units.

Local store memory or scratchpad memory, resem-
bles a programmable cache with explicit data
movement. It has a latency of tens of clock cy-
cles.

Caches have rapidly grown in size and number. On
modern CPUs, there is typically a hierarchy of
two or three layers that operate with a latency of
tens of clock cycles. Off-chip caches, also found
in some computers, have a latency somewhere
between on-chip cache and main memory.

Main memory has a latency of hundreds of clock cy-
cles, and is limited in bandwidth by the von Neu-
mann bottleneck.

The recent end of the frequency race, mentioned in
the introduction, has caused the relative increase in la-
tency to halt, a positive side effect. The von Neumann
bottleneck, however, continues to be a burden. It can

4 A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing

be alleviated, somewhat, by using non-uniform mem-
ory access (NUMA) on shared-memory machines. On
NUMA machines, memory is physically distributed
between cores, and the access time depends on where
the memory is physically located relative to the core.
All major silicon vendors have now started produc-
ing chip-level NUMA processors, making placement
of data in the memory hierarchy important. Another
way to address the von Neumann bottleneck, is simply
to increase cache size until it exceeds the working set
size. However, increasing the cache size directly corre-
sponds to increased latency, only countered by smaller
feature sizes [48, pp. 16–17]. Hardware caches are
very efficient for programs with predictable and regu-
lar memory access, but cannot speed up programs with
random memory access. Even worse, using caches for
random access applications can degrade performance,
as the cache transfers full cache lines across the mem-
ory bus when only a single element is needed without
reuse [48, pp. 34–35, 47].

Data movement is not only a limiting factor in terms
of execution times, but also seriously affects the energy
consumption [102, pp. 225–227]. The energy to move
one bit between two levels in the memory hierarchy is
around 1–3 pico joule [102, p. 211], and energy con-
sumed by memory operations is therefore becoming a
major constraint for large clusters.

Parallel computing has a considerable history in
high-performance computing. One of the key chal-
lenges is to design efficient software development
methodologies for these architectures. The traditional
methodologies mainly focus on task-parallelism and
data-parallelism, and we emphasize that the two
methodologies are not mutually exclusive.

Task-parallel methodology roughly views the prob-
lem as a set of tasks with clearly defined communi-
cation patterns and dependencies. A representative ex-
ample is pipelining. Fortran M [61] was one of the
early approaches to task-parallelism in Fortran and
MPI [68] is another prime example of traditional task-
parallelism.

Data-parallel methodology, on the other hand,
roughly views the problem as a set of operations
carried out on arrays of data in a relatively uniform
fashion. Early approaches use a global view method-
ology, where there is one conceptual thread of execu-
tion, and parallel statements such as FORALL enable
parallelism. Fortran D [101] and Vienna Fortran [187]
are early examples of the global view methodology.
High Performance Fortran (HPF) [97,151] followed
and HPF+ [25] further introduced task-parallelism, as

well as addressing various issues in HPF. OpenMP [39]
is another example that exposes global view paral-
lelism, and supports both task- and data-parallel pro-
gramming in C, C++ and Fortran. Co-Array For-
tran [125], Unified Parallel C [173] and Titanium [79]
on the other hand, expose a Partitioned Global Address
Space (PGAS) programming model, where each con-
ceptual thread of execution has private memory in ad-
dition to memory shared among threads.

The problem of extending C or Fortran is that mod-
ern programming language features, such as object
orientation, possibilities for generic programming and
garbage collection, are missing. However, there are ex-
amples of parallel programming languages with these
features. Titanium [79] is based on Java without dy-
namic threads, Chapel [38] exposes object orientation
and generic programming techniques, and X10 [150]
integrates reiterated concepts for parallel program-
ming alongside modern programming language fea-
tures. These traditional and modern languages form the
basis for new languages, where existing ideas, for ex-
ample, from the glory days of vector machines, are
brought back to life for heterogeneous architectures.

3. Heterogeneous architectures

The introduction described the current tendency to
increase performance by parallelism instead of clock
frequency. Our focus is on parallelism within a sin-
gle node, where instruction-level parallelism is nearly
fully exploited [77, pp. 154–192]. This means that
increased performance must come from multi-chip,
multi-core or multi-context parallelism. Flynn’s taxon-
omy [58] defines four levels of parallelism in hard-
ware:

(1) single instruction single data (SISD),
(2) single instruction multiple data (SIMD),
(3) multiple instruction single data (MISD) and
(4) multiple instruction multiple data (MIMD).

In addition, two subdivisions of MIMD are single pro-
gram multiple data (SPMD), and multiple program
multiple data (MPMD). We use these terms to describe
the architectures.

The single-chip CBEA, illustrated in Fig. 1(a), con-
sists of a traditional CPU core and eight SIMD accel-
erator cores. It is a very flexible architecture, where
each core can run separate programs in MPMD fash-
ion and communicate through a fast on-chip bus. Its
main design criteria has been to maximise performance

A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing 5

Fig. 1. Schematic of heterogeneous architectures we focus on: The Cell Broadband Engine is a heterogeneous chip (a), a CPU in combination
with a GPU is a heterogeneous system (b), and a CPU in combination with an FPGA is also a heterogeneous system (c). The GPU is connected
to the CPU via the PCI express bus, and some FPGAs are socket compatible with AMD and Intel processors.

whilst consuming a minimum of power. Figure 1(b)
shows a GPU with 30 highly multi-threaded SIMD ac-
celerator cores in combination with a standard multi-
core CPU. The GPU has a vastly superior bandwidth
and computational performance, and is optimized for
running SPMD programs with little or no synchro-
nization. It is designed for high-performance graph-
ics, where throughput of data is key. Finally, Fig. 1(c)
shows an FPGA consisting of an array of logic blocks
in combination with a standard multi-core CPU. FP-
GAs can also incorporate regular CPU cores on-chip,
making it a heterogeneous chip by itself. FPGAs can be
viewed as user-defined application-specific integrated
circuits (ASICs) that are reconfigurable. They offer
fully deterministic performance and are designed for
high throughput, for example, in telecommunication
applications.

In the following, we give a more detailed overview
of the hardware of these three heterogeneous architec-
tures, and finally sum up with a discussion, compar-
ing essential properties such as required level of paral-
lelism, communication possibilities, performance and
cost.

3.1. Graphics processing unit architecture

The GPU was traditionally designed for use in com-
puter games, where 2D images of 3D triangles and
other geometric objects are rendered. Each element in
the output image is referred to as a pixel, and the GPU
uses a set of processors to compute the color of such
pixels in parallel. Recent GPUs are more general, with
rendering only as a special case. The theoretical peak
performance of GPUs is now close to three teraflops,
making them attractive for high-performance comput-
ing. However, the downside is that GPUs typically re-
side on the PCI express bus. Second generation PCI ex-
press ×16 allows 8 GB/s data transfers between CPU

and GPU memory, where 5.2 GB/s is attainable on
benchmarks.

A GPU is a symmetric multi-core processor that is
exclusively accessed and controlled by the CPU, mak-
ing the two a heterogeneous system. The GPU operates
asynchronously from the CPU, enabling concurrent ex-
ecution and memory transfer. AMD, Intel and NVIDIA
are the three major GPU vendors, where AMD and
NVIDIA dominate the high-performance gaming mar-
ket. Intel, however, has disclosed plans to release a
high-performance gaming GPU called Larrabee [155].
In the following, we give a thorough overview of the
NVIDIA GT200 [132] and AMD RV770 [6] archi-
tectures, followed by a brief description of the up-
coming Intel Larrabee. The first two are conceptually
quite similar, with highly multi-threaded SIMD cores,
whereas the Larrabee consists of fewer, yet more com-
plex, SIMD cores.

Current NVIDIA hardware is based on the GT200
architecture [132], shown in Fig. 2. The GT200 ar-
chitecture is typically programmed using CUDA [133]
(see Section 4.2), which exposes an SPMD program-
ming model using a large number of threads orga-
nized into blocks. All blocks run the same program,
referred to as a kernel, and threads within one block
can synchronize and communicate using shared mem-
ory, a kind of local store memory. Communication be-
tween blocks, however, is limited to atomic operations
on global memory.

The blocks are automatically split into warps, con-
sisting of 32 threads. The blocks are scheduled to
the streaming multiprocessors (SMs) at runtime, and
each warp is executed in SIMD fashion. This is done
by issuing the same instruction through four consecu-
tive runs on the eight scalar processors (SPs). Diver-
gent code flow between threads is handled in hard-
ware by automatic thread masking and serialization,
and thus, divergence within a warp reduces perfor-
mance, while divergence between warps has no im-

6 A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing

Fig. 2. NVIDIA GT200 GPU architecture. The abbreviations have
the following meaning: TPC – texture processing cluster; SM –
streaming multiprocessor; Tex unit – texture unit; Tex cache – tex-
ture cache; SP – scalar processor.

pact on execution speed. In addition to eight scalar
processors, the streaming multiprocessor also contains
a double precision unit, two special function units,
16 KiB of shared memory, 8 KiB constant memory
cache and 16,384 32-bit registers. Each scalar proces-
sor is a fully pipelined arithmetic-logic unit capable
of integer and single precision floating point opera-
tions, while the special function unit contains four
arithmetic-logic units, mainly used for vertex attribute
interpolation in graphics and in calculating transcen-
dentals. The streaming multiprocessor is a dual-issue
processor, where the scalar processors and special
function unit operate independently.

All the threads within a block have, as mentioned,
access to the same shared memory. The shared mem-
ory is organized into 16 memory banks that can be ac-
cessed every other clock cycle. As one warp uses four
clock cycles to complete, it can issue two memory re-
quests per run, one for each half warp. For full speed,
it is vital that each thread in a half warp exclusively
accesses one memory bank. Access to shared memory
within a warp is automatically synchronized, and bar-
riers are used to synchronize within a block.

The streaming multiprocessors are designed to keep
many active warps in flight. It can switch between
these warps without any overhead, which is used to
hide instruction and memory latencies. A single multi-
processor executes all warps within a block, but it can
also run multiple blocks. The number of blocks each
multiprocessor can run is dictated by the register and
shared memory use of their respective warps, which
cannot exceed the physically available resources. The
ratio of active warps to the maximum number of sup-
ported warps is referred to as occupancy, which is
a measure indicating how well the streaming multi-
processor may hide latencies.

The GT200 has eight 64-bit memory controllers,
providing an aggregate 512-bit memory interface to

main GPU memory. It can either be accessed from
the streaming multiprocessors through the texture units
that use the texture cache, or directly as global mem-
ory. Textures are a computer graphics data-format con-
cept, and can be though of as a read-only 2D image.
Texture access is thus optimized for 2D access, and
the cache holds a small 2D neighbourhood, in contrast
to the linear caching of traditional CPUs. The texture
units can perform simple filtering operations on texture
data, such as interpolation between colors. Three and
three streaming multiprocessors are grouped into tex-
ture processing clusters, that share eight such texture
units and a single L1 texture cache. Global memory
access has a high latency and is optimized for linear
access. Full bandwidth is achieved when the memory
requests can be coalesced into the read or write of a
full memory segment. In general, this requires that all
threads within one half-warp access the same 128-bit
segment in global memory. When only partial seg-
ments are accessed, the GT200 can reduce the segment
size, reducing wasted bandwidth. Per-thread arrays,
called local memory, are also available. In contrast to
previous array concepts on GPUs, these arrays can be
accessed dynamically, thus not limited to compile-time
constants. However, local memory resides in an auto-
coalesced global memory space, and has the latency of
global memory. The threads can also access main CPU
memory via zero-copy, where data is moved directly
over the PCI express bus to the streaming multiproces-
sor. A great benefit of zero-copy is that it is indepen-
dent of main GPU memory, thus increasing total band-
width to the streaming multiprocessors.

NVIDIA have also recently released specifications
for their upcoming GT300 architecture, codenamed
Fermi [131]. Fermi is based around the same concepts
as the GT200, with some major improvements. First of
all, the number of Scalar Processors has roughly dou-
bled, from 240 to 512. The double precision perfor-
mance has also improved dramatically, now running
at half the speed of single precision. All vital parts of
memory are also protected by ECC, and the new archi-
tecture has cache hierarchy with 16 or 32 KiB L1 data
cache per Streaming Multiprocessor, and a 768 KiB L2
cache shared between all Streaming Multiprocessors.
The memory space is also unified, so that shared mem-
ory and global memory use the same address space,
thus enabling execution of C++ code directly on the
GPU. The new chip also supports concurrent kernel ex-
ecution, where up-to 16 independent kernels can exe-
cute simultaneously. The Fermi is currently not avail-
able in stores, but is expected to appear shortly.

A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing 7

The current generation of AMD FireStream cards is
based on the RV770 [6] architecture, shown in Fig. 3.
Equivalent to the NVIDIA concept of a grid of blocks,
it employs an SPMD model over a grid of groups.
All groups run the same kernel, and threads within
a group can communicate and synchronize using lo-
cal data store. Thus, a group resembles the concept of
blocks on NVIDIA hardware.

Each group is an array of threads with fully inde-
pendent code-flow, and groups are scheduled to SIMD
engines at runtime. The SIMD engine is the basic
core of the RV770, containing 16 shader processing
units (SPUs), 16 KiB of local data share, an undis-
closed number of 32-bit registers, 4 texture units and
an L1 texture cache. Groups are automatically split
up into wavefronts of 64 threads, and the wavefronts
are executed in SIMD fashion by four consecutive
runs of the same instruction on the 16 shader process-
ing units. The hardware uses serialization and mask-
ing to handle divergent code flow between threads,
making divergence within wavefronts impact perfor-
mance, whereas divergence between wavefronts runs
at full speed. As such, wavefronts are equivalent to the
concept of warps on NVIDIA hardware. However, un-
like the scalar design of the NVIDIA stream proces-
sor, the shader processing unit is super-scalar and in-
troduces instruction level parallelism with five single
precision units that are programmed using very long
instruction words (VLIW). The super-scalar design is
also reflected in registers, which use four-component
data types. The fifth unit also handles transcendental
and double-precision arithmetic.

All threads within a group have access to the same
local data share, which is somewhat similar to the
shared memory of NVIDIA. Data is allocated per
thread, which all threads within the group can access.
However, threads can only write to their own local
data share. Synchronization is done using memory bar-
riers, as on NVIDIA hardware. The RV770 also ex-

Fig. 3. AMD RV770 GPU architecture. The abbreviations have the
following meaning: SPU – shader processing unit; Tex unit – texture
unit; Tex cache – texture cache.

poses shared registers, which are persistent between
kernel invocations. These registers are shared between
all wavefronts processed by a SIMD engine, in which
thread i in wavefront A can share data with thread i in
wavefront B, but not with thread j. Thus, any operation
on shared registers is atomic.

Thread grids are processed in either pixel shader or
compute mode. The pixel shader mode is primarily for
graphics, and restricts features to that of the R6XX ar-
chitecture without local data share. Using the compute
shader mode, output is required to be a global buffer.
Global buffers are accessed directly by the threads, al-
lowing arbitrary read and write operations. As global
buffers are not cached, burst writes are used for con-
secutive addresses in a fashion similar to coalesced
memory write on NVIDIA hardware. On current hard-
ware, however, global buffers are inferior to regular
buffers with respect to performance. Threads can also
access part of main CPU memory; the GPU driver re-
serves a small memory segment that the SIMD en-
gines can access directly over the PCI express bus. The
RV770 also contains instruction and constant memory
caches, an L2 texture cache, and a global data share
that are shared between the SIMD engines. The global
data share enable the SIMD engines to share data, but
is currently not exposed to the programmer.

The upcoming Larrabee [155] GPU from Intel can
be considered a hybrid between a multi-core CPU and
a GPU. The Larrabee architecture is based on many
simple in-order CPU cores that run an extended version
of the ×86 instruction set. Each core is based on the
Pentium chip with an additional 16-wide SIMD unit
which executes integer, single-precision, or double-
precision instructions. The core is dual-issue, where
the scalar and SIMD units can operate simultaneously,
and it supports four threads of execution. The Larrabee
also features a coherent L2 cache shared among all the
cores, which is divided into local subsets of 256 KiB
per core. Cores can communicate and share data us-
ing on-chip communication, consisting of a 1024-bit
bi-directional ring network. A striking design choice
is the lack of a hardware rasterizer, which forces the
Larrabee to implement rasterization in software. The
first Larrabee GPUs are expected to arrive in 2010.

The architectures from NVIDIA and AMD are, as
mentioned earlier, conceptually similar. They oper-
ate with the same execution model, but have differ-
ences in their hardware setups. AMD has twice the
SIMD width of NVIDIA hardware, runs at about half
the frequency, and employs a superscalar architecture.
However, they both feature similar peak performance

8 A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing

numbers at around one teraflops in single precision.
The memory bandwidth is also strikingly similar, just
surpassing 100 GB/s, even though they have differ-
ent hardware setups. When utilizing texture sampling
units, an interesting note is that NVIDIA has three ex-
ecution units per texture sampler, whereas AMD has
four. This can impact performance of algorithms with
heavy use of texture sampling.

3.2. Cell BEA

The CBEA is a heterogeneous processor with a tra-
ditional CPU core and eight accelerator cores on the
same chip, as shown in Fig. 4. It is used in the first
petaflops supercomputer, called the Roadrunner [21].
The Roadrunner is the worlds fastest computer on
the June 2009 Top500 list [171], and the seven most
energy-efficient supercomputers on this list use the
CBEA as the main processor [172]. Commercially, it
is available as 1U form factor or blade servers, as
PCI express plug-in cards, and in the PlayStation 3
gaming console. The state-of-the-art server solutions
use the PowerXCell 8i version of the CBEA. For ex-
ample, the Roadrunner supercomputer consists of two
3.2 GHz CBEAs per dual-core 1.8 GHz Opteron, in
which the CBEAs contribute to 96% of the peak per-
formance [167]. The PCI express plug-in cards also
use the PowerXCell 8i processor, but are primarily in-
tended for development and prototyping. The CBEA in
the PlayStation 3 is inexpensive due to its high produc-
tion numbers, but it is a different chip than the PowerX-
Cell 8i. It offers low double precision performance and
a very limited amount of main memory. Furthermore,
one of the accelerator cores is disabled in hardware

to increase production yields, and another accelerator
core is reserved for the Hypervisor virtualization layer
when running Linux. We focus on the PowerXCell 8i
implementation that consists of the Power Processing
Element (PPE), eight Synergistic Processing Elements
(SPEs) and the Element Interconnect Bus (EIB).

The PPE is a traditional processor that uses the
Power instruction set. It contains a 512 KiB L2 cache,
an in-order dual-issue RISC core with two-way hard-
ware multi-threading, and a VMX [87] engine for
SIMD instructions. Compared to modern CPUs, the
PPE is a stripped-down core with focus on power effi-
ciency. It is capable of outputting one fused multiply-
add in double precision, or one SIMD single pre-
cision fused multiply-add per clock cycle. Running
at 3.2 GHz, this yields a peak performance of 25.6
or 6.4 gigaflops in single and double precision, respec-
tively.

The SPE consists of a memory flow controller
(MFC) and a Synergistic Processing Unit (SPU). The
SPU is a dual-issue in-order SIMD core with 128 regis-
ters of 128 bit each and a 256 KiB local store. The SPU
has a vector arithmetic unit similar to VMX that oper-
ates on 128-bit wide vectors composed of eight 16-bit
integers, four 32-bit integers, four single-precision, or
two double-precision floating point numbers. The even
pipeline of the dual-issue core handles arithmetic in-
structions simultaneously as the odd pipeline handles
load, store, and control. The SPU lacks a dynamic
branch predictor, but exposes hint-for-branch instruc-
tions. Without branch hints, branches are assumed not
to be taken. At 3.2 GHz, each SPU is capable of 25.6
or 12.8 gigaflops in single and double precision, re-
spectively.

Fig. 4. PowerXCell 8i architecture. The abbreviations have the following meaning: SPE – synergistic processing element; SPU – synergistic
processing unit; SXU – synergistic execution unit; LS – local store; MFC – memory flow controller; EIB – element interconnect bus; PPE –
power processing element; PPU – power processing unit; PXU – power execution unit; MIC – memory interface controller; BIC – bus interface
controller.

A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing 9

The SPU uses the local store similarly to an L2
cache, and the MFC uses DMA requests to move data
between the local store and main memory. Because
the MFC operates asynchronously from the SPU, com-
putations can take place simultaneously as the MFC
is moving data. The MFC requires 16-byte alignment
of source and destination data addresses and trans-
fers multiples of 128 bytes. Smaller transfers must be
placed in the preferred slot within the 128-byte seg-
ment, where unwanted data is automatically discarded.
The MFC also has mailboxes for sending 32-bit mes-
sages through the element interconnect bus, typically
used for fast communication between the SPEs and the
PPE. Each SPE has one outbound mailbox, one out-
bound interrupt mailbox, and one inbound mailbox ca-
pable of holding four messages.

At the heart of the CBEA is the EIB, a ring bus with
two rings in each direction that connects the PPE, the
SPEs, the Memory Interface Controller (MIC) and the
Bus Interface Controller (BIC). The MIC handles main
memory and the BIC handles system components such
as the HyperTransport bus. The EIB is capable of mov-
ing an aggregate 128 byte × 1.6 GHz = 204.8 GB/s,
and 197 GB/s has been demonstrated [41].

3.3. Field programmable gate array architecture

The first commercially viable FPGA was devel-
oped by Xilinx co-founder Ross Freeman in 1984,
and he was entered into the National Inventors Hall
of Fame for this accomplishment in 2006. FPGAs
were initially used for discrete logic, but have ex-
panded their application areas to signal processing,
high-performance embedded computing, and recently
as accelerators for high-performance computing. Ven-
dors such as Cray, Convey, SGI, HP and SRC all
offer such high-performance solutions. While early
FPGAs had sufficient capability to be well suited
for special-purpose computing, their application for
general-purpose computing was initially restricted to
a first-generation of low-end reconfigurable supercom-
puters, for which PCI interfaces were sufficient for
CPU communication. However, this situation has re-
cently changed with the adoption of high-speed IO
standards, such as QuickPath Interconnect and Hyper-
Transport. The major FPGA vendors, Altera and Xil-
inx have collaborated with companies such as DRC
Computer, Xtreme Data, Convey and Cray, who of-
fer FPGA boards that are socket compatible with In-
tel or AMD processors, using the same high-speed bus.

These boards also offer on-board memory, improving
total bandwidth.

An FPGA is a set of configurable logic blocks, dig-
ital signal processor blocks, and optional traditional
CPU cores that are all connected via an extremely flex-
ible interconnect. This interconnect is reconfigurable,
and is used to tailor applications to FPGAs. When con-
figured, FPGAs function just like application specific
integrated circuits (ASICs). We focus on the popu-
lar Xilinx Virtex-5 LX330, consisting of 51,840 slices
and 192 digital signal processing slices that can per-
form floating point multiply-add and accumulate. Het-
erogeneous FPGAs, such as the Virtex-5 FX200T, of-
fer up-to two traditional 32-bit PowerPCs cores on the
same chip. Each slice of a Virtex-5 consists of four
6-input look-up tables and four flip-flops, as shown in
Fig. 5. The multiplexers are dynamically set at run-
time, whereas the flip-flops are statically set at con-
figuration. Two slices form a configurable logic block,
and programmable interconnects route signals between
blocks. Configuring the interconnect is part of FPGA
programming, and can be viewed as creating a data-
path through the FPGA. This can make FPGAs fully
deterministic when it comes to performance. A key el-
ement to obtaining high-performance on FPGAs is to
use as many slices as possible for parallel computa-
tion. This can be achieved by pipelining the blocks,
trading latency for throughput; by data-parallelism,
where data-paths are replicated; or a combination of
both. As floating point and double-precision applica-
tions rapidly exhausted the number of slices avail-
able on early FPGAs, they were often avoided for
high-precision calculations. However, this situation

Fig. 5. Simplified diagram of a Virtex-5 FPGA slice. The abbrevia-
tions have the following meaning: LUT – look-up table; MX – mul-
tiplexer; FF – flip–flop.

10 A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing

has changed for current FPGAs which have sufficient
logic to compute thousands of adds, or about 80 64-bit
multiplies per clock cycle. The conceptually simple
design of FPGAs make them extremely versatile and
power-efficient, and they offer high computational per-
formance.

3.4. Performance, power consumption and cost

Due to the lack of a unified theory for compar-
ing different heterogeneous architectures, it is difficult
to give a fair comparison. However, in Table 1, we
summarize qualitative and quantitative characteristics
of the architectures, giving an overview of required
level of parallelism, performance and cost. The perfor-
mance numbers per watt and per dollar are measured
in single precision. However, comparing the different
metrics will ultimately be a snapshot of continuous
development, and may change over time. There are
also differences between different hardware models for
each architecture: in particular, there are less expensive
versions of all architectures, especially for the CPU
and GPU, that can benefit from mass production. How-
ever, we wish to indicate trends, and argue that the dif-
ferences we distinguish are representable, even though
there are variations among models and in time.

The SIMD units of the state-of-the-art Intel Core i7-
965 Quad Extreme processor is capable of 16 single
precision multiply-add instructions per clock cycle at

3.2 GHz, that is, 102.4 gigaflops single precision per-
formance, and half of that in double precision. The
i7-965 has a thermal design power rating of 130 watt,
indicating around 0.8 single precision gigaflops per
watt. It has a manufacturer suggested retail price of
999 USD, giving around 100 megaflops per USD.

The NVIDIA Tesla C1060 has 30 streaming mul-
tiprocessors that each can execute eight single preci-
sion multiply-adds on the scalar processors, and either
eight single precision multiplies or one double preci-
sion multiply-add on the special function unit. This
totals to 720 single precision operations per clock cy-
cle at 1.3 GHz, yielding 936 gigaflops single preci-
sion performance, or one twelfth of that in double pre-
cision. The C1060 draws a maximum of 187.8 watt,
yielding around 5 gigaflops per watt. The manufac-
turer suggested retail price of 1699 USD gives around
550 megaflops per USD. The C1060 has 4 GiB of
GDDR3 memory, and with a 512-bit memory interface
at 800 MHz, the peak memory bandwidth is 102 GB/s.

The up-coming Fermi architecture from NVIDIA
doubles the number of stream processors in the chip,
and increases the double precision performance to half
the speed of single precision. Assuming a similar clock
frequency as the C1060, one can expect roughly dou-
ble the performance in single precision, and a dra-
matic improvement in double precision performance.
The Fermi will be available with up-to 6 GB memory
on a 384-bit wide GDDR5 bus. This roughly gives a

Table 1

Summary of architectural properties. The numbers are of current hardware, and are reported per physical chip. The CPU is an Intel Core i7-965
Quad Extreme, the AMD GPU is the FireStream 9270, the NVIDIA GPU is the Tesla C1060, the CBEA is the IBM QS22 blade, and the FPGA
is the Virtex-6 SX475T

CPU GPU (AMD/NVIDIA) CBEA FPGA

Composition Symmetric multicore Symmetric multicore Heterogeneous multicore Heterogeneous multicore

Full cores 4 – 1 2

Accelerator cores 0 10/30 8 2016 DSP slices

Intercore communication Cache None Mailboxes Explicit wiring

SIMD width 4 64/32 4 Configurable

Additional parallelism ILP VLIW/Dual-issue Dual-issue Configurable

Float operations per cycle 16 1600/720 36 520

Frequency (GHz) 3.2 0.75/1.3 3.2 <0.55

Single precision gigaflops 102.4 1200/936 230.4 550

Double:single precision performance 1:2 1:5/1:12 ∼1:2 ∼1:4

Gigaflops/watt 0.8 5.5/5 2.5 13.7

Megaflops/USD 70 800/550 >46 138

Accelerator bandwidth (GB/s) N/A 109/102 204.8 N/A

Main memory bandwidth (GB/s) 25.6 8 25.6 6.4

Maximum memory size (GiB) 24 2/4 16 System dependent

ECC support Yes No Yes Yes

A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing 11

50% bandwidth increase compared to the C1060, again
assuming a similar frequency.

The AMD FireStream 9270 contains 160 shader
processing units. Assuming full utilization of instruc-
tion level parallelism, each shader processing unit can
execute five multiply-add instructions per clock cycle
resulting in a total of 1600 concurrent operations. Run-
ning at 750 MHz this yields a performance of 1.2 ter-
aflops in single precision, and one fifth of that in dou-
ble precision. The card draws a maximum of 220 watt,
implying approximately 5.5 gigaflops per watt. It has a
manufacturer suggested retail price of 1499 USD, re-
sulting in 800 megaflops per USD. The 9270 has 2 GiB
of GDDR5 memory on a 256-bit memory bus. Running
at 850 MHz, the bus provides a peak internal memory
bandwidth of 109 GB/s.

AMD recently released their first DirectX11 com-
patible GPUs, based on the R800 [7] architecture. The
R800 is quite similar to the R700 series GPUs, even
though the exact architectural details are unpublished.
The Radeon HD 5870 uses the R800 architecture, with
a total of 320 shader processing units. This chip runs at
850 MHz, and has a peak performance of 2.7 teraflops,
again assuming full utilization of instruction level par-
allelism. The new card has 1 GB memory on a 256-bit
wide GDDR5 bus. Running at 1200 MHz this results
in a bandwidth of 153 GB/s.

The IBM QS22 blade [88] consists of two PowerX-
Cell 8i CBEAs connected through a HyperTransport
bus. Each of the CBEAs is capable of 230 gigaflops
in single precision, and slightly less than half that in
double precision. The CBEA consumes 90 watt, yield-
ing 2.5 gigaflops per watt. The QS22 blade with 8 GiB
memory has a manufacturer suggested retail price of
9995 USD, implying 46 megaflops per USD. However,
this rather pessimistic figure includes the cost of the
whole blade server.

On FPGAs, floating point operations are often trad-
ed away due to their real-estate demands. However, if
one were to implement multiply-add’s throughout the
FPGA fabric, the 32-bit floating point performance at-
tains 230 gigaflops for the Virtex-5 LX330, 210 gi-
gaflops for the SX240T and 550 gigaflops for the
Virtex-6 SX475 [161,162]. The SX475T performance
is due to the 2016 DSP slices, twice that of the SX240T
and ten times as many as the LX330. Double precision
multiply-add units consume four times the real-estate,
and twice the memory, implying about one fourth dou-
ble precision performance. FPGA cost is about twice
processor cost. The LX330, SX240T and SX475T cost
about 1700, 2000 and 4000 USD, respectively, but de-

liver approximately 17, 18 and 14 gigaflops per watt.
An example of an FPGA board that is socket com-
patible with AMD Opteron CPUs is the Accelium
AC2030. It can access main memory at 6.4 GB/s,
has three HyperTransport links running at 3.2 GB/s,
and has 4.5 GiB on-board RAM with a bandwidth of
9.6 GB/s. Equipped with the LX330, the board uses
40 watts.

3.5. Numerical compliance and error resiliency

Floating point calculations most often contain er-
rors, albeit sometimes small. The attained accuracy is
a product of the inherent correctness of the numer-
ical algorithm, the precision of input data, and the
precision of intermediate arithmetic operations. Ex-
amples abound where double precision is insufficient
to yield accurate results, including Gaussian elimina-
tion, where even small perturbations can yield large
errors. Surprising is Rump’s example, reexamined for
IEEE 754 by Loh and Walster [108], which converges
towards a completely wrong result when precision is
increased. Thus, designing numerically stable algo-
rithms, such as convex combinations of B-spline al-
gorithms, is essential for high-precision results. Float-
ing point operations and storage of any precision have
rounding errors, regardless of algorithmic properties,
and even the order of computations significantly im-
pacts accuracy [78].

Using high precision storage and operations is not
necessarily the best choice, as the accuracy of an algo-
rithm might be less than single or double precision [54,
71,167]. Using the lowest possible precision in such
cases has a two-fold benefit. Take the example of dou-
ble versus single precision, where single precision is
sufficiently accurate. Both storage and bandwidth re-
quirements are halved, as single precision consumes
half the memory. Further, single precision increases
compute performance by a factor 2–12, as shown in
Table 1. Single precision operations can also be used to
produce high precision results using mixed precision
algorithms. Mixed precision algorithms obtain high-
precision results, for example, by using lower precision
intermediate calculations followed by high-precision
corrections [62,63,164].

GPUs have historically received scepticism for the
lack of double precision and IEEE-754 floating point
compliance. However, current GPUs and the CBEA
both support double precision arithmetic and conform
to the floating point standard in the same way as SIMD
units in CPUs do [73]. FPGAs can ultimately be tuned

12 A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing

to your needs. Numerical codes executing on these ar-
chitectures today typically yield bit-identical results,
assuming the same order of operations, and any dis-
crepancies are within the floating point standard.

Spontaneous bit errors are less predictable. Com-
puter chips are so small that they are susceptible to cos-
mic radiation, build-up of static charge on transistors,
and other causes which can flip a single bit. Several
technologies can detect and correct such errors. One is
ECC memory where a parity bit is used to detect and
correct bit errors in a word. Others perform ECC logic
in software [170], or duplicate computations and check
for consistency. There is also research into algorithmic
resiliency [102, p. 231], possibly the best solution. Us-
ing a few extra computations, such as computing the
residual, the validity of results can be determined.

4. Programming concepts

Heterogeneous architectures pose new program-
ming difficulties compared to existing serial and par-
allel platforms. There are two main ways of at-
tacking these difficulties: inventing new, or adapting
existing languages and concepts. Parallel and high-
performance computing both form a basis of knowl-
edge for heterogeneous computing. However, hetero-
geneous architectures are not only parallel, but also
quite different from traditional CPU cores, being less
robust for non-optimal code. This is particularly chal-
lenging for high-level approaches, as these require
new compiler transformation and optimization rules.
Porting applications to heterogeneous architectures
thus often requires complete algorithm redesign, as
some programming patterns, which in principle are
trivial, require great care for efficient implementa-
tion on a heterogeneous platform. As Chamberlain et
al. [37] note, heterogeneous architectures most often
require a set of different programming languages and
concepts, which is both complex from a programmers
perspective, as well as prone to unforeseen errors. Fur-
thermore, a programming language that maps well to
the underlying architecture is only one part of a pro-
ductive programming environment. Support tools like
profilers and debuggers are just as important as the
properties of the language.

In this section, we describe programming languages,
compilers, and accompanying tools for GPUs, the
CBEA, and FPGAs, and summarize with a discussion
that compares fundamental characteristics such as type
of abstraction, memory model, programming model
and so on. We also report our subjective opinion on
ease of use and maturity.

4.1. Multi-architectural languages

OpenCL [98] is a recent standard, ratified by the
Khronos Group, for programming heterogeneous com-
puters. Khronos mostly consists of hardware and soft-
ware companies within parallel computing, graphics,
mobile, entertainment, and multimedia industries, and
has a highly commercial incentive, creating open stan-
dards such as OpenGL that will yield greater business
opportunities for its members.

Khronos began working with OpenCL in June 2008,
in response to an Apple proposal. The Khronos rati-
fication board received the standard draft in October,
ratifying it in December 2008. Most major hardware
and many major software vendors are on the ratifica-
tion board, giving confidence that OpenCL will expe-
rience the same kind of success as OpenMP. Apple in-
cluded OpenCL in Mac OS X Snow Leopard, and both
NVIDIA and AMD have released beta-stage compil-
ers. It is also probable that CBEA compilers will ap-
pear, as the CBEA team from IBM has participated in
the standard. Support for FPGAs, however, is unclear
at this time.

OpenCL consists of a programming language for
accelerator cores and a set of platform API calls to
manage the OpenCL programs and devices. The pro-
gramming language is based on C99 [94], with a phi-
losophy and syntax reminiscent of CUDA (see Sec-
tion 4.2) using SPMD kernels for the data-parallel
programming model. Task-parallelism is also sup-
ported with single-threaded kernels, expressing paral-
lelism using 2–16 wide vector data types and multi-
ple tasks. Kernel execution is managed by command
queues, which support out-of-order execution, en-
abling relatively fine-grained task-parallelism. Out-
of-order tasks are synchronized by barriers or by
explicitly specifying dependencies. Synchronization
between command queues is also explicit. The stan-
dard defines requirements for OpenCL compliance in
a similar manner as OpenGL, and extensively defines
floating-point requirements. Optional extensions are
also defined, including double precision and atomic
functions.

RapidMind [113] is a high-level C++ abstraction
to multi-core CPU, GPU and CBEA programming. It
originated from the research group around Sh [114]
in 2004, and is a now a commercial product. It has
a common abstraction to architecture-specific back-
ends. Low-level optimization and load balancing is
handled by the back-ends, allowing the programmer
to focus on algorithms and high-level optimizations.

A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing 13

They argue that for a given development time, a pro-
grammer will create better performing code using
the RapidMind compared to lower level tools [148].
RapidMind exposes a streaming model based on ar-
rays, and the programmer writes kernels that operate
on these arrays. Their abstraction is implemented as a
C++ library and thus requires no new tools or compil-
ers. Debugging is done with traditional tools using a
debugging back-end on the CPU, and performance sta-
tistics can also be collected.

A more high-level approach is HMPP, the Hybrid
Multi-core Parallel Programming environment [29].
Their approach is to annotate C or Fortran source code,
similar to OpenMP, to denote the parts of the program
that should run on the device. In addition, special prag-
mas give hints about data movement between the host
and device. The HMPP consists of a meta compiler and
runtime library, that supports CUDA and CAL-enabled
GPUs. A similar approach is taken by the Portland
Group with their Accelerator C and Fortran compil-
ers [146], currently supporting CUDA enabled GPUs.
Such approaches have the advantage of easy migra-
tion of legacy code, yielding good performance for em-
barrassingly parallel code. However, many algorithms
require redesign by experts to fully utilize heteroge-
neous architectures. Relying on high-level approaches
in these cases will thus yield sub-optimal performance.

4.2. Graphics processing unit languages

Initially, GPUs could only be programmed using
graphics APIs like OpenGL [137]. General purpose
stream-computing was achieved by mapping stream el-
ements to pixels. The obvious drawback was that the
developer needed a thorough understanding of com-
puter graphics. As a result, higher-level languages were
developed that ran on top of the graphics API, such as
Brook [33] and RapidMind [113]. To provide a more
direct access to the GPU, AMD has released Stream
SDK [8] and NVIDIA has released CUDA [133]. Both
Stream SDK and CUDA are tied to their respective
vendor’s GPUs, which is an advantage when consid-
ering performance, but a problem for portability. Di-
rect3D [119] is a graphics API from Microsoft target-
ing game developers. It standardizes the hardware and
is supported by both NVIDIA and AMD. Direct3D 11,
which is expected to appear shortly, includes a com-
pute shader, whose main goal is to tightly integrate
GPU accelerated 3D rendering and computation, such

as game physics. The Direct3D compute shader uses
ideas similar to NVIDIA CUDA.

The CUDA Toolkit [129] provides the means to pro-
gram CUDA-enabled NVIDIA GPUs, and is available
on Windows, Linux and Mac OS X. CUDA consists
of a runtime library and a set of compiler tools, and
exposes an SPMD programming model where a large
number of threads, grouped into blocks, run the same
kernel.

The foundation of the CUDA software stack is
CUDA PTX, which defines a virtual machine for par-
allel thread execution. This provides a stable low-level
interface decoupled from the specific target GPU. The
set of threads within a block is referred to as a co-
operative thread array (CTA) in PTX terms. All threads
of a CTA run concurrently, communicate through
shared memory, and synchronize using barrier instruc-
tions. Multiple CTAs run concurrently, but communi-
cation between CTAs is limited to atomic instructions
on global memory. Each CTA has a position within
the grid, and each thread has a position within a CTA,
which threads use to explicitly manage input and out-
put of data.

The CUDA programming language is an extension
to C, with some C++-features such as templates and
static classes. The new Fermi architecture enables full
C++ support, which is expected to appear in CUDA
gradually. The GPU is programmed using CUDA ker-
nels. A kernel is a regular function that is compiled
into a PTX program, and executed for all threads in a
CTA. A kernel can directly access GPU memory and
shared memory, and can synchronize execution within
a CTA. A kernel is invoked in a CUDA context, and
one or more contexts can be bound to a single GPU.
Multiple contexts can each be bound to different GPUs
as well, however, load balancing and communication
between multiple contexts must be explicitly managed
by the CPU application. Kernel execution and CPU–
GPU memory transfers can run asynchronously, where
the order of operations is managed using a concept
of streams. There can be many streams within a sin-
gle GPU context: all operations enqueued into a sin-
gle stream are executed in-order, whereas the execution
order of operations in different streams is undefined.
Synchronization events can be inserted into the streams
to synchronize them with the CPU, and timing events
can be used to profile execution times within a stream.

CUDA exposes two C APIs to manage GPU con-
texts and kernel execution: the runtime API and the
driver API. The runtime API is a C++ abstraction
where both GPU and CPU code can be in the same

14 A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing

source files, which are compiled into a single exe-
cutable. The driver API, on the other hand, is an API
that requires explicit handling of low-level details,
such as management of contexts and compilation of
PTX assembly to GPU binary code. This offers greater
flexibility, at the cost of higher code complexity.

There are several approaches to debugging CUDA
kernels. NVCC, the compiler driver that compiles
CUDA code, can produce CPU emulation code, allow-
ing debugging with any CPU debugger. NVIDIA also
provides a beta-release of a CUDA capable GNU de-
bugger, called cuda-gdb, that enables interactive de-
bugging of CUDA kernels running on the GPU, along-
side debugging of CPU code. Cuda-gdb can switch
between CTAs and threads, step through code at warp
granularity, and peek into kernel variables. NVIDIA
has also announced an up-coming Visual Studio toolset
called Nexus that integrates debugging and perfor-
mance analysis [130].

CUDA also contains a non-intrusive profiler that
can be invoked on an existing binary. The profiler
can log kernel launch attributes such as grid-size, ker-
nel resource usage, GPU and driver execution times,
memory transfers, performance counters for coalesced
and non-coalesced loads and stores, local memory us-
age, branch divergence, occupancy and warp serializa-
tion. NVIDIA also provides the CUDA Visual Profiler,
which is a GUI front-end for profiling CUDA appli-
cations, and the CUDA Occupancy Calculator for ex-
perimenting with how register and shared memory use
affects the occupancy on different GPUs.

NVIDIA GPUs native instruction sets are propri-
etary, but many details have been deciphered through
differential analysis of compiled GPU kernels. In par-
ticular, decuda [175], a third party disassembler for
compiled CUDA kernels, is a valuable tool to analyze
and optimize kernels.

The AMD Stream SDK [8], available on Windows
and Linux, is the successor of ATI’s Close To the Metal
initiative from 2006, and provides the means to pro-
gram AMD GPUs directly. The software stack consists
of the AMD Compute Abstraction Layer (CAL), which
supports the R6XX-series and newer AMD GPUs,
and the high-level Brook+ language. CAL exposes an
SPMD programming model, in which a program is
executed by every thread in a large grid of threads.
Threads are initialized with their grid positions, which
can be used for explicit input and output of data. The
output of threads can also be defined implicitly by us-
ing the pixel shader mode, which can improve per-
formance. Threads are clustered into groups, where

threads within a single group can synchronize using
barriers and communicate using local data store.

CAL has two major components, the CAL runtime
and the CAL compiler. The CAL compiler is a C inter-
face used to compile GPU assembly or CAL intermedi-
ate language, a GPU-agnostic assembly language sim-
ilar to CUDA PTX, into GPU binaries. The CAL run-
time is a C-interface reminiscent of the CUDA driver
API with respect to programming complexity. It is used
to create GPU contexts, load and execute kernels on
the GPU, and manage GPU resources. A context is tied
to a single GPU, and holds a queue of operations that
are asynchronously executed in order. Multiple con-
texts can be created on a single GPU, and they can
share resources. However, resource sharing and load
balancing between different GPUs has to be explicitly
managed by the application. New features are added
to CAL through an extension mechanism. One exten-
sion enables resources sharing with DirectX, and an-
other enables performance counters of cache hit rate
and SIMD engine idle cycles.

Brook+ is AMD’s extension of Brook [33], and is
a high-level programming language and runtime, with
CPU and CAL back-ends. Brook+ is a higher-level
language compared to CUDA. The programmer de-
fines kernels that operate on input and output data
streams, and multiple kernels operating on the same
streams create an implicit dependency graph. Data is
explicitly copied from the CPU to input streams, and
from output streams back to the CPU after kernel ex-
ecution. Copying data into streams and execution of
kernels run asynchronous, enabling concurrent CPU
computations. Reading data back to the CPU from a
stream is blocking by default. Brook+ allows streams
and kernels to be assigned to different GPUs, however,
streams used by a kernel are required to reside on the
GPU running the kernel, i.e., inter-GPU communica-
tion has to be explicitly managed by the application.

The basic Brook+ kernel maps input stream ele-
ments one-to-one to output stream elements. Reduc-
tion kernels reduce the dimensionality of a stream
along one axis using an associative and commutative
binary operator. Kernels can also have explicit commu-
nication patterns, providing random-access gather op-
erations from input streams, scatter write to a single
output stream, as well as access to the local data share.

A Brook+ application contains both code running
on the CPU, and kernels running on the GPU. The
Brook+ kernel language is an extension of C, with syn-
tax to denote streams and keywords to specify ker-
nel and stream attributes. Kernels are processed by the

A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing 15

Brook+ compiler, which produces a set of C++-files
that implement the CPU interface of the kernel, and the
kernel itself as either CAL intermediate language, Di-
rect3D HLSL, or CPU emulation code. The generated
C++-files can then be included into any C++ project.

Both intermediate language code and Brook+ code
can be analyzed using the Stream Kernel Analyzer [9].
It is a graphical Windows application that shows the
native GPU assembly code, kernel resource use, pre-
diction on whether arithmetic or memory transfer is the
bottleneck, and performance estimates for a full range
of GPUs.

Both NVIDIA and AMD offer assembly level pro-
gramming of their GPUs. NVIDIA also offers CUDA
and AMD offers Brook+, both based on C to write
kernels. However, CUDA offers an abstraction closer
to the hardware, whereas Brook+ abstracts away most
hardware features. This enables experienced CUDA
programmers to write highly tuned code for a specific
GPU. Brook+, on the other hand, enables rapid imple-
mentation of programs, giving compilers responsibility
for optimizations.

4.3. Cell BEA languages

Recall from Section 3.2 that the CBEA consists of
one PPE and eight SPEs connected by the Element In-
terconnect Bus. While regular CPUs come with logic
for instruction level parallelism and hardware managed
caches, the CBEA focuses on low power consump-
tion and deterministic performance, sacrificing out-of-
order execution and dynamic branch prediction. This
shifts responsibility for utilizing the SPE hardware re-
sources to the programmer and compiler, and makes
execution time fully deterministic as long as memory
contention is avoided.

The IBM Cell SDK [89] is the de facto API for
programming the CBEA. The PPE is typically pro-
grammed using Fortran, C or C++, where the SDK of-
fers function calls to manage the SPEs. These func-
tions include ways of creating, starting, and stopping
SPE contexts, communicating with the SPEs, etc. Each
SPE can run a separate program and communicate
with all other nodes on the EIB, such as the PPE and
main memory. This enables techniques such as SPE
pipelining. The SPEs are also programmed using For-
tran, C or C++, but with certain restrictions; e.g., us-
ing iostream in C++ is prohibited. The SPE compil-
ers also support SIMD intrinsics, similar to VMX, and
intrinsics for managing the memory flow controller.
Part of the strength of the SPE is the memory flow

controller, which gives the programmer full control
over data movement. This enables techniques such as
software-managed threads [19], [82, pp. 67–68], which
can hide memory latency using the same philosophy as
hardware threads. The SDK also includes a software
cache that can hide the details of data movement at the
cost of a small overhead.

There are currently two compilers for the CBEA ar-
chitecture, GCC and IBM XL. The latter is often given
credit for yielding the best performance for moderately
to highly tuned code. To compile and link code for the
CBEA, the SPE source code is compiled and linked to
an SPE executable, which is then embedded into a PPE
object file. This object file is finally linked with the
rest of the PPE code to produce a CBEA executable.
The limited size of local store is overcome by using
manually or automatically generated code overlays for
large codes. The code overlay mechanism enables ar-
bitrary large codes to run on an SPE by partitioning the
SPE program into segments that each fit in local store.
Segments are then transparently transferred from main
memory at run-time, however, switching between seg-
ments is expensive, and should be avoided.

The CBEA also includes solid support for program
debugging, profiling, and analysis, all included in the
IBM Cell SDK. The compiler can output static tim-
ing analysis information that shows pipeline usage for
the SPEs. Profiling information can be collected using
OProfile. Hardware counters can be accessed through
the Performance Counter Tool, and runtime traces can
be generated using the Performance Debugging Tool.
Vianney et al. [179] give a step-by-step guide to port-
ing serial applications to the CBEA using these tools,
which can be accessed directly, or through the Eclipse-
based Visual Performance Analyzer. Further, the IBM
Full-System Simulator for the CBEA [144] is a cycle
accurate simulator, capable of simulating the PPE and
SPE cores, the memory hierarchy, and disk and bus
traffic. The simulator can output raw traces and has a
graphical user interface to visualize statistics.

Programming with the IBM Cell SDK requires de-
tailed knowledge of the hardware, and thus, there has
been research into higher-level abstractions. Currently,
there are four main abstractions; OpenMP, MPI, CellSs
and Sequoia. The OpenMP approach uses a PPE-
centric shared-memory model, where the program runs
on the PPE and data-intensive parts are offloaded to the
SPEs. The other three approaches, on the other hand,
employ an SPE-centric distributed memory model, in
which the PPE simply manages the work and executes
support functions for the SPEs.

16 A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing

OpenMP [39] is a set of pragmas used to anno-
tate parallel sections of the source code. The com-
piler uses these annotations to generate parallel binary
code. OpenMP is implemented in most modern com-
pilers for multi-core architectures, and the IBM XL in-
cludes an implementation that leverages the computa-
tional power of the SPEs [52,53,134].

MPI [68] is the de facto API for parallel program-
ming on clusters. It exposes a distributed memory
model with explicit communication. Ohara et al. [135]
were the first to use the MPI programming model to
abstract the CBEA. Currently, there are two main im-
plementations of MPI for the CBEA; one by Kumar et
al. [104] and Krishna et al. [103]; and The Cell Mes-
saging Layer [140]. Whilst the former employs a tradi-
tional MPI message passing philosophy, the latter fo-
cuses on receiver-initiated message passing to reduce
latencies. Of the MPI abstractions, the Cell Messaging
Layer appears to be the most mature technology.

Cell superscalar (CellSs) [24,143] is a source-to-
source compiler for the CBEA. CellSs is similar to
OpenMP, as the source code is annotated, but instead
of annotating parallel sections, functions that can be
offloaded to the SPEs are annotated. These functions
are then scheduled to the SPEs according to their de-
pendencies.

Sequoia [55,100] is a programming language for the
CBEA and traditional CPU clusters. It targets vertical
data movement in the memory hierarchy, such as mov-
ing data between main memory and the local store of
an SPE. This contrasts the horizontal data movement
found in programming models such as MPI. Vertical
data movement is exposed to the programmer as a tree
of tasks, where the tasks are typically used as wrap-
pers for optimized native functions. An automatic tun-
ing framework for Sequoia also exists [149]. However,
it should be noted that there has been no public release
of Sequoia since 2007.

4.4. Field programmable gate array languages

The major drawback of FPGAs has been the time
and expense to program them. Using FPGAs has
clearly been cost-effective for communications, high-
performance embedded computing, military, and space
applications, but problematical for typical high-perfor-
mance computing. Not all applications can bene-
fit from FPGAs, and even for those that do, noth-
ing is automatic: obtaining speedups may be time-
consuming and arduous work. The ideal candidate
for FPGA acceleration contains a single computa-

tional kernel that comprises most of the program
runtime. This computational kernel should be possi-
ble to divide into hundreds of tasks or data-parallel
operations. One example of such a program is the
Smith–Waterman algorithm for local DNA sequence
alignment, which illustrates the potential for FPGA
acceleration [160]. As FPGAs were developed by logic
designers, they are traditionally programmed using cir-
cuit design languages such as VHDL [51] and Ver-
ilog [178]. These languages require the knowledge
and training of a logic designer, take months to learn
and far longer to code efficiently. Even once this skill
is acquired, VHDL or Verilog coding is strenuous,
taking months to develop early prototypes and of-
ten years to perfect and optimize. FPGA code de-
velopment, unlike high-performance computing com-
pilers, is slowed by the additional steps required to
synthesize, place and route the circuit. These steps
often take hours, or overnight, to complete. How-
ever, once the time is taken to code applications ef-
ficiently in VHDL, its FPGA performance is excel-
lent. Since 2000, the severe programming limitation
has been tended to by dozens of C-like programming
languages such as Mitrion-C [120], Impulse-C [92],
System-C [138] and Celoxica [36], and graphical lan-
guages such as DSPlogic [49] and Viva [166]. There
is also an increasing use of shared libraries offered by
Xilinx [183] and OpenFPGA [136].

Starbridge Systems and DSPlogic provide graphi-
cal icon-based programming environments. Similar to
Labview, Viva allows FPGA users to write and run sci-
entific applications without having to deal with esoteric
timing and pinout issues of digital logic that require
much attention in VHDL and Verilog. Viva coding is
a two-step process: first code is written, debugged and
tested using the graphical interface, and then automatic
place and route synthesis is performed for the target
FPGA system. This graphical coding process alleviates
the need to know VHDL or Verilog, while the second
step simplifies development, enabling users to focus on
developing and debugging their algorithms. Viva has
been used at NASA with great success.

An innovative approach for users to program FPGAs
without circuit design skills, is provided by Mitrion-C
and other “C to gate” languages. Users can program the
Mitrion Virtual Processor in Mitrion-C, a C-based pro-
gramming language with additions for FPGA memory
and data access. The first step when using Mitrion-C is,
just as for Viva, to design, debug and test the program
on a regular computer. The second step involves place
and route synthesis, often a time consuming task.

A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing 17

4.5. Discussion

With heterogeneous architectures, care is required
by the programmer to fully utilize hardware. One prob-
lem in sharing hardware is that execution units may
starve each other, for example fighting over the same
set of cache lines. Unfortunately, the future holds no
promise of an easy way out, so programmers must
write algorithms suitable for heterogeneous architec-
tures to achieve scalable performance. Table 2 shows
representative languages mentioned in this section,
comparing abstraction levels, memory models, and our
subjective rating of their ease of use and maturity. In
addition, Listing 1 shows actual code for each archi-
tecture.

All of the architectures we have described use mem-
ory latency hiding techniques. The GPU and CBEA
both employ memory parallelism, where multiple out-
standing memory requests are possible. On the GPU
this is implicit by the use of hardware multi-threading,
whereas it is explicitly managed on the CBEA in
terms of DMA queues. Furthermore, the CBEA can
lessen the effect of latencies by using software threads,
or overlapping communication and computation with
multi-buffering techniques. The FPGA typically em-
ploys pipelined designs in which on-chip RAM is used
to store intermediate results. This efficiently limits off-

chip communication. In contrast, traditional CPUs use
power-hungry caches to automatically increase expe-
rienced memory performance. However, as previously
noted, automatic caches can also worsen performance
for many algorithms.

Traditional CPU cores impose special requirements
to alignment when using SIMD instructions. Data typ-
ically has to be aligned to quadword boundaries, and
full quadwords are loaded into the SIMD registers of
the processors. The concept of coalesced and burst
memory access on GPUs, and the requirements of
alignment on the CBEA is strikingly similar. Thus, for
high-performance code, there is little difference in the
complexity of efficient memory access.

There is a wide difference between the architec-
tures we have described when it comes to program-
ming complexity and flexibility. All of the architec-
tures may eventually be possible to program using
OpenCL, and RapidMind already offers a common
platform for the CPU, GPUs and the CBEA. However,
the architecture-specific languages expose certain dif-
ferences. Programming the GPU for general purpose
problems has become much easier with CUDA and
Brook+. Nevertheless, writing code that fully utilizes
the hardware can still be difficult. One remark for GPU
programming is that optimization can be strenuous,
where slight changes to the source code can have dra-
matic effects on the execution time. Another issue with

Table 2

Summary of programming languages properties

OpenMP MPI OpenCL CUDA Brook+ libspe VHDL/Verilog Mitrion-C

Target platform CPU, CBEA CPU CPU, GPU, GPU (NV) GPU (AMD) CBEA FPGA FPGA

CBEA

Availability Win, Linux, Win, Linux, Win, Linux, Win, Linux, Win, Linux Linux Win, Linux, Win, Linux,

Mac Mac Mac Mac Mac Mac

Abstraction Pragmas API API API, compiler API, compiler API, compiler API Compiler

Host language C, C++, C, C++, C C, C++ C++ C, C++, “C-like” C

Fortran Fortran Fortran

Kernel language — — C99-based C99-based, C99-based C, Fortran, — C

some C++ almost C++

Memory model Shared Distributed ∼PGAS ∼PGAS Data streams ∼PGAS all all

Data-parallelism Global view — SPMD, SIMD SPMD SPMD MPMD all all

Task-parallelism — Explicit Full Streams Streams Explicit all all

Ease of use � � � � �� �� �� � � �

Maturity � � � � � � � � � � �� � � � � � � ��

Notes: Under abstraction, “compiler” implies that an extra compiler has to be integrated into the toolchain. VHDL and Verilog are described as
“C-like”, even though they capture much more than typical sequential C. Under kernel language, CUDA supports some features as templates
and function overloading, and libspe supports full C++ except parts of the STL. Several of the languages have a memory model similar to
Partitioned Global Address Space (PGAS). Under task parallelism, “explicit” implies explicit communication, “streams” implies multiple in-
order asynchronous streams, and “full” implies out-of-order execution with automatic handling of given dependencies. Ease of use and maturity
refers to our subjective opinion on the programming languages.

18 A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing

(a) CPU (OpenMP)

void add(float∗ c, float∗ a, float∗ b, int w, int h) {
#pragma omp parallel for
for (int j=0; j<h; ++j) {
for (int i=0; i<w; ++i) {
c[j∗h+i] = a[j∗h+i] + b[j∗h+i];

}
}

}

(c) GPU (CUDA)

__global__ void addKernel(float∗ c, float∗ a, float∗ b) {
int i = blockIdx.i∗blockDim.i+threadIdx.i;
int j = blockIdx.j∗blockDim.j+threadIdx.j;
int w = gridDim.i∗blockDim.i;
c[j∗w+i] = a[j∗w+i] + b[j∗w+i];

}

(b) FPGA (VHDL)

architecture behave of maxtrix_adder is
constant w : integer := 10;
constant h : integer := 10;
signal a, b : array(0 to w-1, 0 to h-1)

of std_logic_vector(7 down to 0);
signal c : array(0 to w-1, 0 to h-1)

of std_logic_vector(8 down to 0);
begin
w_set : for i in 0 to w-1 generate
begin
h_set : for j in 0 to h-1 generate
begin
c(i, j) <= a(i,j) + b(i,j);

end generate h_set;
end generate w_set;

end behave;

(d) CBEA (libspe)

int main(unsigned long long speid,
unsigned long long argp,
unsigned long long envp) {

MyAddContext ctx __attribute__((aligned(128)));
vector float ∗a, ∗b, ∗c;
int nbytes;

myDMAReadAsync(&ctx, argp, sizeof(MyAddContext));
myDMAFlush();

nbytes = ctx.n*sizeof(float);
a = (vector float∗) malloc_align(nbytes);
b = (vector float∗) malloc_align(nbytes);
c = (vector float∗) malloc_align(nbytes);

myDMARead(b, ctx.b_addr, nbytes);
myDMARead(c, ctx.c_addr, nbytes);
myDMASync();

for (int i=0; i<ctx.n/4; ++i)
c[i] = spu_add(a[i], b[i]);

myDMAWrite(ctx.c_addr, c, nbytes);
myDMASync();

return 0;
}

Listing 1. Comparison of matrix addition using different programming languages. The CPU shows the explicit double for-loop, where the
out-most loop is run in parallel. The FPGA code shows a matrix adder that can add two matrices in each clock cycle. In addition to the code
shown, around five lines of CPU code is required to open the FPGA device, load its registers with pointers to input and output data, start execution,
and finally to close the device. In addition, the FPGA needs VHDL code that can read and write the matrices directly by using the pointers. The
GPU, on the other hand is invoked in parallel over a grid, where each thread within a block has an implicitly given position. Only the GPU code
is shown, and around ten lines of CPU code is required to allocate GPU memory, upload data to the GPU, execute the kernel, and read data
back to main memory. Finally, the CBEA code shows how DMA requests load data into the local store prior to computation, and write back
after completion. Notice that functions that begin with “my” have been renamed for readability. In addition to the SPE code shown, the program
requires around 20 lines of code to create a context for each SPE, load the program into the SPEs, set arguments, create a CPU thread for each
SPE context, and wait for the SPE programs to complete.

GPUs is that they are best suited for streaming applica-
tions, because global communication and synchroniza-
tion is particularly expensive. The CBEA, on the other
hand, offers software and hardware where communica-
tion and synchronization is efficient. However, the pro-
grammer must explicitly manage scheduling and load
balancing for maximum performance. Finally, for ef-
ficiency, FPGAs are typically programmed using low
level languages that require a detailed knowledge of
the hardware design, with an especially time consum-
ing place and route stage which generates a valid de-
sign for a target FPGA. Nevertheless, this also implies
that FPGAs can be extremely efficient for well-suited
algorithms.

5. Algorithms and applications

As noted in the introduction, most algorithms can
benefit from heterogeneous architectures, where the
application itself determines the best distribution of tra-
ditional and accelerator cores. Codes which lack com-
pute intensity and have large I/O requirements might
prove challenging, as exemplified by the evaluation of
Van Amesfoort et al. [174], where they compare multi-
core CPU, the CBEA, and the GPU for a data-intensive
radio-astronomy application. Large I/O requirements
also make assessing performance problematic as indi-
vidual kernel performance can deviate from overall ap-
plication performance. Comparing individual perfor-

A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing 19

mance can in general be difficult, as data movement
times between host and device memory may vary. For
some applications it is valid to assume data resides in
device memory, while for others it is not.

Asanovic et al. [13,14] identify 13 distinct comput-
ing bottlenecks they term motifs. Che et al. [40] have
qualitatively examined three of these motifs, dense
linear algebra, combinatorial logic, and dynamic pro-
gramming. Comparing development costs and perfor-
mance on an FPGA, multi-core CPU and a GPU, they
conclude that the FPGA excels at combinatorial logic,
where efficient use of bit operations can be used, and
GPUs excel at parallel workloads with deterministic
memory access. The complex data flow of linear alge-
bra, however, does not adapt well to FPGAs. The same
is true for floating point, where fixed point arithmetic
is more efficient. GPUs, on the other hand, have no
problem with floating point, but perform poorly when
there is limited exposed parallelism, and many mem-
ory accesses, such as that of the dynamic program-
ming motif. Flynn et al. [59] state that FPGAs ben-
efit most when used with deep pipelines. By storing
intermediate data in registers or local memory, the von
Neumann bottleneck is efficiently bypassed. However,
as Beeckler and Gross [22] note in their work on par-
ticle simulations, development on FPGAs can still be
costly when using languages such as VHDL. Using
higher abstractions to the FPGA, such as Mitrion-C in-
creases productivity dramatically. Mitrion-C code can
compute 112 million particles per second with three
Xilinx Virtex-4 LX200 FPGAs. FPGAs have also been
used for tasks such as genome sequencing, molecular
dynamics, weather/climate and linear algebra, with a
10–100 times speedup compared to CPUs [159]. Pico
Computing, an FPGA board manufacturer, have also
accelerated genome sequencing. They report a speedup
of over 5000 times over CPUs using 112 FPGA de-
vices, and the FPGAs consume less than 300 watts
of power [44,86]. Leveraging the CBEA for sequence
analysis has been explored by Sachdeva et al. [152],
where compute intensive functions are performed on
the SPEs, and logic kept on the PPE. They conclude
that the CBEA is attractive from an energy perspective.
On the CBEA based Roadrunner supercomputer [21],
Swaminarayam et al. [167] take an existing molecular
dynamics code, and restructure it to suit the heteroge-
neous architecture. They achieve 368 teraflops, which
corresponds to 28% of peak performance. In addition
to speed increase, their implementation increased load
balancing possibilities, as well as freeing up Opteron
resources, enabling simultaneously analysis, visualiza-
tion, or checkpointing.

There has been an exponential interest and use of
node-level heterogeneous architectures in recent years.
The maturity of heterogeneous computing has in the
same time period gone from a proof-of-concept state
to industrially interesting technology. With the ever-
increasing application areas of heterogeneous architec-
tures, an exhaustive survey is impossible. Therefore,
we focus on a select few algorithms and applications
that together form a basis for understanding state-of-
the-art approaches. Table 3 gives an overview of cur-
rent approaches to heterogeneous computing.

5.1. Numerical linear algebra

Numerical linear algebra is a main building block
in many numerical algorithms, making efficient exe-
cution essential. Basic Linear Algebra Subprograms
(BLAS) [47] is the de facto API for low-level linear al-
gebra operations. Implementations of BLAS exist for
a variety of different architectures, and much work has
been done to optimize these due to their frequent use.
Both NVIDIA and AMD provide GPU-accelerated
BLAS implementations, namely CUBLAS [126] and
ACML–GPU [10]. BLAS is divided into three levels,
where the first two operate on vectors, typically mak-
ing them bandwidth limited. Utilizing more processor
cores on such bandwidth limited problems has no ef-
fect as long as the bandwidth remains constant. On
the other hand, using the vast bandwidth of accelera-
tors, such as the GPU and CBEA, can increase per-
formance over CPU implementations. FPGAs can also
increase performance via pipelined designs where la-
tency is traded for throughput. To take full advantage
of the floating point performance of accelerators, appli-
cations must exhibit a high ratio of arithmetic to mem-
ory operations. Level 3 BLAS operates on matrices,
and typically performs O(n3) operations on O(n2) data
elements, thus well suited for heterogeneous architec-
tures.

A key operation to solve dense linear systems is
matrix multiplication. Matrix multiplication exhibits
high arithmetic density, has regular memory access
patterns and control flow, making it one of the very few
operations where experienced and theoretical floating-
point performance roughly match. Larsen and McAl-
lister [105] developed the first algorithm for ma-
trix multiplication using a graphics API, before GPU
floating-point arithmetic were available. Matrix multi-
plication on GPUs has since been a popular research
topic. CUBLAS 2.0 uses the matrix multiplication al-
gorithm developed by Volkov and Demmel [180], opti-
mized not only to hide memory latency between main

20 A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing

Table 3

Summary of state-of-the-art approaches in heterogeneous computing

Application Approach

Miscellaneous Use of different programming languages (FPGA) [22]; Qualitative comparison (FPGA, CPU, GPU) [40]; Bioinfor-
matics (CBEA) [152]; Restructuring of code for heterogeneous architectures (CBEA) [167]; Molecular Dynamics
(FPGA) [159]

Dense linear algebra Achieving peak performance (CBEA) [5,41,70]; Matrix multiplication, LU decomposition (FPGA) [185]; Use of reg-
isters instead of shared memory (GPU) [180]; Linpack (CBEA) [99]; Mixed precision (FPGA) [164]

Sparse linear algebra Blocking (CBEA) [182]; Data structures (GPU) [23]

Fast Fourier transform Auto-tuning (GPU) [124]; Hierarchically decomposed (GPU) [66]; Iterative out-of-place (CBEA) [18]; Communication
overheads (CBEA) [184]; Power and resource consumption (FPGA) [115]; Double precision performance (FPGA) [76]

Stencil computations Cluster implementation (GPU) [11]; Varying stencil weights (CBEA, GPU) [43]; Domain blocking, register cy-
cling (GPU) [118]; Domain blocking, loop unrolling (CBEA) [12]; Auto-tuning (CBEA, GPU) [46]; Time skewing
(CBEA) [45,96]

Random numbers Sub-word operations (FPGA) [169]; Generating initial state [111]; Stateless (GPU) [165]; Tausworthe (GPU) [85];
Architectural constraints (GPU, CPU, FPGA) [168]

Scan Up and down sweep (GPU) [67,156]; Linked lists (CBEA) [19]; Histogram pyramids (GPU) [50,186]

Sorting Bitonic sort (GPU) [147]; Hybrid radix-bitonic, out-of-core (GPU) [65]; Radix (GPU) [154]; AA-sort (CBEA) [93]

Image processing Canny edge detection (GPU, FPGA) [109,123]; OpenCV (GPU, CBEA) [2,57,163]; Computer Vision library
(GPU) [16]

Note: The table is not an exhaustive list, but gives an overview of state-of-the-art problems and techniques.

graphics memory and shared memory, but also to re-
duce movement from shared memory to registers. Con-
trary to general guidelines, their approach consumes
a considerable amount of registers, reducing occu-
pancy (see Section 3.1), yet provides unprecedented
performance. A subset of BLAS has also been im-
plemented on the CBEA. Chen et al. [41], Hacken-
berg [70] and Alvaro et al. [5] present highly optimized
matrix multiplication implementations, where the lat-
ter uses 99.8% of the floating-point capacity of the
SPEs for C = C − A × B. On FPGAs, both fixed and
floating point matrix multiplication has been proposed.
Zhuo and Prasanna [185] present blocked matrix multi-
plication. Using processing elements consisting of one
floating-point multiplier, one floating point adder and
a set of registers, they optimize performance with re-
spect to clock speed and memory bandwidth use. The
use of more processing elements negatively affects at-
tainable clock speed, whilst increased block size pos-
itively affects memory bandwidth use. Their design is
further extendible to use several FPGAs, each with a
separate local memory, and they attain 4 gigaflops per-
formance on a Virtex-II XC2VP100.

Matrix multiplication is also a key element in the
Linpack benchmark, used to classify computers on
the Top500 list. Kistler et al. [99] implemented the
benchmark on the CBEA-based Roadrunner super-
computer [21]. Using a matrix multiplication algo-
rithm similar to that of Alvaro et al. [5], they achieved
75% of theoretical peak performance for the full
benchmark.

LAPACK is a commonly used library for high-level
algorithms from numerical linear algebra, that relies on
parallel BLAS implementations to benefit from multi-
core and heterogeneous architectures. To take full ad-
vantage of parallel BLAS implementations, however,
LAPACK must be adapted to avoid unnecessary mem-
ory allocations and copying of data. PLASMA [141]
is a new initiative to develop a linear algebra pack-
age that is more suitable for multi-core and heteroge-
neous architectures. Buttari et al. [34] describe how op-
erations like Cholesky, LU and QR factorizations can
be broken into sequences of smaller tasks, preferably
Level 3 BLAS operations. A dependency graph is used
to schedule the execution of tasks, so individual tasks
can be assigned to one or more accelerator cores. On
the FPGA, LU decomposition has been implemented
by Zhuo and Prasanna [185]. They use a linear array of
processor elements consisting of a floating point mul-
tiplier and a floating point adder. The first processor
element also includes a floating point divider, requir-
ing large amounts of real-estate. The whole design is
limited by the frequency of the floating point divider
for a small number of processing elements. A problem
with using many processing elements is that the com-
plex wiring degrades clock frequency. Going from one
to 18 processing elements, the clock frequency is de-
graded by 25%. A mixed precision LU decomposition
was developed by Sun et al. [164], where the FPGA
calculates a low-precision approximation to the solu-
tion using the Dolittle algorithm, followed by an iter-

A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing 21

ative refinement step on the CPU. Using lower preci-
sion for most calculations on the FPGA lessens laten-
cies of floating point units and uses less bandwidth,
thus speeding up computations.

Whilst LAPACK is a highly efficient library, it re-
quires low-level programming. MATLAB addresses
this by offering a high-level interactive interface. There
have been several efforts to accelerate MATLAB us-
ing GPUs, where native MATLAB syntax is used to
transparently execute computations on the GPU. The
first approach was given by Brodtkorb [32], providing
a MATLAB extension calling an OpenGL-based back-
end to carry out the computations. A similar approach
is taken in Jacket [1], a commercial product from Ac-
celereyes.

Sparse linear algebra is most often bandwidth lim-
ited, as random sparse matrices are typically stored us-
ing a format such as compressed row storage (CRS).
The CRS format consists of one vector with the val-
ues of all non-zero entries, stored row wise, and a sec-
ond vector containing the column index of each en-
try. The start index of each row is stored in a third
vector, yielding a very compact storage format. How-
ever, such storage formats require three lookups to find
the value of an element: first the row, then the col-
umn, and finally the value. Due to such indirections, it
is common with less than 10% bandwidth utilization,
and less than 1% compute utilization when computing
with sparse matrices on the CPU [64]. An important al-
gorithm in sparse linear algebra is matrix-vector mul-
tiply, often used in matrix solvers such as the conju-
gate gradients algorithm. Williams et al. [182] explore
a range of blocking strategies to avoid cache misses
and improve performance of sparse matrix-vector mul-
tiply on multi-core platforms. They use asynchronous
DMA transfers on the CBEA to stream blocks of ma-
trix elements in and blocks of vector elements out of
each SPE. A branchless technique similar to that of
Blelloch et al. [27] is used to avoid mis-predictions,
and SIMD instructions are used to further increase per-
formance. They are, on average, able to utilize 92.4%
of the peak bandwidth for a wide range of sparse ma-
trices. This is far greater than the bandwidth utiliza-
tion of multi-core CPUs when similar techniques are
employed. On the GPU, Bell and Garland [23] explore
sparse matrix-vector product using CUDA. They inves-
tigate a wide range of data structures including vari-
ants of CRS. However, the variants of CRS suffers ei-
ther from non-coalesced memory reads or unbalanced
workloads within warps. To overcome this, they devel-
oped a hybrid format, where structured parts of the ma-

trix are stored using a dense format, and the remaining
non-zero elements in a CRS format. Using this tech-
nique, a single NVIDIA GTX 280 GPU was twice as
fast as two CBEAs running the aforementioned algo-
rithm of Williams et al. [182].

5.2. The fast Fourier transform

The fast Fourier transform (FFT) is at the heart of
many computational algorithms, such as solving dif-
ferential equations in a Fourier basis, digital signal
processing, and image processing. The FFT is usually
among the first of algorithms ported to a new hard-
ware platform, and efficient vendor-specific libraries
are widely available.

NVIDIA provides the CUFFT library [127] for
CUDA-enabled GPUs, modeled on the FFTW li-
brary [56]. Version 2.3 supports single and double pre-
cision complex values, while real values are supported
for convenience only, as the conjugate symmetry prop-
erty is not used. Nukada and Matsuoka [124] present
an auto-tuning 3D FFT implementation that is 2.6–
8 times faster than CUFFT version 2.1, and with only
small performance differences between power-of-two
and non-power-of-two FFTs. Their implementation is
2.7–16 times faster on a GTX 280, compared to FFTW
running on a 2.2 GHz AMD quad core Phenom 9500.
Govindaraju et al. [66] have implemented three dif-
ferent FFT approaches using CUDA; shared memory,
global memory, and a hierarchically decomposed FFT.
At runtime, they select the optimal implementation for
the particular FFT. They report surpassing CUFFT 1.1
on both performance and accuracy. On a GTX280,
they report 8–40 times speedup over a 3.0 GHz In-
tel Core2 Quad Extreme using Intel MKL. Volkov and
Kazian [181] employ the approach taken by Volkov
and Demmel [180], where register use in CUDA is in-
creased, and report results equivalent to that of Govin-
daraju et al. [66]. Lloyd, Boyd and Govindaraju [107]
have implemented the FFT using DirectX, which runs
on GPUs from different vendors, and report speeds
matching CUFFT 1.1.

IBM has released FFT libraries for the CBEA that
can handle both 1D, 2D and 3D transforms [90,91].
The FFTW library includes an implementation for the
CBEA [56]. Bader and Agarwal [18] present an it-
erative out-of-place FFT implementation that yields
18.6 gigaflops performance, several gigaflops faster
than FFTW, and claim to be the fastest FFT imple-
mentation for 1–16,000 complex input samples. Xu et
al. [184] have another approach where they address

22 A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing

communication latencies. By using indirect swap net-
works, they are able to halve communication over-
heads.

Both Altera and Xilinx provide FFT IP cores [3,4]
that can be set up for both single precision and fixed
point FFT computations of vectors of up-to 65,536 el-
ements. McKeown and McAllister [115] optimize FFT
performance with respect to power and resource con-
sumption, and show over 36% reduction in power con-
sumption, and 61% reduction in slice use compared
to the 64-point Xilinx IP core. Hemmert and Under-
wood [76] have given some remarks on double pre-
cision FFTs on FPGAs, discussing pipelined versus
parallel designs. They report that the optimal design
depends on both the FFT size, as well as the FPGA
fabric size.

5.3. Stencil computations

Stencil computations are central in many computa-
tional algorithms, including linear algebra, solving par-
tial differential equations, and image processing algo-
rithms. Basically, a stencil computation is a weighted
average of a neighbourhood, computed for every lo-
cation in a grid. The stencil determines the size and
weighing of the neighbourhood, and all grid points can
be computed in parallel by using a separate input and
output buffer. The computational complexity of sten-
cil computations is often low, making them memory
bound, and thus, leveraging the high bandwidth of ac-
celerators can yield performance gains. As an extreme
example, Mattson et al. [112] demonstrated one ter-
aflops performance whilst using a mere 97 watts of
power on the Intel Teraflops Research Chip [176].

Stencil computations can be used efficiently to solve
partial differential equations that are discretized using
an explicit finite difference approach. Hagen et al. [71,
72] explored the suitability of early GPUs for complex
finite difference schemes to solve the shallow water
and Euler equations. Speed-ups of 10–30 times com-
pared to equivalent CPU implementations were pre-
sented, even on non-trivial domains. The Asian Disas-
ter Preparedness Center and the Japan Meteorological
Agency solve the shallow water equations in their pro-
totype tsunami simulator [11]. Their single node GPU
implementation is 62 times faster than the correspond-
ing CPU version, and they estimate that a simulation
of a 6000 × 6000 mesh will run in less than 10 min
using a cluster of 32 GPUs. Christen et al. [43] ex-
plore stencil computations in a bio-medical simulation
where the stencil weights vary in space. This makes

the computation far more complicated compared to a
static stencil, yet they report 22 gigaflops performance
using two CBEAs on a QS22 blade, and 7.8 gigaflops
on the NVIDIA GeForce 8800 GTX. For comparison,
a dual quad-core Intel Clovertown achieves 2 gigaflops
for the same computation.

Araya-Polo et al. [12] and Micikevicius [118] solve
the linear wave equation in three dimensions on the
CBEA and GPU, respectively. The wave equation
is key to reverse time migration in seismic process-
ing, and they solve it using an explicit finite differ-
ence scheme that ends up in a stencil computation.
On the CBEA, Araya-Polo et al. divide the compu-
tational domain into blocks, where the SPEs inde-
pendently compute on separate blocks. They traverse
each block in 2D planes, and are able to hide mem-
ory transfers by explicitly overlapping communica-
tion with computations. They also employ extensive
loop unrolling enabled by the large number of regis-
ters, and report 21.6 GB/s and 58.3 gigaflops perfor-
mance, corresponding to 85% and 25% of peak per-
formance for bandwidth and arithmetics, respectively.
Their implementation runs eight times faster than an
equally tuned CPU counterpart on a 2.3 GHz PowerPC
970MP. On the GPU, Micikevicius describes another
approach, where the volume is similarly divided into
blocks. Within each block, the volume is traversed in a
single pass by cycling over 2D slices. Shared memory
is used to store the 2D slice, including the apron as de-
fined by the stencil. The depth dimension is stored in
per-thread registers, which are used as a cyclic buffer.
Consistent results of 45–55 GB/s, and up-to 98 gi-
gaflops floating point performance are reported. This
corresponds to around 50% and 9% of peak bandwidth
and arithmetic performance, respectively, and the bot-
tleneck appears to be global memory latency. A GPU
cluster implementation is also presented. Super-linear
speedup over one GPU is achieved as each card uses
less memory, thus causing fewer translation lookaside
buffer (TLB) misses.

Datta et al. [46] employ an auto-tuning approach
to optimize performance of a seven-point 3D stencil
computation on multi-core CPUs, the CBEA, and a
GPU. In double precision they achieve 15.6 gigaflops
on a QS22 blade, and 36.5 gigaflops on the NVIDIA
GTX 280 GPU. However, whilst they report that the
CBEA is memory bound, they conclude that the GPU
is computationally bound for double precision. In total
the GPU is 6.8 times faster than their best auto-tuned
code on a traditional symmetric multi-core platform, a
dual socket Sun UltraSparc T2+ solution with a total
of 16 cores.

A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing 23

Fig. 6. Cache-aware and cache-oblivious blocking algorithms.

Traditional cache based architectures can employ al-
gorithmic optimizations such as time skewing [116] to
increase cache reuse. Time skewing requires the user
to explicitly partition the domain into space–time par-
allelograms, as shown in Fig. 6(a). After partitioning,
the stencil kernel is executed on each parallelogram in
turn. This concept has been further developed into re-
cursive cache-oblivious algorithms that subdivide the
trapezoids until they contain only one time-step [60],
as illustrated in Fig. 6(b). Both cases can be extended
to parallel execution by processor overlap. Time skew-
ing was mapped to the CBEA by Kamil et al. [96] and
Datta et al. [45]. In their early work, they used four
step time skewing with overlapping parallelograms be-
tween SPEs to solve a three-dimensional heat diffu-
sion problem using a finite difference scheme. They
demonstrate 65.8 gigaflops in single precision for the
3.2 GHz CBEA. For double precision calculations, the
early CBEA chips were computationally bound, and
thus, do not benefit from memory optimizations.

5.4. Random number generation

Monte Carlo integration methods are based on func-
tion evaluations at randomly sampled points. The idea
is to run the same simulation numerous times continu-
ously drawing new random numbers. In principle, this
approach is embarrassingly parallel. However, the pro-
duction of random numbers, which fuels the process,
is usually not embarrassingly parallel.

Pseudorandom number generators approximate
truly random numbers, and are often formulated as
forms of recurrence relations, maintaining a state of
the m most recently produced numbers and tapping
into this state to produce a new pseudorandom num-
ber. Linear congruential generators are defined by the
simple recurrence relation xi = (axi−1 + c) mod m,
producing sequences with a modest maximum period
of m. Multiple recursive generators combine the out-
put of multiple generators, extending the overall period
to the smallest common multiplier of the periods of
the combined generators. The Mersenne Twister [110]
is based on a linear recurrence function tapping into a

state of 624 32-bit integers. Its output is of high quality,
and with a very long period, it is often the generator of
choice.

Manipulation at word level is the natural primi-
tive for most processors, and thus, most pseudoran-
dom number generators work on the level of words as
well. A variant of the Mersenne Twister is the SIMD-
oriented Fast Mersenne Twister [153], which utilizes
the 128-bit operations provided by SSE2 and AltiVec,
and roughly doubles the performance. On the other
hand, FPGAs provide very fine-grained binary linear
operations, which opens possibilities for sub-word op-
erations, investigated by, e.g., Thomas and Luk [169].

Recurrence relations are serial in nature, but a com-
mon strategy is to run a set of pseudorandom num-
ber generators in parallel, taking care when initializing
the generators to avoid correlations. For the Mersenne
Twister, Matsumoto and Nishimura [111] proposed a
scheme to generate the initial state for an array of in-
dependent generators. Further, the size of the gener-
ator’s state may pose a problem: On NVIDIA GPUs,
a single warp of 32 threads, each running the Mersenne
Twister, would require 78 KiB of memory just for the
state, almost five times the amount of shared memory.

The output of pseudorandom number generators is
usually uniformly distributed. There are various ap-
proaches to convert uniformly distributed numbers to
other distributions. One example is a rejection method,
which rejects samples that do not fit the distribution.
This could introduce code path divergences on GPUs:
The Ziggurat method has only 1% risk of divergent be-
haviour, but with 32 threads in a warp, the risk of a di-
vergent warp is 30% [168]. On FPGAs, such a vary-
ing amount of outputs per invocation requires the im-
plementation to handle pipeline bubbles. A more direct
approach is to use the inverse cumulative distribution
function. For the normal distribution, a closed expres-
sion for the inverse cumulative distribution function
does not exist, so one must approximate using piece-
wise rational polynomials. The Box–Muller transform
uses trigonometric operations and logarithms, which
are generally considered expensive. On GPUs, how-
ever, fast versions of these instructions are built in, as
they are very common in computer graphics.

Most random number generators can be used di-
rectly on the CBEA, and the CBEA SDK [89] contains
a Monte Carlo library with implementations of the
Mersenne Twister, the SIMD-oriented Fast Mersenne
Twister, Kirkpatrick–Stoll pseudorandom number gen-
erators, as well as the Box–Muller transform and trans-
formation using the inverse cumulative normal distri-

24 A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing

bution. On GPUs, the early approach of Sussman et
al. [165] to implementing random number generation
used stateless combined explicit inverse congruential
generator. Howes and Thomas [85] give an overview
of implementing pseudorandom number generators in
CUDA, pointing to the problems of large state vec-
tors and that integer modulo is expensive on current
GPUs, and propose a hybrid generator that combines
a Tausworthe generator [106] with linear congruen-
tial generators. The CUDA SDK [128] contains an im-
plementation running an array of Mersenne Twisters
in parallel, storing the states in local memory. The
Brook+ SDK [8] contains an implementation of the
SIMD-oriented Fast Mersenne Twister, suitable for the
superscalar architecture of the AMD GPUs. Further,
Thomas et al. [168] evaluate strategies for generat-
ing pseudorandom numbers on CPUs, GPUs, FPGAs
and massively parallel processor arrays, focusing on al-
gorithmic constraints imposed by the respective hard-
ware architectures. They give an interesting bench-
mark, comparing both raw performance and energy
efficiency for their chosen approaches. An Intel Core 2
CPU produces on average 1.4 gigasamples/s at an en-
ergy efficiency of 5 megasamples/joule, an NVIDIA
GTX 280 produces 14 gigasamples/s at 115 megasam-
ples/joule, and a Xilinx Virtex-5 FPGA produces 44 gi-
gasamples/s at 1461 megasamples/joule.

5.5. Data-parallel primitives and sorting

Data-parallel primitives are building blocks for al-
gorithm design that execute efficiently on data-parallel
architectures. Particularly common patterns are reduce,
partial sums, partition, compact, expand and sorting.

The reduce pattern reduces an array of values into
a single result, e.g., calculating the sum of an array of
numbers. In this case, the direct approach of adding
numbers one-by-one, (((a0 + a1) + a2) + · · · + an−1)
has both work and step efficiency of O(n). However,
if we do pairwise recursive additions instead, shown in
Fig. 7, the step efficiency is reduced to O(log2 n) if we
can carry out n additions in parallel. Pairwise recursive
addition is an example of the binary reduce pattern,
which works with any binary associate operator.

Prefix-sum scan, initially proposed as part of the
APL programming language [95], computes all par-
tial sums, [a0, (a0 + a1), (a0 + a1 + a2), . . . , (a0 +
· · · + an−1)], for any binary associative operator. The
approach of Hillis and Steele [81] computes scan in
O(log2 n) steps using O(n log2 n) arithmetic opera-
tions. This approach was implemented by Horn [84] in

Fig. 7. Reduction to sum n elements requires log(n)/ log(p) passes,
where p is the reduction factor per pass.

OpenGL, producing the first efficient implementation
of scan on the GPU. Another implementation is pro-
vided in the Brook+ SDK [8]. Blelloch [26] presents a
two-phase approach of scan using an up-sweep phase
and a down-sweep phase. With this approach, the num-
ber of arithmetic operations is reduced to O(n). Sen-
gupta et al. [157] proposed an OpenGL implementa-
tion of this approach, and Greß et al. [67] proposed an-
other variant based on 2D-arrays and 4-way reductions,
also using OpenGL. Harris et al. [75] proposed an im-
plementation optimized for CUDA, which has been in-
corporated in the CUDA Data Parallel Primitives Li-
brary [74]. Blelloch [26] presents a range of uses for
scan, complemented by Sengupta et al. [156] with
particular emphasis on GPU implementation. On the
CBEA, Bader et al. [19] investigate prefix-sum scan of
arbitrary linked lists. They partition the lists into a set
of sublists, and find the local prefix-sum of each sublist
in parallel, using software-managed threads (see Sec-
tion 4.3). In a subsequent step, the prefix-sum of the
sums of the sublists are computed, which is then used
to update local prefix-sums forming the global prefix-
sum.

The partition pattern can be implemented using
scan. For example, Blelloch [26] suggests implement-
ing the split phase of radix sort using scan. In step i of
radix sort, the data is partitioned into two sets depend-
ing on whether bit i is set or not. By creating an array
containing 1 for every element with bit i not set and 0
otherwise, the +-scan of this array produces the offsets
in the resulting partitioned array for the 0-bit elements.
The +-scan is simply scan using the addition operator.
Running a +-scan in reverse order produces the offsets
from the end of the output array for the 1-bit elements,
and these two scans can be carried out in parallel.

Compaction is a variation of partition in which the
output is a compact array containing only a subset of
the elements in the input array, and expansion is the
situation where an input stream element is expanded
to multiple elements in the output stream. Both can be
done using scan with a predicate that associates input

A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing 25

stream elements with the output stream element count
for that element. For compaction, this amounts to asso-
ciating 1 with elements that should be kept and 0 with
the elements to be discarded. Running scan on the re-
sult of the predicate produces the offset into the com-
pacted array for each input array element to be kept,
and by iterating over the input elements, consulting
the results of the predicate function and scan, elements
to be kept can be written to its location in the com-
pacted array. This operation requires writing to arbi-
trary memory locations, that is, scatter writes, which
was unavailable on early GPUs. Horn [84] circum-
vented this by iterating over the compacted elements,
using binary search on the scan output to find the cor-
responding input array element. Ziegler et al. [186]
proposed a method for this problem in OpenGL using
histogram pyramids. Histogram pyramids use 4-way
reduction to produce a pyramid of partials sums, simi-
lar to the up-sweep phase of Greß et al. [67], however,
the down-sweep phase is omitted. The algorithm iter-
ates over the compacted array and the position of the
corresponding input element is found by traversing the
histogram pyramid from top to bottom. An extension
to the OpenGL histogram pyramid algorithm allowing
stream expansion was proposed by Dyken et al. [50],
along with a variant adapted to the CUDA architecture.

Another important algorithmic primitive is sorting
a one-dimensional vector, a common task in a wide
range of applications. However, traditional sorting al-
gorithms developed for the CPU do not map directly
to new architectures. Early GPGPU sorting algorithms
implemented using graphics APIs could not output
data to arbitrary memory locations. Instead, Purcell et
al. [147] implemented bitonic sort, where the basic op-
eration is to compare two values and output the small-
est or largest element. Govindaraju et al. [65] imple-
mented a hybrid radix-bitonic sort to sort out-of-core
data sets, allowing the sorting key to be larger than
32-bit. In their implementation, the GPU mainly per-
forms a bitonic sort.

The introduction of shared memory opened up the
possibility to implement a wider range of algorithms
directly on GPUs. Generally, the algorithms are based
on first sorting a block of data that fits in shared
memory, and then merge blocks. This strategy is also
suited for other parallel architectures, such as multi-
core CPUs and the CBEA, and is similar to algorithms
used for traditional distributed memory systems. On
the GPU, Satish et al. [154] base their implementa-
tion on radix sort, and use the aforementioned data par-
allel primitives in what they claim is the fastest sort-

ing implementation written in CUDA. AA-sort by In-
oue et al. [93] target CBEA and multi-core processors
with SIMD capabilities. In their implementation, data
blocks fitting in cache/local store are sorted using a
SIMD version of comb sort. Chhugani et al. [42] pre-
sented a sorting algorithm suitable for parallel archi-
tectures with a shared and coherent L2 cache and wide
SIMD capabilities. The upcoming Larrabee GPU is an
example of such an architecture. First, they divide the
data into blocks that fit in L2 cache and sort each block.
Each block is split once more, to allow each core to
work on one sub-block. Then the cores cooperate on
merging the sorted sub-blocks. This structure allows
the blocks to reside in L2 cache until the entire block
is sorted.

5.6. Image processing and computer vision

Many algorithms within image processing and com-
puter vision are ideal candidates for heterogeneous
computing. As the computational domain often is reg-
ular and two-dimensional, the algorithms often include
embarrassingly parallel stages, in addition to high-
level reasoning. One example is Canny edge detec-
tion [35], which itself is often used as input to other
algorithms. In Canny edge detection, a blurred gra-
dient image is created by convolving the input with
a Gauss filter, followed by a gradient convolution fil-
ter. Local maxima in the gradient direction are consid-
ered candidate edges. To distinguish between false and
true edges, a two-step hysteresis thresholding called
non-maximum suppression is performed. Magnitudes
larger than the upper threshold are considered true
edges, and magnitudes lower than the lower thresh-
old are considered non-edges. The remaining edges are
then classified as edges only if they can be directly
connected to existing true edges. This is an iterative
process, where the real edges grow out along candidate
edges.

Luo and Duraiswami [109] present a full implemen-
tation of Canny edge detection on the GPU. The con-
volution steps are fairly straightforward, and are effi-
ciently implemented using techniques described in the
NVIDIA CUDA Programming Guide. However, they
operate on RGB images with eight bits per channel,
whereas the memory bus on the GPU is optimized for
32-bit coalesced reads. They solve this issue by us-
ing 25% fewer threads during memory read, but where
each thread reads 32 bits. These 32 bits are subse-
quently split into the respective eight bit color channels
using efficient bit shifts. Thus, they require no redun-

26 A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing

dant memory reads, and the access is coalesced. For
the final part of the algorithm, they use a four-pass al-
gorithm to connect edges across CUDA block bound-
aries. Within each block, the threads cooperate us-
ing a breadth first search, and edges that cross bound-
aries are connected between the passes. On an NVIDIA
8800 GTX, the implementation executed over three
times faster compared to an optimized OpenCV im-
plementation on an 2.4 GHz Intel Core 2 Duo for dif-
ferent test images. The bottleneck is the edge connec-
tion step, which is a function of the number of edges,
and dominates 70% of the computational time. On the
FPGA, Neoh and Hazanchuk [123] utilize a pipelining
approach to find edges. Both convolutions are imple-
mented using symmetric separable filters in a pipeline
where latency is traded for throughput. Connecting
candidate edges is done using a FIFO queue initially
containing all classified edges. For each element in
the FIFO queue, candidate edges in the three by three
neighbourhood are found, marked as true edges and
added to the FIFO queue. On the Altera Stratix II
FPGA, the implementation is capable of processing
4000 256 × 256 images per second.

Canny edge detection is, as mentioned, often an in-
put to other algorithms for high-level reasoning, com-
monly referred to as computer vision. OpenCV [28]
is an open source computer vision library, focusing on
real-time performance with a highly tuned CPU im-
plementation. OpenCV has also been mapped to both
GPUs and the CBEA. GpuCV [2] uses GLSL, CUDA,
or a native OpenCV implementation, and can automat-
ically switch to the best implementation at run-time
with a small overhead. Operators such as Erode and
Sobel are benchmarked, and show speedups of 44–
193 times on an NVIDIA GTX 280 compared to a
2.13 GHz Core2 Duo. CVCell is a project that con-
sists of CBEA accelerated plugins for OpenCV [57].
Speed-ups of 8.5–37.4 times compared to OpenCV on
a 2.66 GHz Intel Core 2 Duo are reported for morpho-
logical operations [163]. Finally, MinGPU [16], is a
computer vision library built on top of OpenGL. This
preserves portability, but often sacrifices performance,
as OpenGL initiation can be more costly compared to
CUDA.

It becomes increasingly important to design image
processing algorithms for heterogeneous architectures,
for example, using total variation methods instead of
graph cut methods [145] for applications such as op-
tical flow computation, image registration, 3D recon-
struction and image segmentation. Michel et al. [117]
use the GPU to enable a humanoid robot to track 3D

objects. Color conversion, Canny edge detection, and
pose estimation is run on the GPU, and iterative model
fitting is run on the CPU. This enables real-time perfor-
mance, and leaves enough CPU resources to calculate
footsteps and other tasks. Another example is Boyer et
al. [31], who use the GPU to speed up automatic track-
ing of white blood cells, important in research into in-
flammation treatment drugs. Currently, this is a man-
ual process, where the center of each white blood cell
is marked manually. They employ a Gradient Inverse
Coefficient of Variation algorithm to locate the cells
initially, and in subsequent frames track the boundary.
They isolate a rectangle around the original cell posi-
tion, and compute a snake algorithm on rectangles in
parallel. They report 9.4 and 27.5 times speedup on
an NVIDIA GTX 280 compared to an OpenMP im-
plementation running on a 3.2 GHz Intel Core 2 Quad
Extreme. Finally, Baker et al. [20] compared FPGAs,
GPUs, and the CBEA for matched filter computations,
used to analyze hyperspectral images. The algorithm
is partitioned onto the CPU and accelerator core, and
they report the NVIDIA 7900 GTX to be most cost-
efficient, and the CBEA to give the best speedup and
speedup per watt.

6. Summary

We have described hardware, software, and state-of-
the-art algorithms for GPUs, FPGAs and the CBEA
in the previous sections. In this section, we summarize
the architectures, give our view on future trends, and
offer our concluding remarks.

6.1. Architectures

The three architectures we have reviewed have their
distinct benefits and drawbacks, which in turn affect
how well they perform for different applications. The
major challenge for application developers is to bridge
gap between theoretical and experienced performance,
that is, writing well balanced applications where there
is no apparent single bottleneck. This, of course, varies
from application to application, but also for a single ap-
plication on different architectures. However, it is not
only application developers that have demands to ar-
chitectures: economic, power and space requirements
in data-centers impose hard limits to architecture spec-
ifications.

The GPU is the best performing architecture when
it comes to single precision floating point arithmetic,

A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing 27

with an order of magnitude better performance com-
pared to the others. When considering the price and
performance per watt, the GPU also comes out
favourably. However, the GPU performs best when the
same operation is independently executed on a large
set of data, disfavouring algorithms that require exten-
sive synchronization and communication. GPU dou-
ble precision performance is now available, with one
fifth of the single precision performance for AMD, and
one half for NVIDIA. The new programming environ-
ments, such as CUDA and Brook+, enable efficient de-
velopment of code, and OpenCL further offers hope for
code portability.

The CBEA is still twice as fast as the state-of-the-
art CPU, even though it is now three years old. Fur-
thermore, it offers a very flexible architecture where
each core can run a separate program. Synchronization
and communication is fast, with over 200 GB/s band-
width on the element interconnect bus. This makes the
CBEA extremely versatile, yet somewhat more diffi-
cult to program than the GPU. It is also a very well
performing architecture when it comes to double pre-
cision. However, it is rather expensive.

FPGA performance is difficult to quantify in terms
of floating point operations, as floating point is typ-
ically avoided. FPGAs are much more suited for al-
gorithms where fixed point, integer, or bit operations
are key. For such tasks, the FPGA has an outstanding
raw performance, and an especially good performance
per watt ratio. If one needs floating point operations,
FPGA implementations benefit from tuning the preci-
sion to the minimum required level, independent of the
IEEE-754 standard. However, FPGAs have a discour-
aging price tag. They can also be very difficult to pro-
gram, but new languages such as Mitrion-C and Viva
offer promising abstractions.

6.2. Emerging features and technology

We believe that future applications will require het-
erogeneous processing. However, one must not over-
look legacy software that has existed for decades. Such
software is economically unfeasible to redesign, and
must use library calls to benefit from heterogeneous
processing. This has the drawback captured in Am-
dahl’s law, where the serial part of the code quickly
becomes the bottleneck. New applications and algo-
rithms, however, can be designed for existing, and fu-
ture, architectures.

In the future, we see it as likely that GPUs will enter
the HyperTransport bus, similarly to current FPGAs.

We believe that such GPU cards on the HyperTransport
bus will contain separate high-speed memory, and tar-
get server markets at a higher premium. Using NUMA
technology, we even see the possibility of a shared
address space, where both the CPU and GPU can
transparently access all memory. Such an architecture
would indeed be extremely useful, alleviating the PCI
express bottleneck, but more importantly the issue of
distinct memory spaces. Furthermore, it will be inter-
esting to see the impact of the Larrabee on the future
of GPU computing.

The CBEA roadmap schedules a chip with two
Power processor cores and 32 synergistic processing
elements for 2010. The state of these plans is uncertain,
but we find it likely that similar designs will be used in
the future. The major strengths of the CBEA is the ver-
satility of the synergistic processing units, and the use
of local store memory in conjunction with DMA. We
believe such features will become increasingly used as
power constraints become more and more pressing.

The obvious path of FPGAs is to simply continue
increasing the clock frequency, and decrease the pro-
duction techniques. However, the inclusion of power
processors in hardware is an interesting trend. We be-
lieve that the trend of an increased number of special-
purpose on-chip hardware, such as more floating point
adders, will continue. This will rapidly broaden the
spectrum of algorithms that are suitable for FPGAs.

6.3. Concluding remarks

Heterogeneous computing has in very few years
emerged as a separate scientific field encompassing ex-
isting fields such as GPGPU. One of the reasons that
heterogeneous computing has succeeded so well un-
til now has been the great success of GPGPU. How-
ever, the field of GPGPU is focused only on the use
of graphics cards. In the future, we believe that algo-
rithms cannot be designed for graphics cards alone, but
for general heterogeneous systems with complex mem-
ory hierarchies. We do not believe that symmetric mul-
tiprocessing has a future in the long term, as it is diffi-
cult to envision efficient use of hundreds of traditional
CPU cores. The use of hundreds of accelerator cores
in conjunction with a handful of traditional CPU cores,
on the other hand, appears to be a sustainable roadmap.

We have little belief in the one-size-fits-all for sci-
entific computing. The three architectures we have de-
scribed are currently addressing different needs, which
we do not see as transient. The GPU maximises highly
parallel stream computing performance, where com-

28 A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing

munication and synchronization is avoided. The CBEA
offers a highly versatile architecture, where each core
can run a separate program with fast inter-core com-
munication. Finally, the FPGA offers extreme perfor-
mance for applications relying on bit, integer, logic and
lower precision operations.

Acknowledgements

The authors would like to thank Gernot Ziegler
at NVIDIA Corporation, Knut-Andreas Lie and Jo-
han Seland at SINTEF ICT, and Praveen Bhaniramka
and Gaurav Garg at Visualization Experts Limited for
their fruitful comments and feedback. We also ap-
preciate the valuable input from the anonymous re-
viewers, and the continued support from AMD, IBM
and NVIDIA. Part of this work is done under Re-
search Council of Norway project number 180023
(Parallel3D) and 186947 (Heterogeneous Computing).
Dr. Storaasli’s research contributions were sponsored
by the Laboratory Directed Research and Development
Program of Oak Ridge National Laboratory managed
by UT-Battelle for the US Department of Energy under
Contract No. DE-AC05-00OR22725.

References

[1] Accelereyes, Jacket user guide, February 2009.
[2] Y. Allusse, P. Horain, A. Agarwal and C. Saipriyadarshan,

GpuCV: A GPU-accelerated framework for image processing
and computer vision, in: Intl. Symp. on Advances in Visual
Computing, Springer-Verlag, Berlin, 2008, pp. 430–439.

[3] Altera, FFT megacore function user guide, March 2009.
[4] Altera, Logicore ip fast Fourier transform v7.0 user guide,

June 2009.
[5] W. Alvaro, J. Kurzak and J. Dongarra, Fast and small short

vector SIMD matrix multiplication kernels for the synergis-
tic processing element of the cell processor, in: Intl. Conf.
on Computational Science, Springer-Verlag, Berlin, 2008,
pp. 935–944.

[6] AMD, R700-family instruction set architecture, March 2009.
[7] AMD, ATI Radeon HD 5870 GPU feature summary, avail-

able at: http://www.amd.com/us/products/desktop/graphics/
ati-radeon-hd-5000/hd-5870/Pages/ati-radeon-hd-5870-
specifications.aspx (visited 2009-10-28).

[8] AMD, ATI stream software development kit, available
at: http://developer.amd.com/gpu/ATIStreamSDK/ (visited
2009-04-28).

[9] AMD, Stream KernelAnalyzer, available at: http://developer.
amd.com/gpu/ska/.

[10] AMD, AMD core math library for graphic processors, March
2009, available at: http://developer.amd.com/gpu/acmlgpu/
(visited 2009-04-20).

[11] T. Aoki, Real-time tsunami simulation on a multinode GPU
cluster, in: SuperComputing, Portland, OR, 2009, poster.

[12] M. Araya-Polo, F. Rubio, R. de la Cruz, M. Hanzich, J. Cela
and D. Scarpazza, 3D seismic imaging through reverse-time
migration on homogeneous and heterogeneous multi-core
processors, Sci. Prog. 17(1,2) (2009), 185–198.

[13] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands,
K. Keutzer, D. Patterson, W. Plishker, J. Shalf, S. Williams
and K. Yelick, The landscape of parallel computing research:
A view from Berkeley, Technical report, EECS Department,
University of California, Berkeley, December 2006.

[14] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer,
J. Kubiatowicz, E. Lee, N. Morgan, G. Necula, D. Patterson,
K. Sen, J. Wawrzynek, D. Wessel and K. Yelick, The paral-
lel computing laboratory at U.C. Berkeley: A research agenda
based on the Berkeley view, Technical report, EECS Depart-
ment, University of California, Berkeley, December 2008.

[15] W. Aspray, The Intel 4004 microprocessor: What constituted
invention?, Hist. Comput. 19(3) (1997), 4–15.

[16] P. Babenko and M. Shah, MinGPU: a minimum GPU library
for computer vision, Real-Time Image Process. 3(4) (2008),
255–268.

[17] J. Backus, Can programming be liberated from the von Neu-
mann style?: a functional style and its algebra of programs,
Commun. ACM 21(8) (1978), 613–641.

[18] D. Bader and V. Argwal, FFTC: Fastest Fourier transform for
the IBM cell broadband engine, in: Intl. Conf. on High Per-
formance Computing, Goa, India, 2007, pp. 172–184.

[19] D. Bader, V. Agarwal and K. Madduri, On the design
and analysis of irregular algorithms on the cell processor:
A case study of list ranking, in: Intl. Parallel and Distributed
Processing Symp., Long Beach, CA, USA, 2007, pp. 1–10.

[20] Z. Baker, M. Gokhale and J. Tripp, Matched filter com-
putation on FPGA, cell and GPU, in: Symp. on Field-
Programmable Custom Computing Machines, IEEE Com-
puter Society, Washington, DC, USA, 2007, pp. 207–218.

[21] K. Barker, K. Davis, A. Hoisie, D. Kerbyson, M. Lang,
S. Pakin and J. Sancho, Entering the petaflop era: The archi-
tecture and performance of Roadrunner, in: Supercomputing,
November 2008, IEEE Press, Piscataway, NJ, USA, 2008,
pp. 1–11.

[22] J. Beeckler and W. Gross, Particle graphics on reconfig-
urable hardware, Reconfigurable Technology and Systems
1(3) (2008), 1–27.

[23] N. Bell and M. Garland, Efficient sparse matrix-vector mul-
tiplication on CUDA, NVIDIA Technical Report NVR-2008-
004, NVIDIA Corporation, December 2008.

[24] P. Bellens, J. Perez, R. Badia and J. Labarta, CellSs: a pro-
gramming model for the cell BE architecture, in: Supercom-
puting, ACM, New York, NY, USA, 2006, p. 86.

[25] S. Benkner, E. Laure and H. Zima, HPF+: An extension of
HPF for advanced applications, Technical report, The HPF+
Consortium, 1999.

[26] G. Blelloch, Prefix sums and their applications, Techni-
cal Report CMU-CS-90-190, School of Computer Science,
Carnegie Mellon University, November 1990.

[27] G. Blelloch, M. Heroux and M. Zagha, Segmented opera-
tions for sparse matrix computation on vector multiproces-
sors, Technical report, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, USA, 1993.

A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing 29

[28] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vi-
sion with the OpenCV Library, O’Reilly, Cambridge, MA,
USA, 2008.

[29] F. Bodin, An evolutionary path for high-performance hetero-
geneous multicore programming, 2008.

[30] G. Boone, Computing systems CPU, United States Patent
3,757,306, August 1971.

[31] M. Boyer, D. Tarjan, S. Acton and K. Skadron, Accelerat-
ing leukocyte tracking using cuda: A case study in leverag-
ing manycore coprocessors, in: Int. Parallel and Distributed
Processing Symp., Rome, Italy, 2009, pp. 1–12.

[32] A. Brodtkorb, The graphics processor as a mathematical co-
processor in MATLAB, in: Intl. Conf. on Complex, Intelli-
gent and Software Intensive Systems, Barcelona, Spain, IEEE
Computer Society, 2008, pp. 822–827.

[33] I. Buck, T. Foley, D. Horn, J. Sugerman, M. Houston and
P. Hanrahan, Brook for GPUs: Stream computing on graphics
hardware, SIGGRAPH, Los Angeles, CA, 2004.

[34] A. Buttari, J. Langou, J. Kurzak and J. Dongarra, A class of
parallel tiled linear algebra algorithms for multicore architec-
tures, Parallel Comput. 35(1) (2009), 38–53.

[35] J. Canny, A computational approach to edge detection, Pat-
tern Anal. Machine Intelligence 8(6) (1986), 679–698.

[36] Celoxica website, http://www.celoxica.com/ (visited 2009-
04-28).

[37] R. Chamberlain, M. Franklin, E. Tyson, J. Buhler, S. Gayen,
P. Crowley and J. Buckley, Application development on hy-
brid systems, in: SC’07: Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, ACM, New York, NY, USA,
2007, pp. 1–10.

[38] Chapel language specification 0.782, Technical report, Cray
Inc., 2009.

[39] B. Chapman, G. Jost and R. van der Pas, Using OpenMP:
Portable Shared Memory Parallel Programming, MIT Press,
Cambridge, MA, USA, 2007.

[40] S. Che, J. Li, J. Sheaffer, K. Skadron and J. Lach, Ac-
celerating compute-intensive applications with GPUs and
FPGAs, in: Symposium on Application Specific Processors,
2008 (SASP’2008), Anaheim, CA, June 2008, pp. 101–107.

[41] T. Chen, R. Raghavan, J. Dale and E. Iwata, Cell broad-
band engine architecture and its first implementation: a per-
formance view, IBM J. Res. Dev. 51(5) (2007), 559–572.

[42] J. Chhugani, A. Nguyen, V. Lee, W. Macy, M. Hagog,
Y.-K. Chen, A. Baransi, S. Kumar and P. Dubey, Efficient im-
plementation of sorting on multi-core SIMD CPU architec-
ture, Proc. VLDB Endowment 1(2) (2008), 1313–1324.

[43] M. Christen, O. Schenk, P. Messmer, E. Neufeld and
H. Burkhart, Accelerating stencil-based computations by in-
creased temporal locality on modern multi- and many-core
architectures, in: Intl. Workshop on New Frontiers in High-
Performance and Hardware-Aware Computing, KIT Scien-
tific Publishing, Karlsruhe, Germany, 2008, pp. 47–54.

[44] Pico Computing, Accelerating bioinformatics searching and
dot plotting using a scalable FPGA cluster, November 2009
(visited 2009-11-14).

[45] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf and
K. Yelick, Optimization and performance modeling of stencil
computations on modern microprocessors, SIAM Rev. 51(1)
(2009), 129–159.

[46] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,
L. Oliker, D. Patterson, J. Shalf and K. Yelick, Stencil

computation optimization and auto-tuning on state-of-the-art
multicore architectures, in: Supercomputing, IEEE Press, Pis-
cataway, NJ, USA, 2008, pp. 1–12.

[47] J. Dongarra, Basic linear algebra subprograms technical fo-
rum standard, High Perform. Appl. Supercomput. 16 (2002),
1–111.

[48] U. Drepper, What every programmer should know about
memory, November 2007, available at: http://people.
redhat.com/drepper/cpumemory.pdf (visited 2009-03-20).

[49] Dsplogic website, http://www.dsplogic.com/ (visited 2009-
04-28).

[50] C. Dyken, G. Ziegler, C. Theobalt and H.-P. Seidel, High-
speed marching cubes using histogram pyramids, Computer
Graphics Forum 27(8) (2008), 2028–2039.

[51] EDA Industry Working Groups, http://www.vhdl.org/ (visited
2009-04-28).

[52] A. Eichenberger, J. O’Brien, K. O’Brien, P. Wu, T. Chen,
P. Oden, D. Prener, J. Shepherd, B. So, Z. Sura, A. Wang,
T. Zhang, P. Zhao and M. Gschwind, Optimizing compiler for
the cell processor, in: Intl. Conf. on Parallel Architectures and
Compilation Techniques, IEEE Computer Society, Washing-
ton, DC, USA, 2005, pp. 161–172.

[53] A. Eichenberger, J. O’Brien, K. O’Brien, P. Wu, T. Chen,
P. Oden, D. Prener, J. Shepherd, B. So, Z. Sura, A. Wang,
T. Zhang, P. Zhao, M. Gschwind, R. Archambault, Y. Gao and
R. Koo, Using advanced compiler technology to exploit the
performance of the cell broadband engine architecture, IBM
Syst. J. 45(1) (2006), 59–84.

[54] E. Elsen, P. LeGresley and E. Darve, Large calculation of the
flow over a hypersonic vehicle using a GPU, Comput. Phys.
227(24) (2008), 10148–10161.

[55] K. Fatahalian, D. Horn, T. Knight, L. Leem, M. Houston,
J. Park, M. Erez, M. Ren, A. Aiken, W. Dally and P. Hanra-
han, Sequoia: programming the memory hierarchy, in: Super-
computing, ACM, New York, NY, USA, 2006, p. 83.

[56] Fftw website, http://www.fftw.org (visited 2009-04-28).
[57] Fixtars, OpenCV on the cell, available at: http://cell.fixstars.

com/opencv/ (visited 2009-03-20).
[58] M. Flynn, Some computer organizations and their effective-

ness, Trans. Comput. C-21(9) (1972), 948–960.
[59] M. Flynn, R. Dimond, O. Mencer and O. Pell, Finding

speedup in parallel processors, in: Intl. Symp. on Parallel and
Distributed Computing, Miami, FL, USA, July 2008, pp. 3–7.

[60] M. Frigo and V. Strumpen, The memory behavior of cache
oblivious stencil computations, in: Supercomputing, Vol. 39,
Kluwer Academic Publishers, Hingham, MA, USA, 2007,
pp. 93–112.

[61] I. Foster and K. Chandy, Fortran M: A language for modular
parallel programming, Parallel Distrib. Comput. 26 (1992).

[62] D. Göddeke, R. Strzodka and S. Turek, Performance and ac-
curacy of hardware-oriented native-, emulated- and mixed-
precision solvers in FEM simulations, Parallel Emergent Dis-
trib. Syst. 22(4) (2007), 221–256.

[63] D. Göddeke and R. Strzodka, Performance and accuracy
of hardware-oriented native-, emulated- and mixed-precision
solvers in FEM simulations (part 2: Double precision GPUs),
Technical report, Technical University Dortmund, 2008.

[64] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick,
S. Buijssen, M. Grajewski and S. Turek, Exploring weak scal-
ability for FEM calculations on a GPU-enhanced cluster, Par-
allel Comput. 33(10,11) (2007), 685–699.

30 A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing

[65] N. Govindaraju, J. Gray, R. Kumar and D. Manocha, GPUT-
eraSort: high performance graphics co-processor sorting for
large database management, in: Intl. Conf. on Management of
Data, ACM, New York, NY, USA, 2006, pp. 325–336.

[66] N. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith and J. Man-
ferdelli, High performance discrete Fourier transforms on
graphics processors, in: Supercomputing, IEEE Press, Piscat-
away, NJ, USA, 2008, pp. 1–12.

[67] A. Greß, M. Guthe and R. Klein, GPU-based collision de-
tection for deformable parameterized surfaces, Computer
Graphics Forum 25(3) (2006), 497–506.

[68] W. Gropp, E. Lusk and A. Skjellum, Using MPI: Portable
Parallel Programming with the Message-Passing Interface,
2nd edn, MIT Press, Cambridge, MA, USA, 1999.

[69] J. Gustafson, Reconstruction of the Atanasoff–Berry com-
puter, in: The First Computers: History and Architectures,
R. Rojas and U. Hashagen, eds, MIT Press, Cambridge, MA,
USA, 2000, pp. 91–106, Chapter 6.

[70] D. Hackenberg, Fast matrix multiplication on cell
(SMP) systems, July 2007, available at: http://www.tu-
dresden.de/zih/cell/matmul/ (visited 2009-02-24).

[71] T. Hagen, J. Hjelmervik, K.-A. Lie, J. Natvig and M. Henrik-
sen, Visual simulation of shallow-water waves, Simul. Model.
Pract. Theory 13(8) (2005), 716–726.

[72] T. Hagen, K.-A. Lie and J. Natvig, Solving the euler equations
on graphics processing units, in: Intl. Conf. on Computational
Science, V.N. Alexandrov, G.D. van Albada, P.M. Sloot and
J. Dongarra, eds, LNCS, Vol. 3994, Springer, 2006, pp. 220–
227.

[73] M. Harris, Parallel computing with CUDA, SIGGRAPH Asia
2008 presentation, avaiklable at: http://sa08.idav.ucdavis.
edu/NVIDIA.CUDA.Harris.pdf (visited 2009-04-28).

[74] M. Harris, J. Owens, S. Sengupta, Y. Zhang and A. David-
son, CUDPP: CUDA data parallel primitives library, available
at: http://www.gpgpu.org/developer/cudpp/ (visited 2009-03-
20).

[75] M. Harris, S. Sengupta and J. Owens, Parallel prefix sum
(scan) with CUDA, in: GPU Gems 3, H. Nguyen, ed.,
Addison-Wesley, Boston, MA, USA, 2007, pp. 851–876.

[76] K. Hemmert and K. Underwood, An analysis of the double-
precision floating-point FFT on FPGAs, in: Symp. on Field-
Programmable Custom Computing Machines, IEEE Com-
puter Society, Washington, DC, USA, 2005, pp. 171–180.

[77] J. Hennessy and D. Patterson, Computer Architecture:
A Quantitative Approach, 4th edn, Morgan Kaufmann, San
Francisco, CA, USA, 2007.

[78] N. Higham, The accuracy of floating point summation, Sci.
Comp. 14(4) (1993), 783–799.

[79] P. Hilfinger, D. Bonachea, K. Datta, D. Gay, S. Graham, B. Li-
blit, G. Pike, J. Su and K. Yelick, Titanium language reference
manual, Technical report, UC Berkeley, 2005.

[80] M. Hill and M. Marty, Amdahl’s law in the multicore era,
IEEE Computer 41(7) (2008), 33–38.

[81] W. Hillis and G. Steele Jr., Data parallel algorithms, Commun.
ACM 29(12) (1986), 1170–1183.

[82] J. Hjelmervik, Heterogeneous computing with focus on me-
chanical engineering, PhD dissertation, University of Oslo
and Grenoble Institute of Technology, 2009. (Thesis ac-
cepted. Defence 2009-05-06.)

[83] R. Holt, LSI technology state of the art in 1968, September
1998.

[84] D. Horn, Stream reduction operations for GPGPU applica-
tions, in: GPU Gems 2, M. Pharr and R. Fernando, eds,
Addison-Wesley, Boston, MA, USA, 2005, pp. 573–589.

[85] L. Howes and D. Thomas, Efficient random number gen-
eration and application using CUDA, in: GPU Gems 3,
H. Nguyen, ed., Addison-Wesley, Boston, MA, USA, 2007,
pp. 805–830.

[86] HPCWire, FPGA cluster accelerates bioinformat-
ics application by 5000×, November 2009, available
at: http://www.hpcwire.com/offthewire/FPGA-Cluster-
Accelerates-Bioinformatics-Application-by-5000X-
69612762.html (visited 2009-11-14).

[87] IBM, PowerPC microprocessor family: Vector/SIMD mul-
timedia extension technology programming environments
manual, 2005.

[88] IBM, IBM BladeCenter QS22, available at: http://www-03.
ibm.com/systems/bladecenter/hardware/servers/qs22/ (vis-
ited 2009-04-20).

[89] IBM, Software development kit for multicore acceleration
version 3.1: Programmers guide, August 2008.

[90] IBM, Fast Fourier transform library: Programmer’s guide and
API reference, August 2008.

[91] IBM, 3d fast Fourier transform library: Programmer’s guide
and API reference, August 2008.

[92] Impulse accelerated technologies, http://impulseaccelerated.
com/ (visited 2009-04-28).

[93] H. Inoue, T. Moriyama, H. Komatsu and T. Nakatani,
AA-sort: A new parallel sorting algorithm for multi-core
SIMD processors, in: Intl. Conf. on Parallel Architecture and
Compilation Techniques, IEEE Computer Society, Washing-
ton, DC, USA, 2007, pp. 189–198.

[94] ISO/IEC, 9899:TC3, International Organization for Standard-
ization, September 2007.

[95] K. Iverson, A Programming Language, Wiley, New York, NY,
USA, 1962.

[96] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf and
K. Yelick, Implicit and explicit optimizations for stencil com-
putations, in: Workshop on Memory System Performance and
Correctness, ACM, New York, NY, USA, 2006, pp. 51–60.

[97] K. Kennedy, C. Koelbel and H. Zima, The rise and fall of high
performance Fortran: an historical object lesson, in: Conf. on
History of Programming Languages, 2007, San Diego, CA,
USA, 7-1–7-22.

[98] Khronos OpenCL Working Group, The OpenCL speci-
fication 1.0, 2008, available at: http://www.khronos.org/
registry/cl/ (visited 2009-03-20).

[99] M. Kistler, J. Gunnels, D. Brokenshire and B. Benton, Petas-
cale computing with accelerators, in: Symp. on Principles
and Practice of Parallel Programming, ACM, New York, NY,
USA, 2008, pp. 241–250.

[100] T. Knight, J. Park, M. Ren, M. Houston, M. Erez, K. Fata-
halian, A. Aiken, W. Dally and P. Hanrahan, Compilation for
explicitly managed memory hierarchies, in: Symp. on Princi-
ples and Practice of Parallel Programming, ACM, New York,
NY, USA, 2007, pp. 226–236.

[101] C. Koelbel, U. Kremer, C.-W. Tseng, M.-Y. Wu, G. Fox,
S. Hiranandani and K. Kennedy, Fortran D language specifi-
cation, Technical report, 1991.

[102] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carl-
son, W. Dally, M. Denneau, P. Franzon, W. Harrod,
K. Hill, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas,

A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing 31

M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling,
R. Williams and K. Yelick, Exascale computing study: Tech-
nology challenges in achieving exascale systems, Technical
report, DARPA IPTO, 2008.

[103] M. Krishna, A. Kumar, N. Jayam, G. Senthilkumar, P. Baruah,
R. Sharma, S. Kapoor and A. Srinivasan, A synchronous
mode MPI implementation on the cell BE architecture, in:
Intl. Symp. on Parallel and Distributed Processing with Ap-
plications, Niagara Falls, ON, Canada, 2007, pp. 982–991.

[104] A. Kumar, G. Senthilkumar, M. Krishna, N. Jayam, P. Baruah,
R. Sharma, A. Srinivasan and S. Kapoor, A buffered-mode
MPI implementation for the cell BE processor, in: Intl. Conf.
on Computational Science, Springer-Verlag, Berlin, 2007,
pp. 603–610.

[105] E. Larsen and D. McAllister, Fast matrix multiplies using
graphics hardware, in: Supercomputing, ACM, New York,
NY, USA, 2001, p. 55.

[106] P. L’Ecuyer, Maximally equidistributed combined Taus-
worthe generators, Math. Comput. 65(213) (1996), 203–213.

[107] B. Lloyd, C. Boyd and N. Govindaraju, Fast computation of
general Fourier transforms on GPUs, in: Intl. Conf. on Multi-
media & Expo, Hannover, Germany, 2008, pp. 5–8.

[108] E. Loh and G. Walster, Rump’s example revisited, Reliab.
Comput. 8(3) (2002), 245–248.

[109] Y. Luo and R. Duraiswami, Canny edge detection on NVIDIA
CUDA, in: Computer Vision and Pattern Recognition Work-
shops, June 2008, IEEE Computer Society Press, Washing-
ton, DC, USA, 2008, pp. 1–8.

[110] M. Matsumoto and T. Nishimura, Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random num-
ber generator, Model. Comput. Simul. 8(1) (1998), 3–30.

[111] M. Matsumoto and T. Nishimura, Dynamic creation of
pseudorandom number generators, in: Monte Carlo and
Quasi-Monte Carlo Methods 1998, Springer-Verlag, Heidel-
berg, Germany, 2000, pp. 56–69.

[112] T. Mattson, R. Van der Wijngaart and M. Frumkin, Program-
ming the Intel 80-core network-on-a-chip terascale processor,
in: Supercomputing, IEEE Press, Piscataway, NJ, USA, 2008,
pp. 1–11.

[113] M. McCool, Data-parallel programming on the cell BE and
the GPU using the Rapidmind development platform, in:
gSPx Multicore Applications Conference, November 2006.

[114] M. McCool, S. Du Toit, T. Popa, B. Chan and K. Moule,
Shader algebra, in: SIGGRAPH, ACM, New York, NY, USA,
2004, pp. 787–795.

[115] S. McKeown, R. Woods and J. McAllister, Algorithmic fac-
torisation for low power FPGA implementations through in-
creased data locality, in: Int. Symp. on VLSI Design, Automa-
tion and Test, April 2008, pp. 271–274.

[116] J. McZalpin and D. Wonnacott, Time skewing: A value-based
approach to optimizing for memory locality, Technical Report
dcs-tr-379, Rutgers School of Arts and Sciences, 1999.

[117] P. Michel, J. Chestnut, S. Kagami, K. Nishiwaki, J. Kuffner
and T. Kanade, GPU-accelerated real-time 3D tracking for
humanoid locomotion and stair climbing, in: Intl. Conf. on
Intelligent Robots and Systems, San Diego, CA, USA, 29
October–2 November 2007, pp. 463–469.

[118] P. Micikevicius, 3D finite difference computation on GPUs
using CUDA, in: Workshop on General Purpose Processing
on Graphics Processing Units, ACM, New York, NY, USA,
2009, pp. 79–84.

[119] Microsoft, DirectX: Advanced graphics on windows, avail-
able at: http://msdn.microsoft.com/directx (visited 2009-03-
31).

[120] Mitronics website, http://www.mitrion.com/ (visited 2009-
04-28).

[121] E. Mollick, Establishing Moore’s law, Hist. Comput. 28(3)
(2006), 62–75.

[122] G. Moore, Cramming more components onto integrated cir-
cuits, Electronics 38(8) (1965), 114–117.

[123] H. Neoh and A. Hazanchuk, Adaptive edge detection for
real-time video processing using FPGAs, March 2005,
available at: http://www.altera.com/literature/cp/gspx/edge-
detection.pdf (visited 2009-03-20).

[124] A. Nukada and S. Matsuoka, Auto-tuning 3-D FFT library for
CUDA GPUs, in: Supercomputing, 2009.

[125] R. Numrich and J. Reid, Co-Array Fortran for parallel pro-
gramming, Technical report, Fortran Forum, 1998.

[126] NVIDIA, CUDA CUBLAS library version 2.0, March 2008.
[127] NVIDIA, CUDA CUFFT library version 2.1, March 2008.
[128] NVIDIA, CUDA SDK version 2.0, 2008.
[129] NVIDIA, CUDA Zone, available at: http://www.nvidia.com/

cuda (visited 2009-03-20).
[130] NVIDIA, Developer Zone, available at: http://developer.

nvidia.com/ (visited 2009-09-07).
[131] NVIDIA, NVIDIA’s next generation CUDA compute archi-

tecture: Fermi, October 2009.
[132] NVIDIA, NVIDIA GeForce GTX 200 GPU architectural

overview, May 2008.
[133] NVIDIA, NVIDIA CUDA reference manual 2.0, June 2008.
[134] K. O’Brien, K. O’Brien, Z. Sura, T. Chen and T. Zhang, Sup-

porting OpenMP on cell, Parallel Prog. 36(3) (2008), 289–
311.

[135] M. Ohara, H. Inoue, Y. Sohda, H. Komatsu and T. Nakatani,
MPI microtask for programming the cell broadband engine
processor, IBM Syst. J. 45(1) (2006), 85–102.

[136] OpenFPGA website, http://www.openfpga.org/ (visited
2009-04-28).

[137] OpenGL Architecture Review Board, D. Shreiner, M. Woo,
J. Neider and T. Davis, OpenGL Programming Guide: The
Official Guide to Learning OpenGL, 6th edn, Addison-
Wesley, Boston, MA, USA, 2007.

[138] Open systemc initiative, http://www.systemc.org/ (visited
2009-04-28).

[139] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone and
J. Phillips, GPU computing, Proc. IEEE 96(5) (2008), 879–
899.

[140] S. Pakin, Receiver-initiated message passing over RDMA
networks, in: Intl. Parallel and Distributed Processing Symp.,
Miami, FL, USA, April 2008.

[141] Parallel linear algebra for scalable multi-core architectures
(PLASMA) project, available at: http://icl.cs.utk.edu/plasma/
(visited 2009-04-20).

[142] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Kee-
ton, C. Kozyrakis, R. Thomas and K. Yelick, A case for intel-
ligent RAM, IEEE Micro 17(2) (1997), 34–44.

[143] J. Perez, P. Bellens, R. Badia and J. Labarta, CellSs: making
it easier to program the cell broadband engine processor, IBM
J. Res. Dev. 51(5) (2007), 593–604.

[144] J. Peterson, P. Bohrer, L. Chen, E. Elnozahy, A. Gheith,
R. Jewell, M. Kistler, T. Maeurer, S. Malone, D. Murrell,
N. Needel, K. Rajamani, M. Rinaldi, R. Simpson, K. Sudeep

32 A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing

and L. Zhang, Application of full-system simulation in ex-
ploratory system design and development, IBM J. Res. Dev.
50(2,3) (2006), 321–332.

[145] T. Pock, M. Unger, D. Cremers and H. Bischof, Fast and exact
solution of total variation models on the GPU, in: Computer
Vision and Pattern Recognition Workshops, June 2008, IEEE
Computer Society Press, Washington, DC, USA, 2008, pp.
1–8.

[146] Portland Group, PGI accelerator compilers, available at:
http://www.pgroup.com/resources/accel.htm (visited 2009-
08-05).

[147] T. Purcell, C. Donner, M. Cammarano, H. Jensen and P. Han-
rahan, Photon mapping on programmable graphics hard-
ware, in: EUROGRAPHICS, Eurographics Association, 2003,
pp. 41–50.

[148] RapidMind, Cell BE porting and tuning with RapidMind:
A case study, 2006, available at: http://www.rapidmind.
net/case-cell.php (visited 2009-03-20).

[149] M. Ren, J. Park, M. Houston, A. Aiken and W. Dally, A tun-
ing framework for software-managed memory hierarchies, in:
Intl. Conf. on Parallel Architectures and Compilation Tech-
niques, ACM, New York, NY, USA, 2008, pp. 280–291.

[150] Report on the experimental language X10, draft 0.41, Tech-
nical report, IBM, 2006.

[151] H. Richardson, High performance Fortran: history, overview
and current developments, Technical Report 1.4 TMC-261,
Thinking Machines Corporation, 1996.

[152] V. Sachdeva, M. Kistler, E. Speight and T.-H. Tzeng, Explor-
ing the viability of the cell broadband engine for bioinformat-
ics applications, Parallel Comput. 34(11) (2008), 616–626.

[153] M. Saito and M. Matsumoto, SIMD-oriented fast Mersenne
Twister: a 128-bit pseudorandom number generator, in:
Monte Carlo and Quasi-Monte Carlo Methods, Springer-
Verlag, Heidelberg, Germany, 2008.

[154] N. Satish, M. Harris and M. Garland, Designing efficient sort-
ing algorithms for manycore GPUs, NVIDIA, NVIDIA Tech-
nical Report NVR-2008-001, September 2008.

[155] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Es-
pasa, E. Grochowski, T. Juan and P. Hanrahan, Larrabee:
a many-core ×86 architecture for visual computing, Trans.
Graph. 27(3) (2008), 1–15.

[156] S. Sengupta, M. Harris, Y. Zhang and J. Owens, Scan prim-
itives for GPU computing, in: EUROGRAPHICS, Pergamon
Press Inc., Elmsford, NY, USA, 2007, pp. 97–106.

[157] S. Sengupta, A. Lefohn and J. Owens, A work-efficient
step-efficient prefix sum algorithm, in: Workshop on Edge
Computing Using New Commodity Architectures, May 2006,
pp. 26–27.

[158] B. Stackhouse, B. Cherkauer, M. Gowan, P. Gronowski
and C. Lyles, A 65nm 2-billion-transistor quad-core Itanium
processor, in: Intl. Solid-State Circuits Conf., Lille, France,
February 2008, pp. 92–598.

[159] O. Storaasli and D. Strenski, Beyond 100× speedup with
FPGAs: Cray XD1 I/O analysis, in: Cray Users Group, Cray
User Group Inc., Corvallis, OR, USA, 2009.

[160] O. Storaasli, W. Yu, D. Strenski and J. Maltby, Performance
evaluation of FPGA-based biological applications, in: Cray
User Group, Cray User Group Inc., Corvallis, OR, USA,
2007.

[161] D. Strenski, 2009, personal communication.

[162] D. Strenski, J. Simkins, R. Walke and R. Wittig, Evaluat-
ing fpgas for floating-point performance, in: Intl. Workshop
on High-Performance Reconfigurable Computing Technology
and Applications, November 2008, IEEE Computer Society
Press, Washington, DC, USA, pp. 1–6.

[163] H. Sugano and R. Miyamoto, Parallel implementation of mor-
phological processing on cell/BE with OpenCV interface, in:
Intl. Symp. on Communications, Control and Signal Process-
ing, St. Julians, Malta, March 2008, pp. 578–583.

[164] J. Sun, G. Peterson and O. Storaasli, High-performance
mixed-precision linear solver for FPGAs, IEEE Trans. Com-
put. 57(12) (2008), 1614–1623.

[165] M. Sussman, W. Crutchfield and M. Papakipos, Pseudoran-
dom number generation on the GPU, in: Graphics Hardware,
ACM, New York, NY, USA, 2006, pp. 87–94.

[166] Starbridge systems website, http://www.starbridgesystems.
com/ (visited 2009-12-04).

[167] S. Swaminarayan, K. Kadau, T. Germann and G. Fossum,
369 tflop/s molecular dynamics simulations on the Road-
runner general-purpose heterogeneous supercomputer, in:
Supercomputing, IEEE Press, Piscataway, NJ, USA, 2008,
pp. 1–10.

[168] D. Thomas, L. Howes and W. Luk, A comparison of CPUs,
GPUs, FPGAs and masssively parallel processor arrays for
random number generation, in: FPGA, ACM, New York, NY,
USA, 2009.

[169] D. Thomas and W. Luk, High quality uniform random num-
ber generation using LUT optimised state-transition matrices,
VLSI Signal Process. Syst. 47(1) (2007), 77–92.

[170] Tokyo Tech, November 2008, booth #3208 at Supercom-
puting’08, available at: http://www.voltaire.com/assets/files/
Case%20studies/titech_case_study_final_for_SC08.pdf (vis-
ited 2009-04-28).

[171] Top 500 supercomputer sites, June 2009, available at:
http://www.top500.org/.

[172] Top green500 list, November 2008, available at:
http://www.green500.org/.

[173] UPC language specification v1.2, Technical report, UPC Con-
sortium, 2005.

[174] A. van Amesfoort, A. Varbanescu, H. Sips and R. van
Nieuwpoort, Evaluating multi-core platforms for HPC data-
intensive kernels, in: Conf. on Computing Frontiers, ACM,
New York, NY, USA, 2009, pp. 207–216.

[175] W. van der Laan, Cubin utilities, 2007, available at: http://
www.cs.rug.nl/~wladimir/decuda/ (visited 2009-03-20).

[176] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, A. Singh, T. Jacob, S. Jain, V. Erra-
guntla, C. Roberts, Y. Hoskote, N. Borkar and S. Borkar, An
80-tile sub-100-w teraflops processor in 65-nm CMOS, Solid-
State Circuits 43(1) (2008), 29–41.

[177] A. Varbanescu, H. Sips, K. Ross, Q. Liu, L.-K. Liu, A. Nat-
sev and J. Smith, An effective strategy for porting C++ appli-
cations on cell, in: Intl. Conf. on Parallel Processing, IEEE
Computer Society, Washington, DC, USA, 2007, p. 59.

[178] Verilog website, http://www.verilog.com/ (visited 2009-04-
28).

[179] D. Vianney, G. Haber, A. Heilper and M. Zalmanovici, Per-
formance analysis and visualization tools for cell/B.E. mul-
ticore environment, in: Intl. Forum on Next-Generation Mul-
ticore/Manycore Technologies, ACM, New York, NY, USA,
2008, pp. 1–12.

A.R. Brodtkorb et al. / State-of-the-art in heterogeneous computing 33

[180] V. Volkov and J. Demmel, Benchmarking GPUs to tune dense
linear algebra, in: Supercomputing, IEEE Press, Piscataway,
NJ, USA, 2008, pp. 1–11.

[181] V. Volkov and B. Kazian, Fitting FFT onto the G80 archi-
tecture, available at: http://www.cs.berkeley.edu/~kubitron/
courses/cs258-S08/projects/reports/project6_report.pdf (vis-
ited 2009-08-10).

[182] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick and
J. Demmel, Optimization of sparse matrix-vector multiplica-
tion on emerging multicore platforms, in: Supercomputing,
ACM, New York, NY, USA, 2007, pp. 1–12.

[183] Xilinx website, http://www.xilinx.com/ (visited 2009-04-28).
[184] M. Xu, P. Thulasiraman and R. Thulasiram, Exploiting data

locality in FFT using indirect swap network on cell/BE, in:
Intl. Symp. on High Performance Computing Systems and Ap-

plications, IEEE Computer Society, Washington, DC, USA,
2008, pp. 88–94.

[185] L. Zhuo and V.K. Prasanna, High-performance designs for
linear algebra operations on reconfigurable hardware, IEEE
Trans. Comput. 57(8) (2008), 1057–1071.

[186] G. Ziegler, A. Tevs, C. Theobalt and H.-P. Seidel, GPU point
list generation through histogram pyramids, Technical Re-
port MPI-I-2006-4-002, Max-Planck-Institut für Informatik,
2006.

[187] H. Zima, P. Brezany, B. Chapman, P. Mehrotra and
A. Schwald, Vienna Fortran – a language specification ver-
sion 1.1, Technical Report 3, Austrian Center for Parallel
Computation, 1992.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

