Scientific Programming 18 (2010) 77-92 77
DOI 10.3233/SPR-2010-0300
I0S Press

Experiences with resource provisioning for
scientific workflows using Corral

Gideon Juve, Ewa Deelman *, Karan Vahi and Gaurang Mehta

Information Sciences Institute, University of Southern California, Marina Del Rey, CA, USA
E-mails: {gideon, deelman, vahi, gmehta} @isi.edu

Abstract. The development of grid and workflow technologies has enabled complex, loosely coupled scientific applications to
be executed on distributed resources. Many of these applications consist of large numbers of short-duration tasks whose runtimes
are heavily influenced by delays in the execution environment. Such applications often perform poorly on the grid because of
the large scheduling overheads commonly found in grids. In this paper we present a provisioning system based on multi-level
scheduling that improves workflow runtime by reducing scheduling overheads. The system reserves resources for the exclusive
use of the application, and gives applications control over scheduling policies. We describe our experiences with the system when
running a suite of real workflow-based applications including in astronomy, earthquake science, and genomics. Provisioning
resources with Corral ahead of the workflow execution, reduced the runtime of the astronomy application by up to 78% (45% on
average) and of a genome mapping application by an order of magnitude when compared to traditional methods. We also show
how provisioning can benefit applications both on a small local cluster as well as a large-scale campus resource.

Keywords: Scientific workflows, grid computing, distributed computing, high-throughput computing, web services, pilot jobs,

glideins

1. Introduction

Workflow systems have been used to manage large-
scale, loosely-coupled scientific computations in a
wide variety of domains including physics [10], earth
science [2,9], and astronomy [18]. These applications
often consist of large numbers of compute- or data-
intensive tasks with complex control and data flow de-
pendencies. Completing these computations in a rea-
sonable amount of time requires the use of high-
performance computing systems such as clusters and
grids [25,35], and more recently clouds [8,17].

Although clouds are being investigated as a comput-
ing platform for science applications, the majority still
run on campus clusters or grids. Most of these high-
performance computing systems provide an execution
model based on batch scheduling where jobs are held
in a queue until they can be matched with resources
for execution. These systems provide only best-effort
service and are typically configured to maximize re-
source utilization and not throughput. As a result, they

*Corresponding author: Ewa Deelman, Information Sciences In-
stitute, University of Southern California, 4676 Admiralty Way,
Suite 1001, Marina Del Rey, CA 90292, USA. Tel.: +1 310 448
8408; Fax: +1 310 823 6714; E-mail: deelman@isi.edu.

often impose significant scheduling and queuing over-
heads on application jobs. For applications that consist
of a single parallel job, or a few independent jobs, this
model works well because the overheads do not add
significantly to the total runtime of the application. For
workflows and other high-throughput applications with
large numbers of tasks these overheads have a detri-
mental impact on performance because delays are ac-
cumulated many times as the application executes.

One solution to this problem is to use resource pro-
visioning [16,31], where resources are allocated at the
application level instead of being allocated for each
job individually. This enables an application to exe-
cute multiple jobs on a set of resources while incur-
ring the overheads associated with acquiring those re-
sources only once. This technique improves the run-
time of applications with many jobs by minimizing the
impact of queue delays.

Because resource provisioning is not directly sup-
ported by most grid sites, a number of systems have
been developed that rely on multi-level scheduling [16,
27] to enable provisioning on the grid. Multi-level
scheduling is a technique in which pilot jobs are used
to run guest resource managers on worker nodes that
belong to a host cluster. This technique enables the

1058-9244/10/$27.50 © 2010 — IOS Press and the authors. All rights reserved

78 G. Juve et al. / Experiences with resource provisioning for scientific workflows using Corral

use of resource provisioning on almost any grid site.
In addition, since multi-level scheduling makes use of
a user-level scheduler to manage application jobs, the
user can define custom scheduling policies that are
beneficial for their application.

The contributions of this paper are:

e The design and implementation of a resource pro-
visioning system that automates the creation of
personal Condor [20] pools to manage resources
provisioned from grid sites. The system supports
useful features such as a scriptable command-line
interface, synchronous and asynchronous APIs,
and the automatic resubmission of provisioning
requests.

e A characterization of the system overheads and
their measurement on three TeraGrid systems.

e An evaluation of the benefits of the system using
three real workflow applications on a grid cluster
and a small local cluster.

e A case study showing how the system is used to
provision resources for very large-scale workflow
applications.

The experiments show that our system can reduce
the runtime of an astronomy application by as much
as 78%, of an earthquake science application by 40%,
and of a genome mapping application by as much as
an order of magnitude when compared to traditional
methods.

Although our approach focuses on grid-based sys-
tems, the concept of multi-level scheduling is also ap-
plicable to cloud-based infrastructure. There, native
APIs can be used to provision resources and applica-
tion schedulers can manage the execution of tasks on
them.

2. Overview of provisioning methods

The traditional approach to resource access in grid
environments is based on a queuing model that pro-
vides best-effort quality of service. In this model jobs
are queued until they can be matched with appropri-
ate resources for execution. This approach ensures that
access to resources is shared equally and fairly among
all users of the system, but can result long delays
when competition between users forces jobs to wait for
resources to become available. For applications with
only one job, or with a few jobs that can be submit-
ted in parallel, these delays are encountered only once.

For workflow applications with complex job hierar-
chies and interdependencies the delays are encountered
many times.

One way to improve quality of service for workflow
application is to use a model for resource allocation
based on provisioning. With a provisioning model, re-
sources are allocated for the exclusive use of a single
user for a given period of time. This minimizes queu-
ing delays because the user’s jobs no longer compete
with other jobs for access to resources. Furthermore, in
contrast to the queuing model where resource alloca-
tion and scheduling occur on a per-job basis, the pro-
visioning model allows resources to be allocated once
and used for multiple jobs.

Provisioning is slightly more complex than queuing
in that it requires users to make more sophisticated re-
source allocation decisions. There are two policies that
can be used to guide these decisions. In static provi-
sioning the application allocates all resources required
for the computation before any jobs are submitted, and
releases the resources after all the jobs have finished.
This method assumes that the number of resources re-
quired is known or can be predicted in advance. In dy-
namic provisioning resources are allocated by the ap-
plication at runtime. This allows the pool of available
resources to grow and shrink according to the changing
needs of the application. Dynamic provisioning does
not require advanced knowledge of resource needs, but
it does require policies for acquiring and releasing re-
sources.

2.1. Advance reservation

Advance reservation is a resource provisioning
mechanism supported by many batch schedulers [15,
22,26]. Users create advance reservations by request-
ing slots from the batch scheduler that specify the num-
ber of resources to reserve and the start and end times
of the reservation. During the reservation period the
scheduler only runs jobs that belong to the user on the
reserved resources.

Although the batch schedulers used by many re-
source providers have advance reservation features,
few providers support the use of reservations. Singh et
al. conducted a survey of advance reservation capabili-
ties at several grid sites [31]. They discovered that 50%
of the sites surveyed did not support reservations at all,
and that most of the sites that did support reservations
required administrator assistance to create them. Only

G. Juve et al. / Experiences with resource provisioning for scientific workflows using Corral

a few sites allowed users to create their own reserva-
tions. This lack of support makes using advance reser-
vations time-consuming and cumbersome.

Scheduler-based advance reservations also increase
resource usage costs. In many grid environments these
costs are measured in service units. Users of advance
reservations are typically charged a premium for dedi-
cated access to resources. These premiums can be 20—
100% above normal costs [28]. Furthermore, users are
often forced to pay for the entire reservation, even if
they are not able use it all (e.g., if there is a failure that
causes the application to abort, or if the actual runtime
of the application is shorter than predicted).

An alternative to scheduler-based advance reserva-
tions is the use of probabilistic advance reservations
[24]. In this method reservations are made based on
statistical estimates of queue times. The estimates al-
low jobs to be submitted with a high probability of
starting some time before the desired reservation be-
gins. This allows “virtual reservations” to be created
by adjusting the runtime of the job to cover both the
time between the submission of the job and the desired
reservation start time, and the duration of the reserva-
tion itself.

Unlike scheduler-based reservations, probabilistic
reservations do not require special support from re-
source providers. However, probabilistic reservations
are not guaranteed because the actual queue delay may
exceed the predicted delay, and the final cost of a prob-
abilistic reservation is difficult to predict because the

79

actual runtime of the reservation job may exceed the
desired reservation time.

2.2. Multi-level scheduling

Many of the performance issues encountered by
workflow applications on the grid arise because re-
source providers control both the management of re-
sources and the scheduling of application jobs. In
multi-level scheduling [16,27] these two functions are
separated. Providers retain authority over resources,
but users are given control over scheduling. This divi-
sion is accomplished by creating personal clusters [19,
38] to reserve and manage resources. Personal clusters
are pools of resources that are temporarily leased from
a resource provider and managed by an application-
level scheduler.

The process of creating a personal cluster is illus-
trated in Fig. 1. A user requests resources from a
resource provisioner, which submits pilot jobs to a
grid site. From the perspective of the site’s scheduler,
these jobs are indistinguishable from normal comput-
ing jobs. However, instead of running an application
program, the pilot jobs install and run guest node man-
agers on the site’s worker nodes. On startup, the guest
managers register themselves with an application-level
scheduler that is controlled by the user. The newly reg-
istered nodes become part of the user’s personal cluster
and are matched with application jobs for execution.

One advantage of this approach is that it minimizes
the overheads caused by queuing. Any delays caused

7. Submit I~
Resource 1. Request _ —— Application
Provisioner resources app;ré:gnon - Scheduler
User
2. Submit 6. Join 8. Start
pilot job personal appl_ica!fon
cluster job
A 1 N A |
:)
i ste | __ 3 Start ol st Cuest
i Scheduler pilot job Manlaqer Manager
] |
i 4.Stat 5 Stat 9. Start
]
1
) Pilot Application
] Job Job
1
E L Worker Node)
1 Grid Site |

Fig. 1. Multi-level scheduling.

80 G. Juve et al. / Experiences with resource provisioning for scientific workflows using Corral

by queuing are encountered only once when the pilot
job is submitted. After the pilot job starts, the resources
it reserves can be used to execute multiple application
jobs. By reusing provisioned resources the total delay
experienced by the application can be significantly re-
duced.

Another advantage of this approach is that it al-
lows the user to define custom policies and configu-
rations that reduce scheduling overheads. Because ap-
plication jobs do not pass through the site’s sched-
uler they avoid many of the overheads associated with
traditional resource access methods such as multiple
layers of software involved in job submission and
polling operations to check for job status changes. In
addition, scheduling policies can be fine-tuned to fit
the specific characteristics of the application. For ex-
ample, workflow jobs with many dependants could
be given priority over jobs with fewer dependants in
order to generate opportunities for parallelism more
quickly. Similarly, jobs at a higher level of the work-
flow could be given priority over jobs later in the
workflow to improve pipelining. Also, using a custom
scheduler allows applications to take advantage of the
many sophisticated task-scheduling algorithms avail-
able [1,3,21]. Together these optimizations can result
in significant decreases in workflow runtime. Singh
et al. has demonstrated some of the benefits of using
application-specific scheduling parameters for work-
flow execution in [30].

3. Corral

In this section we describe the design and imple-
mentation of a resource provisioning system based
on multi-level scheduling called Corral. Corral creates
personal clusters by provisioning resources from grid
sites using pilot jobs to acquire resources. Once these
jobs are running on the remote resources, they start up
daemons that contact the personal cluster manager and
make themselves available to run application tasks.

In our case we use Condor glideins [13], where
Condor worker daemons are started on remote cluster
nodes. Upon startup, the worker daemons join a Con-
dor pool administered by the user (i.e., a personal clus-
ter) where they are used to execute application jobs.
The use of this technique has been shown to reduce
runtimes for several large-scale workflow applications
[30,31].

3.1. Design goals

Based on our analysis of several existing multi-level
scheduling systems (see Section 5) and the require-
ments of workflow applications we developed the fol-
lowing list of goals for our system:

e Automate environment setup. Rather than rely-
ing on the user to install software on the remote
site, our system should automate the setup process
as much as possible while allowing the user to
control details of the configuration.

e Minimize overheads. Several of the existing sys-
tems transfer large executables for each provi-
sioning request, introducing overheads that de-
lay the provisioning of resources. Our system
should try to minimize these delays by reduc-
ing the amount of data transferred for each re-
quest and by supporting the allocation of multiple
processors in one request.

e Provide multiple interfaces. Few of the exist-
ing systems support programmatic access to pro-
visioning functions. Our solution should provide a
complete programmatic interface that can be used
by external software tools in addition to a script-
able, easy-to-use command-line interface.

3.2. Implementation

Corral was developed using a service-oriented ar-
chitecture. Clients send provisioning requests to a web
service, which communicates with grid sites to allo-
cate resources that fulfill the requests. The components
of the system and the relationships between them are
shown in Fig. 2.

The Submit Site has one or more servers that host
files and services used in the provisioning process.
These servers are owned and controlled by the user or
the organization to which they belong.

The Grid Site consists of a head node, several
worker nodes, and a shared file system that can be ac-
cessed by all nodes. The head node hosts a remote job
submission interface (e.g., Globus gatekeeper) that ac-
cepts batch jobs, and a local resource manager (LRM)
that matches jobs with resources.

Corral accepts requests from clients, sets up the ex-
ecution environment on the grid site, provisions re-
sources using pilot jobs (glideins), and cleans up files
and directories created by the system. This service was
implemented as a RESTful web service [12].

Condor is used as the personal cluster to process
service and application jobs, and to manage glidein

G. Juve et al. / Experiences with resource provisioning for scientific workflows using Corral 81

Staging
Server Client

= - [E3

Submit Site

Grid Site

LRM
Head Node

SR
N

[Gitdem[élidein[Glidein[Glidein[Glidein]

S A8 G A S

Worker Nodes

Fig. 2. Corral components.

workers. Corral submits glidein jobs to the grid site
using Condor, the glideins contact the Condor central
manager to join the user’s personal cluster, and appli-
cation jobs are submitted to the Condor queue where
they are matched to glideins for execution.

Staging Servers are file servers used to host bun-
dles of executables and configuration files called pack-
ages. Each package contains a set of Condor worker
node daemons for a different combination of Condor
version, system architecture and OS. Any file server
that supports the HTTP(S), FTP or GridFTP protocols
may be used as a staging server.

A Replica Location Service is used to map package
names to staging servers, in our case we use RLS [4,5].

3.3. Operation

The process used by the service to provision re-
sources is divided into three phases: setup, provision-
ing, and cleanup. These phases correspond to jobs that
are submitted by the service to the grid site.

The Setup Job is submitted during the sefup phase
to prepare the site for glideins. The setup job runs an
installer which determines the appropriate package to
use for the site, looks up the package in RLS to deter-
mine which staging servers have it, and downloads the

package from the first available staging server. It then
creates an installation directory and a working direc-
tory on the shared file system, and unpacks the Condor
binaries.

The Glidein Job is submitted during the provision-
ing phase to allocate worker nodes for the user’s per-
sonal cluster. Glidein jobs generate a Condor config-
uration script and launch Condor worker daemons on
each allocated node. The daemons are monitored by a
special process and killed when the user’s request is
cancelled or expires.

The Cleanup Job is submitted during the cleanup
phase to remove the working directories used by the
glideins. It runs an uninstaller, which removes all log
files, configuration files, executables and directories
created by the service.

Using this three-step process allows Condor exe-
cutables to be staged once during the setup phase and
reused for multiple requests during the provisioning
phase. This precludes the transfer of binaries for each
provisioning request and thereby reduces the provi-
sioning overhead of the system.

3.4. Features

Interfaces: Users can interact with the system us-
ing a simple command-line interface. In addition to
providing functionality for interactive provisioning
requests, the command-line interface also supports
scripting by providing outputs that are easy to parse
and operations that block until resources have been al-
located. This allows the command-line interface to be
used in shell scripts and workflows to automate pro-
visioning. This capability could be used, for example,
to create a meta-workflow that automates the planning
and execution of other workflows as shown in Fig. 3.
In addition, the service uses a simple RESTful inter-
face that can be invoked directly, and there is a simple
client API that can be used in Java applications.

Asynchronous Notifications: The service supports
an asynchronous interface that can be used by clients
to receive automatic notifications when the state of a
request changes.

Automatic Resubmission: Many resource provid-
ers limit the maximum amount of time that can be re-
quested for an individual job. This means that pilot
jobs used to provision resources can only run for a lim-

82 G. Juve et al. / Experiences with resource provisioning for scientific workflows using Corral

Plan
Application
Workflow

Allocate
Resources

Execute
Application
Workflow

Release
Resources

Fig. 3. Example meta-workflow containing resource provisioning jobs.

ited amount of time before they expire. Often, however,
users would like to provision resources for a longer
time to accommodate long-running applications. This
can be accomplished by resubmitting provisioning re-
quests as they expire. Corral supports this capability by
automatically submitting new pilot jobs to replace old
jobs that have terminated. When creating a new pilots
the user can specify that the request should be resub-
mitted indefinitely, until a specific date and time, or a
fixed number of times. When resubmitting, if the last
request failed, or if the user’s credential has expired,
the request will not be resubmitted. Unlike other tech-
niques, such as advance reservations, this approach is
not unfair because resubmitted pilot jobs are treated
just like any other job. They are not given special prior-
ity and must wait in the remote queue alongside other
users’ jobs.

Firewall Negotiation: Multi-level scheduling sys-
tems function well when worker nodes have public IP
addresses and are free to communicate with clients out-
side their network. However, many resource providers
conserve IP addresses by using private networks and
isolate their worker nodes behind firewalls for security.
This prevents application-specific schedulers outside
the resource provider’s network from communicating
directly with worker nodes. Solutions to this problem
include Generic Connection Brokering (GCB) [14] and
Condor Connection Brokering (CCB) [6]. These tech-
niques make use of a broker that is accessible to both
the worker nodes and the application-specific sched-
uler to facilitate connections between them. The bro-
ker allows the application-specific scheduler and the
worker nodes to communicate without requiring any
direct connections into the private network. Corral sup-
ports both GCB and CCB.

4. Evaluation

We performed the evaluation of our approach in four
ways:

(1) We measured the overhead of starting up pi-
lot jobs to provision resources, breaking into
the phases of setting the software at the site

(automated), starting the jobs, and performing
cleanup of the site.

(2) We measured the overhead of an application job
startup with a pilot job in place.

(3) We measured an end-to-end performance of
three real-world workflow-based application ex-
ecuting on Corral-provisioned resources. We
compared that runtime with a lower-bound cal-
culated using a well-known DAG scheduling al-
gorithm.

(4) We described our experience running a number
of large-scale earthquake science workflows on
the TeraGrid in a production mode.

4.1. Resource provisioning overhead

In order to quantify the overhead of using Corral to
provision resources we measured the amount of time
required to complete the phases of the resource provi-
sioning process. These phases correspond to the lifecy-
cle events of the setup, glidein and cleanup jobs used
by Corral as shown in Fig. 4. The provisioning phase is
composed of two sub-phases, allocation and runtime,
that correspond to the scheduling/queuing delay and
the execution time of the glidein job.

We measured the setup time, allocation time and
cleanup time for three typical TeraGrid sites (averages
shown in Table 1). All allocation measurements were
taken when the sites had sufficient free resources in or-
der to minimize the impact of queuing delays. As such
these figures represent lower bounds on the allocation
time.

The overheads for setup and cleanup were approxi-
mately 30 and 15 s, respectively. The uniformity of the
results is a result of using the Globus fork jobmanager
to run setup and cleanup jobs on all sites, which im-
poses a small, constant overhead. In comparison, the
glidein jobs were submitted the batch jobmanager (i.e.,
jobmanager-pbs), which is reflected in the variation in
allocation time between the sites. This variation is due
to scheduling overheads, which depend on site policies
and configuration.

G. Juve et al. / Experiences with resource provisioning for scientific workflows using Corral 83

hel

8 3 E 3 g B 2

Eo £ § 3 £ 8 ¢ @

ES 2 3 5 can 8 &

] .E; c @ P (g n 's

35 5 8 @ s 83 8

o0 e S 8 S = S

S S = S 25 a a

i a £ _c’ S g 2 S

ss 2 3 $ 298 8

33 &0 5 00 3 3

L | | (| |

>
Il | | [|
A\ N N N J
Y4 Y4 o Y4
Setup Allocation Runtime Cleanup
- e
—~
Provisioning
Fig. 4. Resource provisioning phases.
Table 1 Table 2
Average provisioning overheads (in seconds) Average no-op job runtime (in seconds)

Site Setup time Allocation time Cleanup time Site GT2 GT4 Glidein
NCSA Mercury 29.5 52.5 15.0 NCSA Mercury 61.1 237.9 22
NCSA Abe 28.4 353 15.7 NCSA Abe 35.8 220.7 1.6
SDSC 1A-64 28.4 97.0 15.2 SDSC 1A-64 263.3 N/A! 2.0

4.2. Job execution delays

In order to determine the benefits of running appli-
cation jobs using glideins we measured the amount of
time required to run a no-op job using Globus ver-
sion 2, Globus version 4 and Condor glideins. Please
note that the time to set up the glide-in is not in-
cluded in the Glidein number. Rather this time repre-
sent the runtime of a no-op job once the glide-in is ac-
quired. The average runtimes for three TeraGrid sites
are shown in Table 2.

On all three sites, the runtime of the jobs using
glideins (~2 s) was significantly shorter than the run-
time using Globus (~35-260 s). This improvement is
attributed to two factors: reduced software overhead,
and reduced scheduling delay. The reduction in soft-
ware overhead is a result of Condor requiring fewer
software layers to dispatch jobs than Globus. The re-
duction in scheduling delay results from the ability to
configure Condor to immediately execute jobs if there
are available resources. In comparison, Globus is lim-
ited by the scheduling policies of each site’s LRM,
which are typically configured to schedule jobs period-
ically on intervals of up to several minutes.

These measurements clearly show the benefit of a
pilot-job approach on Grid-based systems, especially
when the overheads shown are incurred by every job in
the application workflow.

Note: 1 The GT4 service was not available at this site.

4.3. Workflow runtime

In the following sections we quantify the benefits of
Corral using three real-world workflow applications,
running on three different types of execution envi-
ronments (small and large clusters). We measured the
makespan of the workflows (not including the provi-
sioning step, which adds ~100 s to the overall work-
flow as shown in Table 1). We picked applications from
three different disciplines: earthquake science, astron-
omy and epigenomics. The tasks within these applica-
tions can be characterized as memory-intensive, I/O-
intensive and CPU-intensive, respectively.

For large workflows (astronomy and epigenomics)
we also evaluated the impact of task clustering on over-
all workflow performance with and without resource
provisioning ahead of the execution.

4.3.1. Earthquake science workflow

The first type of application we experimented with
was an earthquake science application, Broadband, de-
veloped by the Southern California Earthquake Center
(SCEC) [33]. The objective of Broadband is to inte-
grate a collection of motion simulation codes and cal-
culations to produce research results of value to earth-
quake engineers. Broadband workflows combine these
codes to simulate the impact of various earthquake
scenarios on several recording stations. Researchers
use the Broadband platform to combine low frequency

84 G. Juve et al. / Experiences with resource provisioning for scientific workflows using Corral

(less than 1.0 Hz) deterministic seismograms with high
frequency (~10 Hz) stochastic seismograms and cal-
culate various ground motion intensity measures (spec-
tral acceleration, peak ground acceleration and peak
ground velocity) for their building design procedures.
We ran an experiment to compare the performance
of Broadband using the provisioning approach to that
using the traditional approach. The workflow used in
our experiment simulates 6 earthquake scenarios for
8 different recording stations and contains 768 tasks.
A smaller example is shown in Fig. 5 to illustrate the
structure of a Broadband workflow.

We ran the 768-task workflow on WIND, a small
cluster at ISI. WIND nodes have two, 2.13 GHz dual
core Intel Xeon CPUs (4 cores total) and 4 GB of
memory. We used 4 nodes (16 cores) for the computa-
tions. The local scheduler on WIND is Condor 7.1.3.
For experiments using the traditional approach jobs
were submitted using Globus GT2 GRAM. For exper-
iments using multi-level scheduling we used Corral to
provision a fixed number of processors and submitted
workflow jobs to a dedicated glidein pool. The Pegasus
Workflow Management System [11] was used to plan
and execute all experiments.

Figure 6 shows the results of running Broadband
with and without provisioning. Using provisioning
(Corral), the application runs 40% faster than with the

traditional approach where jobs are submitted directly
to the job manager on the resource (Globus). For com-
parison, we also computed a lower bound on the run-
time of the workflow using a modified version of the
HEFT scheduling heuristic [36]. Our version of HEFT
assumes no scheduling or communication overheads
and uniform resources. Since these overheads are not
included, we claim that the HEFT runtime is a reason-
able lower bound on the runtime that could be achieved
in a real execution environment where the overheads
are present. We can see that the workflow runtime with
Corral is very close to the lower bound. However, it is
still slower because provisioning cannot eliminate all
the overheads, such as the waiting of a workflow task
in a queue in the workflow management system, and
the delay in sending the task to the computational re-
source (in this case over an Local Area Network).

4.3.2. Astronomy workflow

The second experiment involved running an astron-
omy application, Montage [18], using both the tradi-
tional grid approach and multi-level scheduling pro-
vided by Corral. The input to Montage is the region of
the sky for which a mosaic is desired, the size of the
mosaic in terms of square degrees, and other parame-
ters such as the image archive to be used, etc. The in-
put images are first re-projected to the coordinate space

Fig. 5. A view of a small Broadband workflow containing 66 tasks.

Globus

Corral

HEFT

Fig. 6. Execution Time (in minutes) of Broadband on a Local Cluster with and without provisioning. HEFT shows the lower-bound on the

execution.

G. Juve et al. / Experiences with resource provisioning for scientific workflows using Corral 85

Fig. 7. Small Montage workflow with 67 tasks.

of the output mosaic, the re-projected images are then
background rectified and finally co-added to create the
output mosaic. Montage is a data-intensive applica-
tion. The input images, the intermediate files produced
during the execution of the workflow, and the output
mosaic are of considerable size and require significant
storage resources. The tasks, on the other hand, have
short runtimes of at most a few minutes.

The size of a workflow (number of tasks) is based
on the area of the sky in square degrees covered by
the mosaic. We used 2 different sized workflows for
our evaluation: a 1-degree workflow with 206 tasks and
a 6-degree workflow with 6062 tasks. Figure 7 shows
a smaller, 0.5-degree Montage workflow to give the
reader an idea about the shape of the larger workflows.

We used the medium-sized Skynet cluster at ISI for
all Montage experiments. The nodes on Skynet have
800 MHz Pentium III processors and 1 GB of memory.
To isolate the effects of scheduling overhead, which
can be prominent in large-scale workflows with short-
duration tasks, we performed experiments using both
unclustered and clustered versions of the workflows.
For the clustered configurations we grouped tasks from
each level of the workflow into NV jobs where IV equals
the number of available processors. (Workflow tasks
are at the same level if their distance from their re-
spective parent is the same.) Workflows that are auto-
matically clustered in this manner produce the mini-
mum scheduling overhead achievable without reducing
workflow parallelism [32].

The results of these experiments are shown in Fig. 8.
For unclustered experiments, the runtime of the work-
flows using Corral was 45% less on average than the
runtime using Globus (up to 78% in the best case). The
clustered experiments showed a more modest improve-
ment of 11% on average (23% best case). This was pri-
marily due to a decrease in scheduling overheads for

the clustered experiments that result from having fewer
jobs to schedule. It is also interesting to note the differ-
ence between the fine- and coarse-grained workflows.
For the clustered experiments, we generated the same
number of clusters for all workflow sizes. Because the
larger workflows have more total tasks there were more
tasks per cluster and the resulting runtimes were larger.
This difference in cluster granularity had an impact on
the relative scheduling overheads. By comparing with
the HEFT runtimes we can see that, for the fine-grained
workflows (1-degree) the scheduling overheads dom-
inate the execution, and for the coarse-grained work-
flows (6-degree) we can achieve performance close to
optimal. In addition, the fine-grained workflows have
enough scheduling overhead that we do not see much
benefit from increasing the number of processors.

4.3.3. Epigenomic workflow

To illustrate the benefits of using Corral for larger
workflows and sites with restrictive policies we per-
formed a set of experiments using an Epigenome map-
ping application [6]. The application consists of 2057
tasks that reformat, filter, map and merge DNA se-
quences. The majority (>90%) of the runtime of this
application is consumed by 512 tasks that require ap-
proximately 2.5 h to run each. Figure 9 shows a picture
of a much smaller Epigenomic workflow for illustra-
tion.

In this case, the application scales well to large
numbers of cores and thus we conducted the follow-
ing experiments on the 10 GB cluster at USC’s High-
Performance Computing Center (HPCC). The nodes
we used had 2.3 GHz AMD Opteron processors and
16 GB memory. HPCC’s cluster has two scheduling
policies that affect the runtime of the epigenome ap-
plication: max_user_run, and resources_max.walltime.
The max_user_run policy prevents any single user

86 G. Juve et al. / Experiences with resource provisioning for scientific workflows using Corral

30

B Globus

N
()]

B Globus-cluster BCorral-cluster
BHEFT

OCorral

N
o
!

—_
o

Runtime (minutes)
o o

NN

0 a /4
1 2 4 8 16
Number of Processors

600
@ Globus OCorral

500 Globus-cluster B Corral-cluster
BHEFT

400

300

Runtime (minutes)

1 2
Number of Processors

4 8 16

Fig. 8. Comparison of Montage runtimes for a 1-degree workflow (top) and a 6-degree workflow (bottom).

from running more than 30 jobs concurrently. When
using Globus to submit jobs, this policy prevents work-
flows with serial tasks from using more than 30 proces-
sors at a time. The resources_max.walltime policy pre-
vents any single job from running for more than 24 h.
One result of this policy is that workflows with long-
running jobs cannot be clustered to match the allow-
able resources. For the genomic workflow, clustering
tasks into 30 jobs per level (to match max_user_run)
would result in individual job runtimes of ~45 h. Con-
sequently, the maximum clustering possible is 60 jobs
per level, which results in runtimes of ~22.5 h. These
clustered jobs must be executed in two separate batches
of 30 jobs each.

Figure 10 compares the runtime of the genomic
workflow when limited to 30 processors. The runtime
using Corral was 32% less than Globus in the unclus-
tered case, and 10% less in the clustered case. Us-

ing Corral the clustered workflow actually took longer
than the unclustered workflow. This is a result of the
interaction between provisioning and load imbalance.
Due to the limitation on the runtime of the jobs and
to make a closer comparison with the plain Globus
solution, the resources are provisioned in two 24 h
blocks, with the second block being requested when all
the jobs scheduled for the first block have completed.
However not all the jobs take the same time to com-
plete and the jobs in the second block must wait for
the slowest jobs in the first block before they can pro-
ceed. The problem occurs for both clustered and un-
clustered workflows, however the shorter jobs in the
unclustered workflow compensate for the imbalance
and make the gap less severe. This gap could be elim-
inated completely by using a more sophisticated pro-
visioning scheme (e.g., by overlapping the blocks or
using dynamic provisioning). However, since the over-

G. Juve et al. / Experiences with resource provisioning for scientific workflows using Corral 87

@ fastgSplit fastqSplit fastqSplit
filterContams filterContams filterContams filtterContams fiterContams filterContams filterContams
(userig) Coooo) Gasov) Closnig) senig) (s

fastqSplit

fastqSplit
filterContams filterContams filterContams

fitterContams

—

Fig. 9. View of a small, 64-task Epigenomic workflow.

3500
B Globus
3000 —
- OcCorral
g 2500 @HEFT |
£
2000 A
E
“E’ 1500 1 /%
1000 7
3
x / ﬁ‘é,
7
500 - {;%:/
0 - T

Clustering

Fi

head in the non-clustered case with Corral was only
about 3% compared to HEFT, leaving the workflow
unclustered is a reasonable solution.

It is important to note that although workflows us-
ing Globus are limited to 30 processors by HPCC’s
max_user_run policy, workflows using Corral are not.
Corral can use a single parallel job to provision any
number of processors. This allows Corral to allocate
more processors to run the workflow than is possible
using Globus. Figure 11 shows the runtime of the ge-
nomic workflow using 128, 256 and 512 processors.
For this workflow 512 processors is the maximum par-
allelism achievable.

No Clustering

g. 10. Comparison of workflow runtime when limited by site policies.

Using Corral to provision 512 processors resulted in
an order of magnitude lower runtime (211 min) com-
pared with the best runtime using Globus (2349 min).
In addition, although the number of processors in-
creases, the scheduling overhead when compared with
HEFT remains relatively constant at around 5-10%.

4.3.4. Storage requirements

We analyzed the disk space required to run Condor
glideins on a cluster. This includes the space required
for executables, configuration files and logs. Because
the size of these files varies depending on the runtime
of the glideins (logs) and the architecture and system

88 G. Juve et al. / Experiences with resource provisioning for scientific workflows using Corral

700

ECorral

600 1

DHEFT

500

400 A
300
200 1

Runtime (minutes)

100 1

0 4
128

256 512

Number of Processors

Fig. 11. Comparison of genomic workflow runtime on different numbers of processors.

Table 3
Sizes of files used by Condor glideins (in KB)

File type Minimum size Maximum size

Logs (per worker) 144 6144

Configuration (per worker) 5 5

Executables (per site) 20,480 44,032
Table 4

Storage required for multiple nodes (in MB)

Nodes Minimum size Maximum size
1 20 49
2 20 55
4 20 67
8 21 91
16 22 139
32 24 235
64 29 427
128 38 811

libraries of the cluster (executables), we report the min-
imum and maximum sizes that are possible (Table 3).

One important issue to note is that executables can
be installed on a shared file system and used by multi-
ple nodes, while logs and configuration files are gener-
ated for each node. Depending on the number of nodes
allocated, the actual storage space used by the service
may vary significantly. Table 4 shows the minimum
and maximum amount of storage that would be re-
quired for multiple nodes.

In the worst case, the maximum space required for
a pool of 128 nodes is 811 MB. This space is primar-
ily consumed by Condor log files, which, by default,
are allowed to grow up to 6 MB per node. However,
because Corral automatically cleans up log files, and

because the glideins will rarely be around long enough
for log files to reach their maximum size, the actual
size required will likely be closer to the minimum.

5. CyberShake

In this section we describe our experiences using
Corral to provision resources for a large-scale work-
flow application on the TeraGrid.

The application, CyberShake [2,9], is a probabilis-
tic seismic hazard analysis (PSHA) tool developed by
the Southern California Earthquake Center (SCEC) to
study the long-term risk associated with earthquakes.
It consists of two parts: a parallel simulation that com-
putes how a given geographic location, or site, re-
sponds to earthquakes, and a workflow that uses many
scenario earthquakes to determine the future probabil-
ity of different levels of shaking at the site.

The parallel simulation consists of an MPI code and
several serial programs that generate a large 3D mesh
of site-response vectors called Strain Green Tensors
(SGTs). In this part of the computation there are only a
few separate tasks and thus it can make use of standard
grid scheduling techniques.

The workflow part of the computation is a 3-stage
pipeline consisting of tasks that (1) extract site re-
sponse vectors, (2) compute synthetic seismograms
and (3) measure peak ground motions. The workflow
contains ~840,000 tasks for each site. Due to the large
number of tasks it is not feasible to use normal grid
scheduling techniques because the overall workflow
performance would be poor. Instead, Corral was used

G. Juve et al. / Experiences with resource provisioning for scientific workflows using Corral 89

Number of Processors

Apr 28 May 5 May 12

May 19 May 26 Jun 2 Jun9

Fig. 12. CyberShake resource usage for the period between April 28, 2009 and June 11, 2009.

to provision resources and Condor was used to sched-
ule the workflow tasks.

In the period between April 28, 2009 and June 11,
2009 the CyberShake team computed the seismic haz-
ard for 220 sites located in Southern California. This
work involved the execution of over 197 million work-
flow tasks. Corral was used to provision resources from
the Ranger cluster at TACC. A timeline showing the
resource usage for that period is shown in Fig. 12. The
application made 64 provisioning requests for a total of
1.19 million CPU hours. The times where no resources
were provisioned (white spaces in Fig. 12) correspond
to the times when Ranger was down for maintenance
or no new workflows were being scheduled and thus
no provisioning requests were made. The figure also
shows that for some time up to 4500 resources were
provisioned. For most of the time 2400 cores were be-
ing provisioned for the workflow tasks.

Although in this case the provisioned resources tar-
geted a single cluster, Corral is able to provision re-
sources across a number of computational sites. In ad-
dition, a single Corral server can provision resources
for multiple applications and multiple resource pools.

An open issue is how to optimize the resource uti-
lization while running workflows on provisioned re-
sources. It is possible for some fraction of the resources
to sit idle while waiting for new workflow tasks. For
large-scale workflows, such as SCEC, resource utiliza-
tion can be improved by tuning the task scheduling
system to release a sufficient number of tasks to the
resources. For small workflows or workflows with a
small number parallel tasks, a solution could be to run
multiple, independent workflows or tune the number of
resources provisioned over time.

After the execution of the 220 sites in the Spring of
2009, SCEC scientists are now analyzing the results of
the computations and are preparing for an even larger
set of runs in 2010.

6. Related work

Pilot-based resource provisioning systems have
been used to acquire resources on Grid-based systems
in order to overcome the job startup overheads and un-
certainties. Here we mention the ones most related to
our work and describe the differences between these
systems and Corral.

Condor_glidein [7] is a command-line tool that can
be used to add grid resources to an existing Condor
pool using the glidein technique. Condor_glidein is
simple to use, but unlike Corral it does not support ad-
vanced features such as an API, automatic resubmis-
sions or the ability to provision multiple resources at
once.

GlideinWMS [29] is a workload management sys-
tem that is also based on Condor. It supports dynamic
provisioning by polling Condor for queued application
jobs and automatically provisioning grid resources to
service them. Unlike Corral, which provides a direct
interface for provisioning an exact number of resources
for a definite period of time, glideinWMS automati-
cally requests and releases resources for a group of
users based on the current group workload.

MyCluster [38] creates personal clusters using sev-
eral different resource managers including Condor. It
can automatically maintain fixed-size pools by resub-
mitting resource requests as they expire, and it allows
users to control the granularity of resource requests. It
uses a virtual network overlay and user space network
file system to avoid pre-staging executables. Unlike
Corral, MyCluster does not have any programmatic in-
terfaces that can be used to develop provisioning tools.

Falkon [27] is a multi-level scheduling system de-
signed for applications requiring very high task
throughput. It consists of a web service that accepts job
requests, a provisioner that allocates resources from re-
mote sites, and a custom node manager that executes
application jobs on provisioned resources. Although

90 G. Juve et al. / Experiences with resource provisioning for scientific workflows using Corral

Table 5

A comparison of multi-level scheduling systems

System Resource managers User interfaces Provisioning policies Firewall negotiation Resource provider
interfaces

Condor_glidein Condor Command-line Static None Globus

GlideinWMS Condor None (automatic) Dynamic GCB Globus

MyCluster Condor, Command-line Static Manager on head Globus, PBS,
SGE, node, virtual SGE, LoadLeveler,
OpenPBS networking LSF, Condor, EC2

Falkon Custom API Static, dynamic Manager on head node Globus

VGES Torque APIL Static Manager on head node Globus, EC2

DIANE Custom API, command-line Static, dynamic Outbound only Ganga

Corral Condor API, command-line Static GCB, CCB Globus

Falkon achieves very high throughput, it does so by
omitting many of the features provided by off-the-shelf
resource managers such as resource matching and job
prioritization.

The VGES system includes a Java API that creates
personal clusters on the grid [19]. The system uses a
custom version of the Torque resource manager [37]
that has been modified to run in user-mode. It creates
personal clusters by starting Torque daemons on host
clusters using grid protocols. Access to these personal
clusters is provided through a user-level Globus gate-
keeper that is started on the host cluster’s head node.
The system assumes that both Torque and Globus are
installed and configured on the remote site and, unlike
Corral, does not pre-stage executables.

DIANE [23] is a master-worker framework based on
multi-level scheduling. It consists of a master process
and several agent processes. The agents are started on
grid worker nodes and contact the master to request
tasks. The master distributes the tasks and merges
the results. Like Falkon, DIANE relies on a cus-
tom scheduling system and does not support generic,
off-the-shelf resource managers. And unlike Corral,
DIANE requires applications to be developed using a
custom API that ties the application strongly to the
DIANE framework.

Table 5 summarizes the differences between the var-
ious systems. Clearly there is no system that has all
the features, so there is a potential of developing more
comprehensive solutions.

7. Conclusions
Scientists in many fields are developing large-scale,

workflow applications for complex, data-intensive sci-
entific analyses [34]. These applications require the

use of large numbers of low-latency computational re-
sources in order to produce results in a reasonable
amount of time. Although the grid provides access to
ample resources, the traditional approach to accessing
these resources introduces many overheads and delays
that make the grid an inefficient platform for executing
workflows.

In this paper we presented the design and implemen-
tation of a resource provisioning system called Corral.
Although Corral is a general-purpose resource provi-
sioning system, it can greatly benefit the performance
of workflow applications executing on clusters and the
grid. The system is based on the concept of multi-level
scheduling. This approach eliminates queuing delays
by reserving resources, reduces overheads by stream-
lining resource management, and improves parallelism
by allowing the user to specify application-specific
scheduling policies.

We have shown how the use of Corral can improve
the runtime of three real workflow applications. The
system was shown to reduce the runtime of an astron-
omy application by 45% on average without cluster-
ing and 11% on average with clustering. Our results
indicated that a combination of provisioning to reduce
queue delays and clustering to amortize scheduling de-
lays provided the best improvement in runtime. In ad-
dition, we showed how the system can be used to by-
pass restrictive site scheduling policies that, e.g. limit
the number of processors that can be used concurrently.
This enabled an order of magnitude reduction in the
runtime of a genome mapping application.

Finally, we have shown that the system is being used
today to enable the execution of scientifically meaning-
ful workflows, such as those being run by earthquake
scientists.

In the future we plan to expand the capabilities of the
Corral system by adding support for parallel applica-

G. Juve et al. / Experiences with resource provisioning for scientific workflows using Corral 91

tion jobs, GSI security and dynamic provisioning. We
are currently working to expand the backend capabili-
ties of Corral to target other grid and cloud platforms,
and we are working with the glideinWMS team [29]
to use this expanded capability to provide a service-
oriented front-end to glideinWMS.

Acknowledgements

This work was supported by the National Science
Foundation under grants 0943725 (STCI-Provision-
ing) and 0749313 (PetaShake). The authors would
like to thank the SCEC researchers, Scott Callaghan,
Patrick Small, Kevin Milner, and Phil Maechling, for
information about CyberShake and its execution on the
TeraGrid.

References

[1] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal and
K. Kennedy, Task scheduling strategies for workflow-based ap-
plications in grids, in: 5th IEEE International Symposium on
Cluster Computing and the Grid (CCGrid "05), Vol. 2, Cardiff,
UK, 2005, pp. 759-767.

[2] S. Callaghan, P. Maechling, E. Deelman, K. Vahi, G. Mehta,
G. Juve, K. Milner, R. Graves, E. Field, D. Okaya and
T. Jordan, Reducing time-to-solution using distributed high-
throughput mega-workflows: experiences from SCEC Cyber-
Shake, in: 4th IEEE International Conference on e-Science
(e-Science 08), Indianapolis, IN, 2008.

[3] H. Casanova, A. Legrand, D. Zagorodnov and F. Berman,
Heuristics for scheduling parameter sweep applications in grid
environments, in: 9th Heterogeneous Computing Workshop,
Cancun, Mexico, 2000, pp. 349-363.

[4] A. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman and
R. Schwartzkopf, Performance and scalability of a replica loca-
tion service, in: /3th IEEE International Symposium on High-
Performance Distributed Computing (HPDC ’04), Honolulu,
HI, 2004, pp. 182-191.

[5] A. Chervenak, R. Schuler, M. Ripeanu, M.A. Amer,
S. Bharathi, 1. Foster, A. Iamnitchi and C. Kesselman, The
globus replica location service: design and experience, IEEE
Transactions on Parallel and Distributed Systems 20 (2005),
1260-1272.

[6] Condor Connection Brokering (CCB), available at: http://www.
cs.wisc.edu/condor/manual/v7.3/3_7Networking_includes.
htmI#SECTION00473000000000000000.

[7] Condor_glidein, available at: http://www.cs.wisc.edu/condor/
glidein.

[8] E. Deelman, Grids and clouds: making workflow applica-
tions work in heterogeneous distributed environments, In-
ternational Journal of High Performance Computing Appli-
cations, December 4, 2009, available at: http://hpc.sagepub.
com/cgi/content/abstract/1094342009356432v1.

[9] E. Deelman, S. Callaghan, E. Field, H. Francoeur, R. Graves,
N. Gupta, V. Gupta, T.H. Jordan, C. Kesselman, P. Maechling,
J. Mehringer, G. Mehta, D. Okaya, K. Vahi and L. Zhao, Man-
aging large-scale workflow execution from resource provision-
ing to provenance tracking: the CyberShake example, in: 2nd
IEEE International Conference on e-Science and Grid Com-
puting (e-Science 06), Amsterdam, The Netherlands, 2006.

[10] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L. Pearl-
man, K. Blackburn, P. Ehrens, A. Lazzarini, R. Williams and
S. Koranda, GriPhyN and LIGO, building a virtual data grid for
gravitational wave scientists, in: /1th IEEE International Sym-
posium on High Performance Distributed Computing (HPDC
’02), Edinburgh, Scotland, UK, 2002, pp. 225-234.

[11] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G.B. Berriman, J. Good, A. Laity, J.C. Ja-
cob and D.S. Katz, Pegasus: A framework for mapping com-
plex scientific workflows onto distributed systems, Scientific
Programming 13 (2005), 219-237.

[12] R. Fielding, Architectural styles and the design of network-
based software architectures, PhD thesis, University of Califor-
nia, Irvine, 2000.

[13] J. Frey, T. Tannenbaum, M. Livny, I. Foster and S. Tuecke,
Condor-G: A computation management agent for multi-in-
stitutional grids, Cluster Computing 5 (2002), 237-246.

[14] Generic Connection Brokering (GCB), available at: http://cs.
wisc.edu/condor/gcb.

[15] W. Gentzsch, Sun Grid Engine: towards creating a compute
power grid, in: Ist IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGrid "01), Brisbane, Aus-
tralia, 2001, pp. 35-36.

[16] G. Juve and E. Deelman, Resource provisioning options for
large-scale scientific workflows, in: IEEE Fourth International
Conference on e-Science (e-Science 08), Indianapolis, IN,
2008, pp. 608-613.

[17] G. Juve, E. Deelman, K. Vahi and G. Mehta, Scientific work-
flow applications on Amazon EC2, in: Workshop on Cloud-
Based Services and Applications in Conjunction with 5th IEEE
International Conference on e-Science (e-Science 2009), Ox-
ford, UK, 2009.

[18] D.S. Katz, J.C. Jacob, E. Deelman, C. Kesselman, S. Gurmeet,
S. Mei-Hui, G.B. Berriman, J. Good, A.C. Laity and T.A.
Prince, A comparison of two methods for building astronom-
ical image mosaics on a grid, in: 34th International Confer-
ence on Parallel Processing Workshops (ICPP *05 Workshops),
Oslo, Norway, 2005, pp. 85-94.

[19] Y. Kee, C. Kesselman, D. Nurmi and R. Wolski, Enabling per-
sonal clusters on demand for batch resources using commodity
software, in: International Heterogeneity Computing Workshop
(HCW 08) in Conjunction with IEEE IPDPS 08, Miami, FL,
2008.

[20] M.J. Litzkow, M. Livny and M.W. Mutka, Condor: A hunter
of idle workstations, in: 8th International Conference of Dis-
tributed Computing Systems (ICDCS '88), San Jose, CA, 1988,
pp. 104-111.

[21] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen and R.F. Fre-
und, Dynamic matching and scheduling of a class of inde-
pendent tasks onto heterogeneous computing systems, in: 8th

92 G. Juve et al. / Experiences with resource provisioning for scientific workflows using Corral

Heterogeneous Computing Workshop, San Juan, Puerto Rico,
1999.

[22] Maui Cluster Scheduler, available at: http://www.supercluster.
org/maui.

[23] J. Moscicki, DIANE - distributed analysis environment for
GRID-enabled simulation and analysis of physics data, in:
IEEE Nuclear Science Symposium Conference Record, Port-
land, OR, 2003, pp. 1617-1620.

[24] D. Nurmi, R. Wolski and J. Brevik, VARQ: virtual advance
reservations for queues, in: 17th International Symposium
on High Performance Distributed Computing (HPDC ’08),
Boston, MA, 2008.

[25] Open Science Grid, available at: http://www.opensciencegrid.
org.

[26] PBSPro, available at: http://www.pbspro.com.

[27] 1. Raicu, Y. Zhao, C. Dumitrescu, 1. Foster and M. Wilde,
Falkon: a Fast and Light-weight tasK executiON framework,
in: Supercomputing 2007, Reno, NV, 2007.

[28] SDSC User Portal, available at: http://portal.sdsc.edu.

[29] I Sfiligoi, GlideinWMS — a generic pilot-based workload man-
agement system, Journal of Physics: Conference Series 119
(2008), 062044.

[30] G. Singh, C. Kesselman and E. Deelman, Optimizing grid-
based workflow execution, Journal of Grid Computing 3
(2005), 201-219.

[31] G. Singh, C. Kesselman and E. Deelman, Performance impact
of resource provisioning on workflows, Technical Report 05-
850, University of Southern California, 2005.

[32] G. Singh, M. Su, K. Vahi, E. Deelman, B. Berriman, J. Good,
D.S. Katz and G. Mehta, Workflow task clustering for best ef-
fort systems with Pegasus, in: 15th ACM Mardi Gras Confer-
ence, Baton Rouge, LA, 2008.

[33] Southern California Earthquake Center (SCEC), available at:
http://www.scec.org.

[34] 1J. Taylor, E. Deelman, D.B. Gannon and M. Shields, Work-
Sflows for e-Science: Scientific Workflows for Grids, Springer-
Verlag, New York, 2006.

[35] TeraGrid, available at: http://www.teragrid.org.

[36] H. Topcuoglu, S. Hariri and W. Min-You, Performance-
effective and low-complexity task scheduling for heteroge-
neous computing, IEEE Transactions on Parallel and Distrib-
uted Systems 13 (2002), 260-274.

[37] Torque, available at: http://supercluster.org/torque.

[38] E. Walker, J.P. Gardner, V. Litvin and E. Turner, Creating per-
sonal adaptive clusters for managing scientific jobs in a distrib-
uted computing environment, in: /EEE International Workshop
on Challenges of Large Applications in Distributed Environ-
ments (CLADE 06), Paris, France, 2006.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

