
Scientific Programming 18 (2010) 169–181 169
DOI 10.3233/SPR-2010-0307
IOS Press

Enabling locality-aware computations in
OpenMP ∗

Lei Huang a, Haoqiang Jin b, Liqi Yi a and Barbara Chapman a

a University of Houston, Houston, TX, USA
b NASA Ames Research Center, Mountain View, CA, USA

Abstract. Locality of computation is key to obtaining high performance on a broad variety of parallel architectures and applica-
tions. It is moreover an essential component of strategies for energy-efficient computing. OpenMP is a widely available industry
standard for shared memory programming. With the pervasive deployment of multi-core computers and the steady growth in
core count, a productive programming model such as OpenMP is increasingly expected to play an important role in adapting
applications to this new hardware. However, OpenMP does not provide the programmer with explicit means to program for lo-
cality. Rather it presents the user with a “flat” memory model. In this paper, we discuss the need for explicit programmer control
of locality within the context of OpenMP and present some ideas on how this might be accomplished. We describe potential
extensions to OpenMP that would enable the user to manage a program’s data layout and to align tasks and data in order to
minimize the cost of data accesses. We give examples showing the intended use of the proposed features, describe our current
implementation and present some experimental results. Our hope is that this work will lead to efforts that would help OpenMP
to be a major player on emerging, multi- and many-core architectures.

Keywords: Locality of computation, memory programming, OpenMP, programming models

1. Introduction

It has long been recognized that one of the key
means to achieve good performance on large-scale
non-uniform memory access (NUMA) computers, in-
cluding cache-coherent distributed memory platforms,
is to coordinate the mapping of computations and data
across the system in a manner that minimizes the cost
of data accesses. Many of today’s desktop systems
are multi-core NUMA computers. Application perfor-
mance on such systems also depends to some extent on
the relative placement of computations and data. As the
number of cores configured increases, the need for con-
sideration of locality in a parallel application targeting
multi-core systems will grow. Moreover, the trend to-
wards building systems with heterogeneous cores, with
a high cost of data transfer between memories associ-
ated with different kinds of cores, will further drive the
need to carefully consider the mapping of an applica-
tion’s data and computation to a given platform. We

*This material is based upon work supported by the National Sci-
ence Foundation under Grant No. CCF-0833201 and CCF-0917285
as well as the Department of Energy under Grant No. DE-FC02-
06ER25759.

further note that careful data mapping will be required
to help reduce energy consumption on large-scale re-
sources.

OpenMP is a collection of compiler directives and
library routines that was developed to support the cre-
ation of shared memory parallel programs. The API
is owned by the OpenMP Architecture Review Board
(ARB), which defines the language specification and
debates enhancements to its feature set. The directives,
which have bindings for C, C++ and Fortran, may be
inserted into an existing application in order to enable
it to exploit multiple processors or cores in a shared
memory system. They enable the application developer
to identify regions of the code that should be executed
by multiple threads and to specify strategies for as-
signing work in those regions to the threads. Moreover,
data may be shared among the threads or it may be pri-
vatized, in which case each thread has its own individ-
ual copy of the data. Whereas the application developer
provides the parallelization strategy in this manner, it
is up to the OpenMP implementation to determine the
details of the parallel execution. OpenMP-aware com-
pilers translate the directives into an explicitly multi-
threaded code that makes calls to its runtime system
to manage the subsequent execution. This runtime sys-

1058-9244/10/$27.50 © 2010 – IOS Press and the authors. All rights reserved

170 L. Huang et al. / Enabling locality-aware computations in OpenMP

Fig. 1. Performance study of the NPB BT benchmark. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2010-
0307.)

tem will typically include routines to start up threads
and to manage them during the course of a program’s
execution. Most often it relies on the operating system
to perform crucial services, including assigning work
associated with OpenMP’s user-level threads to hard-
ware resources, and allocating memory for the shared
and private data. Hence OpenMP programs rely on the
runtime or OS to bring data to a task or vice versa.

OpenMP enjoys wide vendor support on today’s
shared memory architectures. However, it does not
provide features to enable explicit programming for lo-
cality. Thus it is generally not known in advance where
a piece of work, such as a set of loop iterations or a
task, will be executed. Similarly, the location of data
objects is typically not known a priori. Yet even on
a small multi-core platform the relative placement of
data and computations may lead to clearly observable
variations in execution time. Figure 1 shows the perfor-
mance differences between several executions of the
NPB benchmark BT Class B (left) and BT Class C
(right) that arise as the result of different data layouts
on up to 128 processors of the SGI Altix, a distributed
shared memory computer. The first column shows the
program performance when the default “first touch”
policy is applied: in this case, the system attempts to
store data so that it is local to the thread that first ac-
cesses it. In this case, we have analyzed the program’s
memory access pattern and then applied the first touch
policy to implicitly distribute data at the beginning
of the program in an appropriate manner. Since the
program has a fixed memory access pattern, the first
touch policy achieves good performance. The second
to fourth columns display the performance achieved
when applying different data distributions. The second
one allocates data into one location only (the concept
of location will be introduced later), the third one dis-
tributes data evenly over all locations and the fourth

distributes all data randomly over all locations. The
performance varies significantly due to the different
data layouts.

Given the fact that OpenMP assumes a flat mem-
ory (uniform memory access), while memory systems
are increasingly hierarchical and NUMA, we believe
that it is important to introduce features for explicit
locality control into OpenMP. Our goal is to develop
an approach to introduce a pervasive locality concept
in OpenMP. We moreover aim to design language fea-
tures that may be used in conjunction with this con-
cept to enable a scalable OpenMP-based programming
model that will cater not only to the needs of emerging
multi-core and many-core platforms, but may form the
basis of a high-level programming model for hetero-
geneous systems. We envisage a notion of locality that
may even help shared memory computations to scale to
satisfy the demands of emerging petascale and future
exascale architectures.

In this paper, we proposes the following additional
features to OpenMP.

1. Define the concept of location, discuss how it is
used with current OpenMP and how to associate
locations with given hardware.

2. Define data layouts among a set of locations.
3. Define task location feature to map tasks with

data based on the above two features.

The paper is organized as follows. We discuss the
relationship between OpenMP features and the locality
of computations in the next section below. We then de-
scribe the syntax of the proposed location and data lay-
out in Section 3, and present our initial implementation
in Section 4. The results of several experiments that
illustrate the performance differences observed based

L. Huang et al. / Enabling locality-aware computations in OpenMP 171

upon different data layouts are given in Section 5. Re-
lated work is briefly discussed in Section 6 and finally,
we draw some conclusions in Section 7.

2. Locality in OpenMP programs: Past and
present

Traditionally, high-level shared memory program-
ming models have encouraged the programmer to ig-
nore any structuring of a system’s memory and data ac-
cess time inequalities. This encourages truly platform-
independent programming since the application devel-
oper may focus on describing the parallelism of the ap-
plication, determining what data needs to be shared and
when this sharing should take place. Moreover, many
early shared memory architectures did indeed provide
uniform memory access, so that the impact of data
placement could safely be ignored. OpenMP is built
on top of prior work that provides for this kind of pro-
gramming style [12].

Nevertheless, the need to consider data locality in
OpenMP programs has been around almost as long as
the standard itself. One of the early platforms that was
used to run OpenMP code was the SGI Origin [13] a
distributed memory system that provided global mem-
ory and cache coherency at relatively low cost across
the nodes of the machine. Since the relative placement
of computations and data could have a major impact
on performance of OpenMP applications on this sys-
tem, SGI defined several extensions to OpenMP that
were designed to allow the user to provide informa-
tion related to locality. They created two different no-
tations for specifying data distributions, a means for
describing how the data should be mapped across the
hardware. They also introduced an affinity clause that
could be appended to loop nests. One form of SGI data
distributions was a hint to the system to describe how
pages of data should be spread across the nodes of the
DSM architecture that SGI provided. The other kind
was an HPF-style data distribution that specified a pre-
cise element-wise mapping of data to the system. In
addition to these, SGI provided a default policy to be
applied when the application developer did not spec-
ify explicit distributions: this was the first touch policy
deployed in the example above, where data will be mi-
grated at the page level to the memory associated with
the location executing the first thread that accesses it.

The first touch policy works well if a program does
not change the data access pattern during its execution.
If no data is available in the corresponding local mem-

ory, this can become inefficient, however. The next
touch policy has been proposed to address a shortcom-
ing of the first touch policy; the idea is to allow data to
be redistributed during program execution. However,
both first/next touch policies operate at the page level,
which does not provide precise data distribution. More-
over, it relies on the manner in which threads access
data and also on the mapping of the thread computa-
tions. However, tasking was introduced in OpenMP 3.0
and is expected to be heavily used. Tasks are sched-
uled dynamically and there is no means to influence
how (where) they are scheduled, nor to influence the
memory location of the data that they access. This may
greatly affect the usefulness of applying a first/next
touch policy. Explicit data layout needs to be intro-
duced to OpenMP in order to enhance the performance
of OpenMP tasking. Unfortunately, however, the man-
ner in which it was introduced by SGI, and proposed by
other vendors, does not facilitate compiler optimiza-
tions. For this reason, we need to take a fresh look
at how this can be accomplished in the OpenMP con-
text.

3. Proposed features

In order to achieve good performance on multi-core
platforms, one needs to pay a great attention to the
memory access. Some programs may get better per-
formance if data is allocated as close as possible to
tasks since the data access has small latency; while oth-
ers may get better performance if data is spread out
to avoid memory contention and to better utilize the
memory bandwidth. It requires the developers to be
able to manipulate the data locality and thread affinity.
For emerging platforms including heterogeneous sys-
tems, it may even be more important to avoid moving
data around due to the high latency.

However, OpenMP does not support thread and data
affinity, and relies on runtime or OS to bring data to
task or vice versa. In this section, we introduce a new
feature called “location” into OpenMP so that pro-
grammers will be able to control where data is located
as well as to manage tasks to be executed close to their
associated data. We also present some code examples
to illustrate how to use these features.

3.1. Definition of location

The location concept is adopted from X10’s Place [7]
and Chapel’s Locale [8] notations. We give the defini-
tion of location in OpenMP as follows.

172 L. Huang et al. / Enabling locality-aware computations in OpenMP

Fig. 2. Two locations map with different hardware resources. (Colors
are visible in the online version of the article; http://dx.doi.org/10.
3233/SPR-2010-0307.)

Location. Location is a logical execution environ-
ment, where OpenMP implicit and explicit tasks are
executed and data is stored.

Location provides an additional logical layer be-
tween the current OpenMP programming model and
underlying hardware. Figure 2 illustrates the additional
logical layer of OpenMP programs using location to
apply thread binding and data affinity. In this case, four
OpenMP threads are bound to location #1 while the
other four OpenMP threads are bound to location #2.
The data is still shared but they have the affinity to one
of these locations. With the concept, OpenMP user can
specify a parallel region mapping with a collections
of locations, determine an OpenMP worksharing con-
struct to be executed by a set of locations and allocate
an OpenMP task on a specific location. By specifying
the locations in a program, user can control where a
task is executed, bind threads with hardware and set
data layout. User can use locations to further optimize
their OpenMP code by specifying data and task affinity
within a location. The fundamental assumption of the
concept is that a task will be able to access data at the
same location faster than data at other locations.

A location is mapped at runtime onto hardware
that includes computing resources and memories. In
NUMA systems, a location may map to a NUMA node
or to a set of NUMA nodes. Although we experimented
the concept for homogeneous systems only in this pa-
per, we believe the concept can be applied to het-
erogeneous systems such as GPU/accelerator devices
as well. In heterogeneous systems, a location can be
mapped with a device that may have separate mem-

ory and different instruction set. The location provides
users a way to allocate different kind of tasks to dif-
ferent devices that suit most for their computation re-
quirements. This will be explored in the near future.

We introduce a new runtime environment variable
OMP_NUM_LOCS that defines the number of locations,
similar to the number of threads in the current OpenMP
specification. If the environment variable has not been
set, the program assumes one location by default. We
introduce a parameter NLOCS as a pre-defined vari-
able for the number of locations in an OpenMP pro-
gram. It is similar to the THREADS parameter de-
fined in the UPC language [3]. The parameter remains
constant during an execution. The parameter is nec-
essary in the definition of data layout, as well as in
compiler and runtime implementation. Each location is
uniquely identified with a number MYLOC in the arange
of [0:NLOCS-1].

3.1.1. Syntax of location
At our design, we limit the location usage as a

clause associated with OpenMP parallel, OpenMP
worksharing and task directives. The clause may
be used together with task groups in the future. The
syntax of location clause is as follows:

location(m[:n])

where m and n are two integer numbers ranging from
0 to NLOCS-1. A single number “m” represents the
location number where the associated OpenMP con-
struct will be executed on. Two numbers separated with
a colon, such as m : n, represent a range of locations
where the associated OpenMP construct will be ex-
ecuted on. m and n are the lower bound and upper
bound of the range.

The location clause indicates that the associated
OpenMP construct is executed in a specified loca-
tion/range of locations. The following are two exam-
ples of using the location clause.

Example 2.1.
#pragma omp parallel location(0:4)

Example 2.2.
#pragma omp task location(1)

The first Example 2.1 indicates how the location
clause is used to associate with an OpenMP parallel re-
gion, which forks and binds the number of threads on
locations from 0 to 4 and executes its enclosed implicit
tasks on these locations. The second Example 2.2 in-
dicates that the OpenMP task will be executed at loca-
tion 1 only.

L. Huang et al. / Enabling locality-aware computations in OpenMP 173

We consider the location clause as a hint, instead of
a command for compiler implementation. It means that
a compiler may ignore the clause, and the code result
is still expected to be correct. There should not be an
exceptional or error happening even when the parame-
ters of the clause are wrong. For example, if a location
number specified by programmer does not exist during
runtime, e.g., location 4 is specified but there are only
2 locations for the execution, then these tasks speci-
fied running on the location will still be executed on a
random location.

3.1.2. Threads and locations mapping
The default mechanism to map threads to locations

is by block distribution fashion. For example, if we
have 16 threads and 4 locations, then the first loca-
tion holds threads 0–3, the second location has threads
4–7, and so on. The block fashion maps threads with
locations compactly to increase the data access lo-
cality. We also define the cyclic mechanism to map
threads with locations, which distributes threads in a
scatter fashion that can be used in the case of in-
creasing memory access bandwidth. A user can mod-
ify the mapping rule by calling the omp_location_
policy([BLOCK,CYCLIC]) runtime routine. If
CYCLIC is specified, the threads will be mapped with
locations in a cyclic fashion, i.e., threads 0, 4, 8 and
12 are placed on location 0, thread 1, 5, 9 and 13 are
placed on location 1, and so on in the above exam-
ple.

3.1.3. Location inheritance rule
The location inheritance rule for parallel regions and

tasks without the “location” clause is hierarchical,
that is, it is inherited from the parent in term of nested
parallelism. In the beginning of a program execution,
the default location association is to the entire collec-
tion of locations. Thus, when there is no location asso-
ciated with a top-level parallel region, the parallel re-
gion will be executed across all locations in a block dis-
tribution fashion for all threads if possible. For nested
parallelism, the inner parallel region will start by de-
fault at the same location where its parent thread is as-
sociated.

If a task has been assigned to a particular location,
all of its child tasks will be running on the same loca-
tion if no other location is specified. On the contrary, if
a location is specified to one of its child tasks, the task
will be executed on the specified location.

3.1.4. Examples
In principle, instead of relying on compiler to ana-

lyze where data is and map tasks with data, we follow
the OpenMP design principle to let the programmer ex-

plicitly specify where a task is executed, instead of by
the compiler.

After the locations are defined either by the envi-
ronment variable OMP_NUM_LOCS or by the runtime,
a parallel region starts with forking and binding threads
to all locations in the block distribution fashion. It is
possible to move a nested parallel region or a task into
a different set of locations, even if these locations are
excluded in the current parallel region.

The following is a legal example of nested par-
allelism. The task and nested parallel region can be
mapped to a location that may or may not belong to the
original set of locations #0–4.

Example 2.3.
#pragma omp parallel location (0:4)
{

#pragma omp task location(4)
{
Task(A[i])

}
#pragma omp parallel location(5:7)
{
...

}
}

To achieve good data locality in nested parallelism,
we can use the MYLOC parameter to determine the
current thread location and start the inner parallelism
within the same location. The following example
shows a scatter threads distribution at the outer level of
parallelism, and a compact threads distribution at the
inner level of parallelism.

Example 2.4 (Nested parallelism).
#pragma omp parallel

// spread to all locations
{
...
#pragma omp parallel

location(MYLOC)
//starts the inner parallel
//region within its parent
//thread location.
{

...
}

}

In fact, we do not even need to specify location for
the inner level parallel region since it will be inherited
from its parent thread according to the inheritance rule.

174 L. Huang et al. / Enabling locality-aware computations in OpenMP

It is quite simple and natural to achieve good data lo-
cality using location to nested parallelism, similar to
what the Subteam proposal [6] designed for.

3.2. Defining data layout

With the concept of location, we can further intro-
duce a mechanism to express data layout into OpenMP.
The goal of this feature is to allow OpenMP program-
mers to control and manage the data layout and map
it with hierarchical memory systems. The data layout
attribute is applied to shared data and needs to be spec-
ified right after the shared data is declared. The data
layout does not change during its lifetime of the en-
tire program. In other words, we do not consider data
redistribution/migration at this time.

3.2.1. Data layout
We borrow the data distribution syntax from SGI to

express data layout as a directive in OpenMP as fol-
lows.

#pragma omp
distribute(dist-type-list: variable-list)
[location(m:n)]

“dist-type-list” is a comma-separated list
of distribution types for the corresponding array di-
mensions in the variable-list. Variables in the
variable-list should have the same dimension
that matches with the number of distribution types
listed. Possible distribution types include “BLOCK” for
a block distribution across a list of locations given in
the location clause and “*” for a non-distributed
dimension. If the location clause is not present, it
means all locations. We could consider other types of
data distribution, but will not discuss them here for the
sake of simplicity.

The distributed data still keeps its global address and
is accessed in the same way as to other shared data in
the program. With distributed data, the user can con-
trol and manage shared data to improve data locality in
OpenMP programs. The following example shows how
the first dimension of array A gets distributed across
all locations.

double A[N][N];
#pragma omp distribute(BLOCK,*: A)

location(0:NLOCS-1)

The distributed data still keeps its global address and
is accessed in the same way as to other shared data.
If no data distribution is specified for a shared vari-
able, it is allocated in the shared memory space and it

follows the current OpenMP implementation, mostly
likely following the first touch policy for data locality.
The only difference between distributed data and non-
distributed shared data is that user controls the physical
locations of the distributed data so as to improve data
locality in OpenMP programs.

3.2.2. Location replicated data
We also introduce a location replicated data attribute

that indicates a list of read-only variables to be repli-
cated to a set of locations. The location replicated data
implies that a copy-in operation will be applied at the
beginning of a parallel region to each defined vari-
able. Multiple copies of the variable will be created and
each of them will be allocated to one location. We de-
fine its syntax as a standalone directive in the follow-
ing.

Syntax as directive:
#pragma omp locationreplicated(variablelist)

[location(m:n)]

In the following example, we use locationreplicated
as a directive to define a portion of A allocated in each
location. A is invariant during the execution and there
are replicated copies for A on each location. It is used
when A is a small size of array and it is accessed re-
peatedly over a program. By replicating A, the pro-
gram may achieve better performance due to reducing
the latency of accessing it.

Example 2.6.
double A[M];
#pragma omp locationreplicated(A)

location(0:NLOCS-1)

3.3. Mapping with locations

To achieve greater control of task-data affinity, we
can map OpenMP implicit tasks (from parallel re-
gion) and explicit tasks to locations based on either
the location number or the association with distrib-
uted data. In this section, we introduce the syntax of
mapping OpenMP worksharing and tasks with loca-
tions.

3.3.1. Mapping worksharing with locations
To map a worksharing construct or a task with a

location, one can simply specify the location number
using the “location” clause. However, it is much
more intuitive to use a distributed data element loca-
tion to determine where to run a task, instead of using
the location number directly. For this purpose, we de-
fine the “OnLoc” clause that maps a task with speci-

L. Huang et al. / Enabling locality-aware computations in OpenMP 175

fied data, i.e., it assigns a task to a location where the
specified data is located.

Syntax:
OnLoc(variable)

Only distributed variables are allowed to be added in
the OnLoc clause. The variable can be either an entire
array for the parallel construct or an array element
for the OpenMP worksharing and task constructs.

The following example illustrates how to use a dis-
tributed array A as an indication to schedule a parallel
loop by considering the data layout over the location.
The implicit tasks generated in the parallel loop will
be executed on a list of locations where the variable A
is distributed to, and be scheduled according to where
data is located. For example, if A[0] is located on lo-
cation #1, then the iteration i = 0 will be executed on
location #1 too.

Example 2.7.
#pragma omp parallel for OnLoc(A[i])
for(i=0;i<N;i++)
{
foo(A[i])

}

The OnLoc clause changes the original OpenMP
scheduling by introducing additional factor. The
OnLoc clause determines how iterations are distributed
to different locations, while inside each location, the
original OpenMP scheduling applies. For example, in
Example 2.7, the iteration space is determined first for
each location, and these iterations will be further dis-
tributed to multiple threads (if any) bound to a location
using static scheduling.

3.3.2. Mapping tasks with data
The following example illustrates how to map a task

to a location where A[i] is located. In this case, it is the
programmer’s responsibility to define where the task
will be executed by specifying the location where A[i]
is stored.

Example 2.8.
for(i=0;i<N;i++)
{
#pragma omp task OnLoc(A[i])
{

foo(A[i])
}

}

Compared to the location clause, OnLoc maps
a task or tasks to a location or a set of locations based
upon where a variable is located or distributed. The
location clause uses explicit location number(s),
while the OnLoc clause derives location information
from the distribution of a variable, which is more
closely related to the task-data affinity.

3.4. Runtime functions

We introduce omp_get_myloc() for a task to
query its execution location. The use of the parame-
ter MYLOC as a unique location number to identify
a thread running location might be more convenient
for programming purpose. We allow users to mod-
ify the mapping of threads to locations by the run-
time routine omp_location_policy([BLOCK,
CYCLIC]). Other runtime support are under consid-
eration. For example, we may provide runtime func-
tions to allow programmers to query the memory hier-
archy and get the neighboring location (get_myloc_
neighbor()) or get a list of locations sorted by
their memory accessdistance to a specific location
(sort_locations()).

4. Implementation

We have implemented the proposed location feature
in the OpenUH compiler [14]. The OpenUH compiler
is a branch of Open64 compiler and is used as a re-
search infrastructure for OpenMP, compiler and tools
research at University of Houston. It supports C/C++,
Fortran 77/90 with complete OpenMP 2.5 and partial
OpenMP 3.0 features.

4.1. Runtime

We have extended the OpenMP runtime to support
location and data layout management. We built the run-
time on top of libnuma to implement thread bind-
ing and location creation, and look for portable li-
brary support in next step. We first detect the num-
ber of locations specified by environment variable
OMP_NUM_LOCS, as well as the CPU set and the num-
ber of NUMA nodes allocated to an OpenMP program.
When an OpenMP program is launched, OS or job
scheduler software allocates the computing resources
to it, which determines the available CPU set. Once
the CPU set is determined, the runtime maps the num-
ber of locations with the set of CPUs based on the dis-

176 L. Huang et al. / Enabling locality-aware computations in OpenMP

tances between these CPUs. It may not be straightfor-
ward to determine the distance in different platforms,
and we rely on existing runtime libraries to calculate
the memory latency between different CPUs. For ex-
ample, the latest libnuma on Linux has a function
to calculate the distance between NUMA nodes, which
can be used to determine the affinity of locations and
NUMA nodes. Sun Solaris Lgrp library [9] also has the
similar functions to return the different latencies be-
tween hardware resource groups. The runtime calcu-
lates the number of NUMA nodes contained in a loca-
tion, and then put the neighboring nodes together and
allocate them as one location. If the number of loca-
tions is larger than the number of NUMA nodes, then it
will map a NUMA node with multiple locations. How-
ever, the number of locations should never exceed the
number of OpenMP threads. The location creation and
thread binding are done at the initialization of the first
OpenMP parallel region.

4.1.1. Mapping location with hardware resources
To accomplish location mapping with hardware, our

runtime first queries the topology of the machine, and
then decides how to map the user-specified locations
to the computing nodes based upon the topology. For
example, in a cc-NUMA system, neighboring nodes
may be grouped together if the number of locations
defined is smaller than the number of available com-
puting nodes in the system. We bind threads to lo-
cations in either block or cyclic distribution fashion.
We do not bind a thread to a specified CPU/core; in-
stead, we bind a group of threads to a location to en-
able further scheduling within the location. After bind-
ing, the thread, and its descendant threads, may only
migrate between cpu cores within the same location.
Figure 3 shows an example of thread binding and loca-
tion mapping on a hypothetical NUMA machine with
16 nodes. In this case, 8 neighboring NUMA nodes are
grouped together and mapped to one location; there are
16 threads bound to the location.

We use the following algorithm to figure out how to
map locations with NUMA nodes when the number of
NUMA nodes is larger than or equal to the number of
locations.

1 Start with a list of all the NUMA
nodes available;

2 for each location that contains
k nodes

3 pick the first available node,
say X, from the node list;

4 sort the rest nodes in the list
by NUMA-distance from X;

Fig. 3. Mapping 32 threads to 2 locations on a NUMA machine with
16 nodes. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-2010-0307.)

5 pick the first k-1 node from the
sorted list;

6 end for

At the case when the number of locations is larger
than NUMA nodes, more than one location needs to
share the same NUMA node. We map the locations to
NUMA nodes as evenly as possible.

4.1.2. Binding threads with locations
There are two types of threads and locations binding

supported in the runtime: blocked and cyclic. When we
use blocked mapping, the location_id for thread #k will
be determined by location_id = k/N , where N is the
number of locations in the runtime. When we are using
cyclic mapping, the location_id for thread #k will be
determined by the following formula: location_id =
k % N .

Apparently, if the total number of threads is not an
integral multiple of N , some location sill got extra
thread here.

4.2. Compiler translation

The OpenUH compiler handles the syntax parsing
at its front end and translates the OpenMP directives
and clauses to multithreaded code based on the run-
time. The challenge of the compiler translation is how
to generate efficient code without sacrificing the ex-
isting compiler optimizations. For example, the data
layout feature may require the compiler to change a
global array to distributed dynamic allocated pointers,
which may jeopardize the compiler loop nested opti-
mizations.

L. Huang et al. / Enabling locality-aware computations in OpenMP 177

In our implementation, we keep the global index of
a distributed array intact, while using the first touch
policy to move data to the local memory of different
NUMA nodes. We generate an additional parallel loop
to touch data at the beginning of a program to mimic
the data distribution. The advantage of this approach is
to keep the rest of program intact without jeopardizing
any compiler optimizations. The drawback is that the
data is distributed at a page granularity.

After the data distribution, the runtime keeps a table
registered with the data distribution to different loca-
tions. The OnLoc clause is implemented with the data
distribution function to assure that, inside a parallel
loop, each thread will get the iterations which contains
data item on the same location with it. This is done by
searching the data and its index in the registered table.
After the iteration space is determined for each loca-
tion, the original OpenMP scheduling is applied to all
threads inside each location.

5. Experiments

The goal of these proposed extensions is to improve
the scalability of OpenMP performance on modern ar-
chitectures. We have tested the implementation on an
SGI Altix NUMA system (part of the NASA Columbia
supercomputer) and an 48-core AMD workstation for
selected NAS Parallel Benchmarks (NPB) [10]. In the
following we first briefly describe some characteristics
of the two selected benchmarks (BT and SP) consider-
ing the data and task affinity. We then discuss the per-
formance results.

5.1. Benchmark implementation

Both BT and SP employ an alternating direction im-
plicit (ADI) solver in three spatial dimensions. Each
direction (x, y or z) involves five-stencil operations in
the corresponding dimension (I , J or K) on the 3D
data. The x solve has the shortest stride access of data
in memory, while the z solve involves the longest stride
access of data in memory. As a result, the z solve has
the worst cache access for both local and remote data
on a NUMA system.

In order to fully utilize the memory bandwidth and
to align data with most of the work in loops, the
OpenMP versions of BT and SP from NPB3.3 include
a data touching loop for the K dimension of the data,
effectively distributing the data in the K dimension.
This approach works in concert with the parallelization

of the K loops for both the x and y solves. However,
for the z solve, the parallelization is on the J loop–data
accesses and loop iterations are not aligned.

In our implementations of BT and SP with the newly
proposed locality extensions, we replace the data touch
loop with the distribute directive for the K di-
mension, such as:

double precision u(5,0:imax,
0:jmax,0:kmax-1), &

rhs(5,0:imax,
0:jmax,0:kmax-1)

!$omp distribute(*,*,*,BLOCK: u,rhs)

then specify the “OnLoc(u(1,0,0,k))” clause on
the OMP DO (K) loops to align with the data access in
the K dimension. When considering the J loop in the
z solve, the situation is different. If we apply onloc
on the J loop based on the data distributed in the K di-
mension, the J loop would effectively be serialized. So
we have adopted a data transposing approach, which
involves declaring a new array distributed in the J di-
mension, transposing data to the new array, and per-
forming computation on the new array. The code snip-
pet looks like the following:

double precision rhsz(5,0:kmax,
0:imax,0:jmax-1)

!$omp distribute(*,*,*,BLOCK: rhsz)
. . .
..copy rhs to rhsz..

!$omp do OnLoc(rhsz(1,0,0,j))
do j=1,ny

do work on rhsz(*,*,*,j)
end do
..copy rhsz back to rhs..

The OnLoc clause now aligns the J iterations with
rhsz. To prepare for the next time step, array rhsz
has to be copied back to the original array rhs.

Effectively, the above process is equivalent to a data
redistribution except that the current approach always
keeps two copies of the data around. In the actual im-
plementation, the dimensions “i” and “j” of the ar-
ray rhsz can be contracted into a 2D local array to
reduce memory footprint and improve memory traffic.
We need a template declaration to define the data dis-
tribution along the J dimension, as:

double precision rhsz(5,0:kmax),
temp(jmax)

!$omp distribute(BLOCK: temp)
. . .

!$omp do private(rhsz) OnLoc(temp(j))

178 L. Huang et al. / Enabling locality-aware computations in OpenMP

do j=1,ny
do i=1,nx

copy of a slice of K
from rhs(*,i,j,*)
to rhsz(*,*)

do work on rhsz(*)
copy rhsz(*,*)

back to rhs(*,i,j,*)
end do

end do

rhsz is now a private variable and copying between
rhs and rhsz is performed inside the loop nests.

5.2. Results

We used the OpenMP versions of NPB3.3 as a base-
line for performance comparison. In order to examine
contributions from different components described in

Section 5.1, we created two versions: the first one ap-
plied the data transposing without the OnLoc clause
(data transposition) and the second one applied the
distribute+OnLoc as described (loop affinity).
The OpenUH compiler was installed on both the SGI
Altix and the 48-core AMD system. For additional
comparison we also manually created a loop affinity∗
version to mimic the scheduling of loop iterations to
threads based on where the data resides and then used
the Intel compiler to compile the translated code.

Figures 4, 5 and 6 show the percentage performance
improvement of the new versions over the baseline ver-
sion for the Class B and C problems at various thread
counts. The “aggregate” values in the figures are those
accumulated from the two components. Negative val-
ues indicate performance degradation. On the SGI Al-
tix using the Intel compiler, we observe as much as
10% performance improvement at large thread counts

Fig. 4. Performance comparison on the SGI Altix using the Intel compiler. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-2010-0307.)

Fig. 5. Performance comparison on the SGI Altix using the OpenUH compiler. (Colors are visible in the online version of the article; http://dx.doi.
org/10.3233/SPR-2010-0307.)

L. Huang et al. / Enabling locality-aware computations in OpenMP 179

Fig. 6. Performance comparison on the 48-core AMD system using the OpenUH compiler. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-2010-0307.)

from loop affinity. Data transposition improves the BT
performance by 10–20%, but has variable effects on
SP. This seems to be related to the balance between
the cost of extra data copies and the improvement
from better data alignment and cache access in the
computation. The results using the OpenUH compiler
(see Fig. 5) show performance improvement at large
thread counts (�32) from loop affinity. However, we
observe substantial performance degradation (∼20%)
from data transposition for SP and no improvement for
BT.

On the 48-core AMD system (Fig. 6), there is no
performance gain from applying loop affinity; in fact,
negative effects are observed for the Class C problem.
Such results are somewhat counter-intuitive. One pos-
sible explanation is that the current OpenUH runtime is
experimental and may not handle data and thread bind-
ing optimally. On the other hand, we do observe per-
formance improvement from applying data transposi-
tion for both BT and SP. The improvement for BT is
less than 5%, but for SP it increases substantially when
the number of threads is larger than 8. The larger prob-
lem (Class C) exhibits close to 80% performance im-
provement over the baseline version at 48 threads.

From the experiments, we observe significant per-
formance impact from different data layouts on the
NUMA system, especially for larger data sets. The
notion of data layouts via distribute and affinity
with loop iterations via OnLoc allows a user to care-
fully optimize data layout with the data access pattern
and, thus, achieve performance gain on large NUMA
systems.

6. Related work

In contrast to HPF [5], our design of the data loca-
tion feature is following the same design principle in
OpenMP, i.e., we let programmers decide and control
the data layout, allocate work align with data, while the
compiler just follows the programmers’ decision, in-
stead of applying sophisticated analysis to make con-
servative decision.

All HPCS languages allow users to associate com-
putation with data in a more abstract way. Chapel [4]
introduces “locales” to represent a unit of the parallel
architecture (e.g., a node of a cluster). It allows users to
distribute a domain and associated data to the locales.

180 L. Huang et al. / Enabling locality-aware computations in OpenMP

If a parallel loop iterates over a domain, this will dis-
tribute the iterations to the locales. Standard distribu-
tions are provided via an extensible library. Fortress [1]
has also adopted a library approach to support data
mappings; it distributes an array by default. X10 [7]
provides “places” to allow users to specify an affinity
between data and activities, an abstraction of threads.
Places may be mapped to physical locations at the de-
ployment stage; this mapping may be changed during
execution. Regions, collections of array elements, may
be distributed in block or cyclic fashion. PGAS lan-
guages such as UPC [3], CAF [11] have data distribu-
tion feature too, but they target to distributed memory
systems.

Portable Hardware Locality (HWLOC) [2], for-
merly called libtopology, is a useful library that
provides a portable abstraction of the hierarchical
topology of modern architectures. Qthreads [15] is a
light weight thread library with data locality awareness
and distributed data support. We are exploring these
two libraries and may consider to build our OpenMP
runtime on top of them to provide portable OpenMP
runtime with data locality features.

7. Conclusion

In this paper, we introduce the concept of “location”
and the syntax to express data layout over the locations
in OpenMP. We believe it would be a useful feature to
scale OpenMP to many-core, medium size of SMPs.
This feature appears to be potential enough to be ex-
tended to heterogeneous systems with CPU and accel-
erators, as well as for distributed memory systems in
the future. We may also consider how to express data
movement/redistribution among locations in the future.

Although the basic concept has been established, we
need to further consider a number of implications of
the feature for the existing OpenMP standard in addi-
tion to synchronization extensions that will give it ad-
ditional power. The challenges include how to make
the concept backward compatible with the OpenMP
specification, and how to apply the concept to all plat-
forms, including SMPs. Furthermore, it needs to be ex-
tended to cover hierarchies of locations and heteroge-
neous systems. For example, we may define a loca-
tion for an SMP and then other locations for accel-
erators. Other questions arise with regard to how to
specify their data environments and most importantly,
how to enable interactions among them, since they de-
rive much of their power from their persistence. We

must also consider the implications of whether to al-
low threads to migrate between locations; whether to
introduce the ability to dynamically change the num-
ber of locations; what happens with tasks that are not
explicitly mapped to a location; how to deal with un-
tied tasks, and whether the runtime should decide how
to map locations with the underlying hardware. More-
over, the single level of locations defined in the current
work is still not sufficient to map to modern hierarchi-
cal systems or very large platforms. We need to extend
the concept to introduce hierarchies of locations, which
may include both horizontal and vertical data layout
specifications. Hierarchies may provide suitable lev-
els of locality for very large platforms, including those
with nodes that may support hundreds of thousands of
threads.

Acknowledgements

We would like to thank to Piyush Mehrotra at NASA
Ames Research Center for valuable discussions on this
topic and are grateful for feedback from our colleagues
within the OpenMP ARB on the proposed extensions.

References

[1] E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, S. Ryu,
G.L. Steele Jr. and S. Tobin-Hochstadt, The Fortress language
specification, version 0.785, 2005.

[2] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento,
B. Goglin, G. Mercier, S. Thibault and R. Namyst, hwloc:
a generic framework for managing hardware affinities in HPC
applications, in: Proceedings of the 18th Euromicro Inter-
national Conference on Parallel, Distributed and Network-
Based Processing (PDP2010), Pisa, Italia, February 2010,
IEEE Computer Society Press.

[3] W.W. Carlson, J.M. Draper, D.E. Culler, K. Yelick, E. Brooks
and K. Warren, Introduction to UPC and language specifica-
tion, Technical report, Center for Computing Sciences, 1999.

[4] Chapel specification, available at: http://chapel.cray.com/.
[5] B. Chapman, HPF features for locality control on ccNUMA

architectures, in: HUG2000: The 4th Annual HPF User Group
Meeting, October 2000.

[6] B.M. Chapman, L. Huang, G. Jost, H. Jin and B.R. de Supin-
ski, Support for flexibility and user control of worksharing in
OpenMP, Technical Report NAS-05-015, National Aeronau-
tics and Space Administration, 2005.

[7] P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff, A. Kielstra,
V. Saraswat, V. Sarkar and C. Von Praun, X10: An object-
oriented approach to non-uniform cluster computing, in: Pro-
ceedings of the 20th ACM SIGPLAN Conference on Object-
Oriented Programing, Systems, Languages, and Applications,
ACM SIGPLAN, 2005, pp. 519–538.

L. Huang et al. / Enabling locality-aware computations in OpenMP 181

[8] R.E. Diaconescu and H.P. Zima, An approach to data distri-
butions in chapel, Int. J. High Perform. Comput. Appl. 21(3)
(2007), 313–335.

[9] Inc. Sun Microsystem, Memory and thread placement opti-
mization developer’s guide, available at: http://dlc.sun.com/
osol/docs/content/MTPODG/lgroups-2.html, 2007.

[10] NPB – NAS Parallel Benchmarks, available at: http://www.
nas.nasa.gov/Software/NPB.

[11] R.W. Numrich and J.K. Reid, Co-array Fortran for parallel pro-
gramming, ACM Fortran Forum 17(2) (1998), 1–31.

[12] Parallel Computing Forum, PCF parallel Fortran extensions,
V5.0, ACM Sigplan Fortran Forum 10(3) (1991), 1–57.

[13] Silicon Graphics Inc., MIPSpro 7 FORTRAN 90 commands
and directives reference manual, 2002.

[14] The OpenUH compiler project, available at: http://www.cs.uh.
edu/~openuh, 2005.

[15] K.B. Wheeler, R.C. Murphy and D. Thain, Qthreads: An API
for programming with millions of lightweight threads, in:
IPDPS, IEEE, 2008, pp. 1–8.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

