Scientific Programming 17 (2009) 215-230 215
DOI 10.3233/SPR-2009-0249
I0S Press

Mesh algorithms for PDE with Sieve I:
Mesh distribution

Matthew G. Knepley * and Dmitry A. Karpeev
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

Abstract. We have developed a new programming framework, called Sieve, to support parallel numerical partial differential
equation(s) (PDE) algorithms operating over distributed meshes. We have also developed a reference implementation of Sieve
in C++ as a library of generic algorithms operating on distributed containers conforming to the Sieve interface. Sieve makes
instances of the incidence relation, or arrows, the conceptual first-class objects represented in the containers. Further, generic
algorithms acting on this arrow container are systematically used to provide natural geometric operations on the topology and
also, through duality, on the data. Finally, coverings and duality are used to encode not only individual meshes, but all types of
hierarchies underlying PDE data structures, including multigrid and mesh partitions.

In order to demonstrate the usefulness of the framework, we show how the mesh partition data can be represented and manipu-
lated using the same fundamental mechanisms used to represent meshes. We present the complete description of an algorithm to
encode a mesh partition and then distribute a mesh, which is independent of the mesh dimension, element shape, or embedding.
Moreover, data associated with the mesh can be similarly distributed with exactly the same algorithm. The use of a high level
of abstraction within the Sieve leads to several benefits in terms of code reuse, simplicity, and extensibility. We discuss these
benefits and compare our approach to other existing mesh libraries.

Keywords: Mesh, topology, Sieve, partitioning, distribution

1. Introduction

Numerical PDE codes frequently comprise of two
uneasily coexisting pieces: the mesh, describing the
topology and geometry of the domain, and the func-
tional data attached to the mesh representing the dis-
cretized fields and equations. The mesh data structure
typically reflects the representation used by the mesh
generator and carries the embedded geometric infor-
mation. While this arrangement is natural from the
point of view of mesh generation and exists in the best
of such packages (e.g., [17]), it is frequently foreign
to the process of solving equations on the generated
mesh.

At the same time, the functional data closely reflect
the linear algebraic structure of the computational ker-
nels ultimately used to solve the equations; here the
natural geometric structure of the equations, which re-
flects the mesh connectivity in the coupling between
the degrees of freedom, is sacrificed to the rigid con-
straints of the solver. In particular, the most natural

*Corresponding author. Tel.: +1 630 252 1870; Fax: +1 630 252
5986; E-mail: knepley @mcs.anl.gov.

geometric operation of a restriction of a field to a lo-
cal neighborhood entails tedious and error-prone index
manipulation.

In response to this state of affairs a number of ef-
forts arose addressing the fundamental issues of inter-
action between the topology, the functional data and al-
gorithms. We note the MOAB project [8,19,20] and the
TSTT/ATAPS SciDAC projects [3,8,16], the libMesh
project [6], the GrAL project [4], to name just a few.
Sieve shares many features with these projects, but
GrAL is the closest to it in spirit. Although each of
these projects addresses some of the issues outlined
above, we feel that there is room for another approach.

Our Sieve framework, is a collection of interfaces
and algorithms for manipulating geometric data. The
design may be summarized by considering three con-
structions. First, data in Sieve are indexed by the un-
derlying geometric elements, such as mesh cells, rather
than by some artificial global order. Further, the local
traversal of the data is based on the connectivity of the
geometric elements. For example, Sieve provides op-
erations that, given a mesh cell, traverse all the data on
its interior, its boundary or its closure. Typical opera-
tions on a Sieve are shown in Table 1 and described in

1058-9244/09/$17.00 © 2009 — IOS Press and the authors. All rights reserved

216 M.G. Knepley and D.A. Karpeev / Mesh algorithms for PDE with Sieve I: Mesh distribution

Table 1

Typical operations on a Sieve
cone(p) Sequence of points covering a given point p
closure(p) Transitive closure of cone
support(p) Sequence of points covered by a given point p
star(p) Transitive closure of support
meet(p, q) Minimal separator of closure(p) and closure(q)
join(p, q) Minimal separator of star(p) and star(q)

greater detail in Section 2.1. In the table, topological
mesh elements, such as vertices, edges and so on, are
referred to as abstract points' and the adjacency rela-
tion between two points, such as an edge and its vertex,
is referred to as covering: an edge is covered by its end
vertices. Notice that exactly the same operation is used
to obtain edges adjacent to a face as faces adjacent to a
cell, without even a lurking dimension parameter. This
is the key to enabling dimension-independent program-
ming for PDE algorithms.

Second, the global topology is divided into a chain
of local topologies with an overlap structure relating
them to each other. The overlap is encoded using the
Sieve data structure again, this time containing arrows
relating points in different local topologies. The data
values over each local piece are manipulated using the
local connectivity, and each local piece may associate
different data to the same global element. The crucial
ingredient here is the operation of assembling the chain
of local data collections into a consistent whole over
the global topology.

Third, the covering arrows can carry additional in-
formation, controlling the way in which the data from
the covering points are assembled onto the covered
points. For example, orientation information can be en-
coded on the arrows to dictate an order for data re-
turned over an element closure. More sophisticated op-
erations are also possible, such as linear combinations
which enable coordinate transformations, or the pro-
jection and interpolation necessary for multigrid algo-
rithms. This is the central motivation behind the arrow-
centric interface.

Emphasis on the covering idea stems directly from
the cell complex construction in algebraic topology.
We have abstracted it along the lines of category the-
ory, with its emphasis on arrows, or morphisms, as the
organizing principle. The analogy runs deeper, how-
ever, because in PDE applications meshes do not exist
for their own sake, but to support geometrically struc-

lour points correspond to geometric entities in some other ap-
proaches like MOAB or ITAPS.

tured information. The geometric structure of these
data manifests itself through duality between topolog-
ical operations, such as closure of a mesh element,
and analytical operations, such as the restriction of a
field to a closed neighborhood of the element. For-
mally this can be seen as a reversal of arrows in a suit-
able category. At the practical level, this motivates the
arrow-centric point of view, which allows us to load the
arrows with the data (e.g., coordinate transformation
parameters) making the dualization between covering
and restriction possible.

The arrow-centric point of view also distinguishes
our approach from similar projects such as [4]. In addi-
tion, it is different from the concept of a flexible data-
base of geometric entities underlying the MOAB and
TSTT/ITAPS methodologies (see e.g., [20] and [16]).
Sieve can be thought of as a database, but one that
limits the flexibility by insisting on the arrow-centric
structure of the input and output and a small basic
query interface optimized to reveal the covers of in-
dividual elements. This provides a compact concep-
tual universe shifting the flexibility to the generic algo-
rithms enabled by a well-circumscribed container in-
terface.

Although other compact interfaces based on a sim-
ilar notion adjacency exist, we feel that Sieve’s inter-
face and the notion of a covering better capture the
essence of the geometric notions underlying meshes,
rather than mapping them onto a database-inspired lan-
guage. Moreover, these adjacency queries often carry
outside information, such as dimension or shape tags,
which is superfluous in the Sieve interface and limits
the opportunity for dimension independent program-
ming. These geometric notions are so universal that the
systematic use of covering notions is possible at all lev-
els of hierarchy underlying PDE computation. For ex-
ample, the notion of covering is used to record relations
between vertices, edges and cells of other dimensions
in a sieve. No separate relation is used to encode “‘side”
adjacencies, such as “neighbor” relations between cells
of the same dimension, as is done in GrAL.

In fact, the points of a sieve are not a priori inter-
preted as elements of different dimensions and cover-
ing can be used to encode overlap relations in multi-
ple non-conforming meshes, multigrid hierarchies, or
even identification of cells residing on multiple proces-
sors. Contrast this, for example, with the multiple no-
tions employed by ITAPS to describe meshes: meshes,
submeshes, mesh entities, mesh entity sets and paral-
lel mesh decompositions. While the relations between
all these concepts are of essentially similar nature, this

M.G. Knepley and D.A. Karpeev / Mesh algorithms for PDE with Sieve I: Mesh distribution 217

unity is not apparent in the interface, inhibiting reuse
and hindering analysis of the data structures, their ca-
pabilities and their complexity.

Undoubtedly, other approaches may be more appro-
priate in other computational domains. For instance,
different data structures may be more appropriate for
mesh generation, where very different types of queries,
modifications and data need to be associated with the
mesh. Partitioning algorithms may also require differ-
ent data access patterns to ensure efficiency and scal-
ability. Sieve does not pretend to address those con-
cerns. Instead, we try to focus on the demands of nu-
merical PDE algorithms that revolve around the idea of
a field defined over a geometry. Different PDE prob-
lems use different fields and even different numbers of
fields with different discretizations. The need for sub-
stantial flexibility in dealing with a broad class of PDE
problems and their geometric nature are the main cri-
terion for the admission into the Sieve interface.

Here we focus on the reuse of the basic covering
notions at different levels of data hierarchy. In partic-
ular, the division of the topology into pieces and as-
sembly over an overlap is among the fundamental no-
tions of PDE analysis, numerical or otherwise. It is the
essence of the domain decomposition method and can
be used in parallel or serial settings, or both. More-
over, we focus on this decomposition/assembly aspect
of Sieve and present its capabilities with a fundamen-
tal example of this kind — the distribution of a mesh
onto a collection of processors. It is a ubiquitous oper-
ation in parallel PDE simulation and a necessary first
step in constructing the full distributed problem. More-
over, mesh distribution makes for an excellent peda-
gogical problem, illustrating the powerful simplicity
of the Sieve construction. The Sieve interface allows
PDE algorithms, operating over data distributed over
a mesh, to be phrased without reference to the dimen-
sion, layout, element shape, or embedding of the mesh.
We illustrate this with the example of distribution of
a mesh and associated data fields over it. The same
simple algorithm will be used to distribute an arbitrary
mesh, as well as fields of arbitrary data layout.

We discuss not only the existing code for the Sieve
library but also the concepts that underlie its design
and implementation. These two may not be in complete
agreement, as the code continues to evolve. We use the
keyboard font to indicate both existing library in-
terfaces and proposed developments that more closely
relate to our design concepts. Furthermore, early im-
plementations may not be optimal from the point of
view of runtime and storage complexity as we resist

premature optimizations in favor of refining the in-
terface. Nonetheless, our reference implementation is
fully functional, operating in parallel, and in use by
real applications [15,21]. This implementation verifies
the viability and the consistency of the interface, but
does not preclude more efficient implementations bet-
ter suited to particular uses. The added value of the in-
terface comes in the enabling of generic algorithms,
which operate on the interface and are independent of
the underlying implementation. In this publication we
illustrate some of these fundamental algorithms.

The rest of the paper is organized as follows. In Sec-
tion 2 we introduce the basic notions and algorithms of
the Sieve framework, which are then seen in action in
Section 3 where the algorithms for mesh distribution
and redistribution in a parallel setting are discussed.
Section 4 contains specific examples of mesh distribu-
tion and Section 5 concludes the paper.

2. Sieve framework

Sieve can be viewed as a library of parallel con-
tainers and algorithms that extends the standard con-
tainer collection (e.g., the Standard Template Library
of C++ and BOOST libraries). The extensions are sim-
ple but provide the crucial functionality and introduce
what is, in our view, a very useful semantics. Through-
out this paper we freely use the modern terminology of
generic programming, in particular the idea of a con-
cept, which is an interface that a class must implement
to be usable by templated algorithms or methods.

Our fundamental concept is that of a Map, which
we understand in the multivalued sense as an assign-
ment of a sequence of points in the range to each
of the points in the domain. A sequence is an im-
mutable ordered collection of points that can be tra-
versed from the begin element to the end. Typically
a sequence has no repetitions, and we assume such
set semantics of sequences unless explicitly noted oth-
erwise.

A sequence is a basic input and output type of
most Sieve operations, and the basic operation act-
ing on sequences is called restrict. In particu-
lar, a Map can be restricted to a point or a
sequence in the domain, producing the correspond-
ing sequence in the range. Map objects can be up-
dated in various ways. At the minimum we require
that a Map implement a set operation that assigns
a sequence to a given domain point. Subsequent
restrict calls may return a sequence reordered
in an implementation-dependent way.

218 M.G. Knepley and D.A. Karpeev / Mesh algorithms for PDE with Sieve I: Mesh distribution

2.1. Basic containers

Sieve extends the basic Map concept in several
ways. First, it allows bidirectional mappings. Hence,
we can map points in the range, called the cap, to the
points in the domain, called the base. This mapping
is called the support, while the base-to-cap map-
ping is called the cone.

Second, the resulting sequence actually contains
not the image points but arrows. An arrow re-
sponds to source and target calls, returning re-
spectively the cap and base points of the arrow.
Thus, an arrow not only abstracts the notion of a pair
of points related by the map but also allows the attach-
ment of nearly arbitrary “payload”, a capability useful
for local traversals.

One can picture a Sieve as a bipartite graph with
the cap above the base and the arrows pointing
downward (e.g., Fig. 1). The containers are not con-
strained by the type of point and arrow objects, so
Sieve must be understood as a library of meta-objects
and meta-algorithms (a template library in the C++ no-
tation), which generates appropriate code upon instan-
tiation of basis objects. We primarily have the C++ set-
ting in mind, although appropriate Python and C bind-
ings have been provided in our reference implementa-
tion.

Fig. 1. A simple mesh and its Sieve representation.

A Sieve can be made into a Map in two different
ways, by identifying either cone or support with
restrict. Each can be done with a simple adapter
class and allows all the basic Map algorithms to be ap-
plied to Sieve objects.

The Sieve also extends Map with capabilities of
more geometric character. It allows the taking of a
transitive closure of cone to obtain the topological
closure of a point familiar from cell complex the-
ory [1,10]. Here arrows are interpreted as the incidence
relations between points, which represent the cells.
Likewise, iterated supports result in the star of
a point. The meet (p, g) lattice operation returns the
smallest sequence of points whose removal would
render closure (p) and closure (q) disjoint. The
join (p, q) operation is the analogue for star (p)
and star (q). Note that all these operations actually
return arrow sequences, but by default we extract ei-
ther the source or the target, a strategy that aids in
the definition of transitive closures and simplifies pro-
gramming.

Figure 1 illustrates how mesh topology can be rep-
resented as a Sieve object. The arrows indicate cov-
ering or incidence relations between triangles, edges,
and vertices of a simple simplicial mesh. Sieve opera-
tions allow one to navigate through the mesh topology
and carry out the traversals needed to use the mesh. We
illustrate some common Sieve operations on the mesh
from Fig. 1 in Table 2.

2.2. Data definition and assembly

Sieves are designed to represent relations between
geometric entities, represented by points. They can
also be used to attach data directly to arrows, but
not to points, since points may be duplicated in differ-
ent arrows. A Map, however, can be used effectively
to lay out data over points. It defines a sequence-
valued function over the implicitly defined domain
set. In this case the domain carries no geometric
structure, and most data algorithms rely on this mini-
mal Map concept.

Table 2
Results of typical operations on the Sieve from Fig. 1
cone(0) {2,3,4}
support(4) {0, 1}
closure(1) {1,4,5,6,7,10,8}
star(8) {2,4,6,8,0,1}
meet(0,1) {4}
join(2,4) {0}

join(2,5) {}

M.G. Knepley and D.A. Karpeev / Mesh algorithms for PDE with Sieve I: Mesh distribution 219

2.2.1. Sections

If a Map is combined with a Sieve, it allows
more sophisticated data traversals such as restrict
Closure or restrictStar. These algorithms are
essentially the composition of maps from points to
point sets (closure) with maps from points to data (sec-
tion). Analogous traversals based on meet, join, or
other geometric information encoded in Sieve can be
implemented in a straightforward manner. The concept
resulting from this combination is called a Section,
by analogy with the geometrical notion of a section of
a fiber bundle. Here the Sieve plays the role of the
base space, organizing the points over which the map-
ping representing the section is defined. We have found
Sections most useful in implementating finite ele-
ment discretizations of PDE problems. These applica-
tions of Section functionality are detailed in an up-
coming publication [14].

A particular implementation of Map and Section
concepts ensures contiguous storage for the values.
We mention it because of its importance for high-
performance parallel computing with Sieve. In this im-
plementation a Map class uses another Map internally
that maps domain points to offsets into a contiguous
storage array. This allows Sieve to interface with par-
allel linear and nonlinear solver packages by identify-
ing Map with the vector from that package. We have
done this for the PETSc [2] package. The internal Map
is sometimes called the atlas of that Section. The
analogous geometric object is the local trivialization of
a fiber bundle that organizes the space of values over a
domain neighborhood (see, e.g., [18]).

We observe that Sections and Sieves are in du-
ality. This duality is expressed by the relation of the
restrict operation on a Section to the cone op-
eration in a Sieve. Corresponding to closure is
the traversal of the Section data implemented by
restrictClosure. In this way, to any Sieve tra-
versal, there corresponds a traversal of the correspond-
ing Section. Pictured another way, the covering ar-
rows in a Sieve may be reversed to indicate restric-
tion. This duality will arise again when we picture the
dual of a given mesh in Section 3.1.

2.2.2. Overlap and Delta

In order to ensure efficient local manipulation of the
data within a Map or a Section, the global geome-
try is divided into manageable pieces, over which the
Maps are defined. In the context of PDE problems, the
chain of subdomains typically represents local meshes
that cover the whole domain. The dual chain, or a
cochain, of Maps represents appropriate restrictions

of the data to each subdomain. For PDEs, the cochain
comprises local fields defined over submeshes.

The covering of the domain by subdomains is en-
coded by an Overlap object. It can be implemented
by a Sieve, whose arrows connect the points in
different subdomains that cover each other. Strictly
speaking, Overlap arrows relate pairs (domain, do-
main_point). Alternatively, we can view Overlap it-
self as a chain of Sieves indexed by nonempty over-
laps of the subdomains in the original chain. This bet-
ter reflects the locality of likely Overlap traversal
patterns: for a given chain domain, all points and their
covers from other subdomains are examined.

An Overlap is a many-to-many relation. In the
case of meshes this allows for nonconforming overlap-
ping submeshes. However, the essential uses of Over-
lap are evident even in the simplest case representing
conforming subdomain meshes treated in detail in the
example below. Figure 2 illustrates the Overlap cor-
responding to a conforming mesh chain resulting from
partitioning of the mesh in Fig. 1. Here the Overlap
is viewed as a chain of Sieves, and the local mesh
point indices differ from the corresponding global in-
dices in Fig. 1. This configuration emphasizes the fact
that no global numbering scheme is imposed across a
chain and the global connectivity is always encoded in
the Overlap. In the present case, this is simply a one-
to-one identification relation. Moreover, many overlap
representations are possible; the one presented above,
while straightforward, differs from that shown in Sec-
tion 3.2.

The values in different Maps of a cochain are related
as well. The relation among them reflects the overlap
relation among the points in the underlying subdomain
chain. The nature of the relationship between values
varies according to the problem. For example, for con-
forming meshes (e.g., Fig. 2) the Overlap is a one-
to-one relation between identified elements of different
subdomain meshes. In this case, the Map values over
the same mesh element in different domains can be du-
plicates, as in finite differences, or partial values that
have to be added to obtain the unique global value, as
in finite element methods. In either case the number of
values over a shared mesh element must be the same in
the cooverlapping Maps. Sometimes this number is re-
ferred to as the fiber dimension, by analogy with fiber
bundles.

Vertex coordinates are an example of a cochain
whose values are simply duplicated in different local
maps, as shown in Section 3.2. In the case of non-
conforming subdomain meshes, Overlap is a many-

220 M.G. Knepley and D.A. Karpeev / Mesh algorithms for PDE with Sieve I: Mesh distribution

Overlap 0,1

Subdomain 1

9

Overlap 1,0

Fig. 2. Overlap of a conforming mesh chain obtained from breaking up the mesh in Fig. 1.

to-many relation, and Map values over overlapping
points can be related by a nontrivial transformation or
a relation. They can also be different in number. All
of this information — fiber dimensions over overlap-
ping points, the details of the data transformations, and
other necessary information — is encoded in a Delta
class.

A Delta object can be viewed as a cochain of
maps over an Overlap chain, and is dual to the
Overlap in the same way that a Section is dual
to a Sieve. More important, a Delta acts on the
Map cochain with domains related by the Overlap.
Specifically, the Delta class defines algorithms that
restrict the values from a pair of overlapping sub-
domains to their intersection. This fundamental opera-
tion borrowed from the sheaf theory (see, e.g., [5]) al-
lows us to detect Map cochains that agree on their over-
laps. Moreover (and this is a uniquely computational
feature), Delta allows us to fuse the values on the
overlap back into the corresponding local Maps so as

to ensure that they agree on the overlap and define a
valid global map. The restrict-fuse combination
is a ubiquitous operation called completion, which
we illustrate here in detail in the case of distributed
Overlap and Delta. For example, in Section 3.2 we
use completion to enforce the consistency of cones
over points related by the overlap.

If the domain of the cochain Map carries no topol-
ogy — no connectivity between the points — it is sim-
ply a set and need not be represented by a Sieve.
This is the case for a pure linear algebra object, such
as a PETSc Vec. However, the Overlap and Delta
still contain essential information about the relation-
ship among the subdomains and the data over them,
and must be represented and constructed explicitly. In
fact, a significant part of an implementation of any do-
main decomposition problem should be the specifica-
tion of the Overlap and Delta pair, as they are at
the heart of the problem.

Observe that Overlap fulfills Sieve functions
at a larger scale, encoding the domain topology at

M.G. Knepley and D.A. Karpeev / Mesh algorithms for PDE with Sieve I: Mesh distribution 221

the level of subdomains. In fact, Overlap can be
thought of as the “superarrows” between domain “su-
perpoints”. Thus, the essential ideas of encoding topol-
ogy by arrows indicating overlap between pieces of the
domain is the central idea behind the Sieve interface.
Likewise, Deltas act as Maps on a larger scale and
can be restricted in accordance with an Over-
lap.

2.3. Database interpretation

The arrow-centric formalism of Sieve and the basic
operations have an interpretations in terms of relational
databases and the associated ‘entity-relation’ analyses.
Indeed, Sieve points can naturally be interpreted as the
rows of a table of ‘entities’ (both in the database sense
and the sense of ‘topological entity’) with the point it-
self serving as the key. Arrows encode covering rela-
tions between points, and therefore define a natural bi-
nary database relation with the composite key consist-
ing of the two involved points. In this scenario cones
and supports have various interpretations in terms of
queries against such a schema; in particular, the cone
can be viewed as the result of a (database) join of the
arrow table with the point table on the target key; the
support is the join with the source key. More in-
terestingly, the topological closure is the transitive
closure of the database join applied to the arrow table;
similarly for star. Moreover, meet and join in the
topological sense cannot be formulated quite as suc-
cinctly in terms of database queries, but are very clear
in terms of the geometric intuitive picture of Sieve.

This can be contrasted with the scenario, in which
only point entity tables are present and the covering or
incident points are stored in the entity record alongside
the point key. In this case, however, arrows have no
independent existence, are incapable of carrying their
own ancillary information and are duplicated by each
of the two related points. While in this paper we do
not focus on the applications of arrow-specific data that
can be attached to the arrow records for lack of space,
we illustrate its utility with a brief sketch of an exam-
ple.

In extracting the cone or the (topological) closure
of a point, such as a hexahedron in a 3D hex mesh, it
is frequently important to traverse the resulting faces,
edges and points in the order determined by the orien-
tation of the covered hex. Each face, except those on
the boundary, cover two hexahedra and most edges and
vertices cover several faces and edges, respectively.
Each of those covering relations induces a different ori-

entation on the face, edge or vertex. In FEM applica-
tions this results in a change of the sign of integral over
the covering point. The sign, however, is not intrinsi-
cally associated with the covering point, by rather with
its orientation relative to the orientation induced by the
covered entity. Thus, the sign of the integral is deter-
mined by the (covering, covered) pair, that is, by the
arrow. In a entity-only schema, at worst there would
be no natural place for the orientation data, and at best
it would make for an awkward design and potentially
lead to storage duplication. More sophisticated uses
of arrow-specific data include general transformation
of the data attached to points upon its pullback onto
the covered points (consider, for example, the restric-
tion/prolongation multigrid operators).

To summarize, Sieve can be viewed as an interface
defining a relational database with a very particular
schema and a limit query set. This query set, however,
allows for some operations that may be difficult to de-
scribe succinctly in the database language (topologi-
cal meet and join). Furthermore, by defining a re-
stricted database of topological entities and relations,
as opposed to a flexible one, Sieve potentially allows
for more effective optimizations of the runtime and
storage performance behind the same interface. These
issues will be discussed elsewhere.

3. Mesh distribution

Before our mesh is distributed, we must decide on
a suitable partition, for which there are many excellent
packages (see, e.g., [11-13]). We first construct suit-
able overlap Sieves. The points will be abstract “par-
titions™ that represent the sets of cells in each parti-
tion, with the arrows connecting abstract partitions on
different processes. The Overlap is used to structure
the communication of Sieve points among processes
since the algorithm operates only on Sections, in
this case we exhibit the mesh Sieve as a Section
with values in the space of points.

3.1. Dual graph and partition encoding

The graph partitioning algorithms in most packages,
for example ParMetis and Chaco which were used for
testing, require the dual to our original mesh, some-
times referred to as the element connectivity graph.
These packages partition vertices of a graph, but FEM
computations are best load-balanced by partitioning el-
ements. Consider the simple mesh and its dual, shown

222 M.G. Knepley and D.A. Karpeev / Mesh algorithms for PDE with Sieve I: Mesh distribution

(0,11)

((L9) (0,10)

(0.3)

(O0.11)

(0.5) (0.4)
(0,7

0.2)

(0,9) (0,10)

(0,0)

Fig. 3. A simple mesh and its dual.

in Fig. 3. The dual Sieve is identical to the original ex-
cept that all arrows are reversed. Thus, we have an ex-
tremely simple characterization of the dual.

It is common practice to omit intermediate elements
in the Sieve, for instance storing only cells and ver-
tices. In this case, we may construct the dual edges on
the fly by looping over all cells in the mesh, taking the
support, and placing a dual edge for any support of
the correct size (greater than or equal to the dimension
is sufficient) between the two cells in the support. Note
this algorithm also works in parallel because the sup-
ports will, by definition, be identical on all processes
after support completion. Moreover, it is independent
of the cell shape and dimension, unless the dual edges
must be constructed.

The partitioner returns an assignment of cells, ver-
tices in the dual, to partitions. This can be thought of as
a Section over the mesh, giving the partition num-
ber for each cell. However, we will instead interpret
this assignment as a Section over the abstract parti-
tion points taking values in the space of Sieve points,
which can be used directly in our generic Section
completion routine, described in Section 3.2.1. In fact,
Sieve can generate a partition of mesh elements of any
dimension, for example mesh faces in a finite volume

code, using a hypergraph partitioner, such as that found
in Zoltan [7] and exactly the same distribution algo-
rithm.

3.2. Distributing a serial mesh

To make sense of a finite element mesh, we must
first introduce a few new classes. A Topology com-
bines a sequence of Sieves with an Overlap. Our
Mesh is modeled on the fiber bundle abstraction from
topology. Analogous to a topology combined with a
fiber space, a Mesh combines a Topology with a
sequence of Sections over this topology. Thus, we
may think of a Mesh as a Topology with several
distinguished Sections, the most obvious being the
vertex coordinates.

After the topology has been partitioned, we may dis-
tribute the Mesh in accordance with it, following the
steps below:

1. Distribute the Topology.
2. Distribute maps associated to the topology.
3. Distribute bundle sections.

M.G. Knepley and D.A. Karpeev / Mesh algorithms for PDE with Sieve I: Mesh distribution 223

Each distribution is accomplished by forming a spe-
cific Section, and then distributing that Sect ionin
accordance with a given overlap. We call this process
section completion, and it is responsible for all com-
munication in the Sieve framework. Thus, we reduce
parallel programming for the Sieve to defining the cor-
rect Section and Overlap, which we discuss be-
low.

3.2.1. Section completion

Section completion is the process of completing
cones, or supports, over a given overlap. Completion
means that the cone over a given point in the Over-
lap is sent to the Sieve containing the neighbor-
ing point, and then fused into the existing cone of that
neighboring point. By default, this fusion process is
just insertion, but any binary operation is allowed. For
maximum flexibility, this operation is not carried out
on global Sections, but rather on the restriction of
a Section to the Overlap, which we term overlap
sections. These can then be used to update the global
Section.

The algorithm uses a recursive approach based on
our decomposition of a Section into an atlas and
data. First the atlas, also a Section, is distributed,
allowing receive data sizes to be calculated. Then the
data itself is sent. In this algorithm, we refer to the at-
las, and its equivalent for section adapters, as a sizer.
Here are the steps in the algorithm:

Create send and receive sizer overlap sections.
Fill send sizer section.

Communicate.

Create send and receive overlap sections.

Fill send section.

6. Communicate.

Al

The recursion ends when we arrive at a Constant-
Section, described in [14], which does not have to
be distributed because it has the same value on every
point of the domain.

3.2.2. Sieve construction

The distribution process uses only section comple-
tion to accomplish all communication and data move-
ment. We use adapters [9] to provide a Section inter-
face to data, such as the partition. The Partition-
SizeSection adapter can be restricted to an abstract
partition point, returning the total number of sieve
points in the partition (not just the those divided by the
partitioner). Likewise, the PartitionSection re-
turns the points in a partition when restricted to the par-
tition point. When we complete this section, the points

are distributed to the correct processes. All that re-
mains is to establish the correct hierarchy among these
points, which we do by establishing the correct cone
for each point. The ConeSizeSection and Cone-
Section adapters for the Sieve return the cone size
and points respectively when restricted to a point. We
see here that a sieve itself can be considered a section
taking values in the space of points. Thus sieve com-
pletion consists of the following:

1. Construct local mesh from partition assignment
by copying.

2. Construct initial partition overlap.

3. Complete the partition section to distribute the
cells.

4. Update the Overlap with the points from the
overlap sections.

5. Complete the cone section to distribute remain-
ing Sieve points.

6. Update local Sieves with cones from the
overlap sections.

The final Overlap now relates the parallel Sieve
to the initial serial Sieve. Note that we have used
only the cone () primitive, and thus this algorithm ap-
plies equally well to meshes of any dimension, element
shape, or connectivity. In fact, we could distribute an
arbitrary graph without changing the algorithm.

3.3. Redistributing a mesh

Redistributing an existing parallel mesh is identical
to distributing a serial mesh in our framework. How-
ever, now the send and receive Overlaps are po-
tentially nonempty for every process. The construction
of the intermediate partition and cone Sections, as
well as the section completion algorithm, remain
exactly as before. Thus, our high level of abstraction
has resulted in enormous savings through code reuse
and reduction in complexity.

As an example, we return to the triangular mesh dis-
cussed earlier. However, we will begin with the dis-
tributed mesh shown in Fig. 4, which assigns triangles
(4,5,6,7) to process 0, and (0, 1, 2, 3) to process 1. The
main difference in this example will be the Over-
lap, which determines the communication pattern. In
Fig. 5, we see that each process will both send and re-
ceive data during the redistribution. Thus, the partition
Section in Fig. 6 has data on both processes. Like-
wise, upon completion we can construct a Sieve
Overlap with both send and receive portion on each
process. Cone and coordinate completion also pro-

224 M.G. Knepley and D.A. Karpeev / Mesh algorithms for PDE with Sieve I: Mesh distribution

Fig. 4. Initial distributed triangular mesh.

Process (0

Process 1

Fig. 5. Partition point Overlap, with dark partition points, light
process ranks, and arrow labels representing remote points. The
send Overlap is on the left, and the receive Overlap on the right.

ceed exactly as before, except that data will flow be-
tween both processes. We arrive in the end at the redis-
tributed mesh shown in Fig. 7. No operation other than
Section completion itself was necessary.

7 01 13 14 15 16 26 28 20 30 31 32

9 10 11 12 17 18 19 20 22 23

Fig. 6. Partition section, with circular partition points and rectangular
Sieve point data.

Fig. 7. Redistributed triangular mesh.

4. Examples

To illustrate the distribution method, we begin with
a simple square triangular mesh, shown in Fig. 8 with
its corresponding Sieve shown in Fig. 9. We distrib-
ute this mesh onto two processes: the partitioner as-
signs triangles (0, 1,2,4) to process 0, and (3,5,6,7)
to process 1. In step 1, we create a local Sieve on
process 0, shown in Fig. 10, since we began with a se-
rial mesh.

For step 2, we identify abstract partition points on
the two processes using an overlap Sieve, shown in
Fig. 11. Since this step is crucial to an understand-
ing of the algorithm, we will explain it in detail. Each
Overlap is a Sieve, with dark circles represent-
ing abstract partition points, and light circles process
ranks. The rectangles are Sieve arrow data, or labels,
representing remote partition points. The send Over-

M.G. Knepley and D.A. Karpeev / Mesh algorithms for PDE with Sieve I: Mesh distribution 225

14 15 16
[7
4 5
9 I 13
1 3
0 2
10 3 12

Fig. 8. A simple triangular mesh.

Process 0

__

Q@ O

Process 1

Fig. 11. Partition point Overlap, with dark partition points, light
process ranks, and arrow labels representing remote points.

Fig. 10. Initial local Sieve on process O for mesh in Fig. 8.

lap is shown for process 0, identifying the partition
point 1 with the same point on process 1. The corre-
sponding receive Overlap is shown for process 1.
The send Overlap for process 1 and receive Over-
lap for process 0 are both null because we are broad-
casting a serial mesh from process 0.

We now complete the partition Section, using the
partition Overlap, in order to distribute the Sieve
points. This Section is shown in Fig. 12. Not only
are the four triangles in partition 1 shown, but also the

six vertices. The receive overlap Section has a base
consisting of the overlap points, in this case partition
point 1; the cap will be completed, meaning that it now
has the Sieve points in the cap.

Using the receive overlap Section in step 4, we
can update our Overlap with the new Sieve points
just distributed to obtain the Overlap for Sieve points
rather than partition points. The Sieve Overlap is
shown in Fig. 13. Here identified points are the same on
both processes, but this need not be the case. In step 5

226 M.G. Knepley and D.A. Karpeev / Mesh algorithms for PDE with Sieve I: Mesh distribution

35 6 7 11 12 13 14 15 16

Fig. 12. Partition section, with circular partition points and rectan-
gular Sieve point data.

Process 0

ey

Fig. 14. Cone Section, with circular Sieve points and rectangular
cone point data.

Fig. 13. Sieve overlap, with Sieve points in dark, process ranks in light, and arrow labels representing remote Sieve points.

we complete the cone Section, shown in Fig. 14,
distributing the covering relation. We use the cones
in the receive overlap Section to construct the dis-
tributed Sieve in Fig. 15.

After distributing the topology, we distribute any as-
sociated Sections for the Mesh. In this example, we
have only a coordinate Section, shown in Fig. 16.
Notice that while only vertices have coordinate values,
the Sieve Overlap contains the triangular faces as
well. Our algorithm is insensitive to this, as the faces
merely have empty cones in this Section. We now
make use of another adapter, the Atlas, which sub-
stitutes the number of values for the values returned by
arestrict, which we use as the sizer for comple-
tion. After distribution of this Section, we have

the result in Fig. 17. We are thus able to fully construct
the distributed mesh in Fig. 18.

The mesh distribution method is independent of the
topological dimension of the mesh, the embedding, the
cell shapes, and even the type of element determining
the partition. Moreover, it does not depend on the exis-
tence of intermediate mesh elements in the Sieve. We
will change each of these in the next example, distrib-
uting a three-dimensional hexahedral mesh, shown in
Fig. 19, by partitioning the faces. As one can see from
Fig. 20, the Sieve is complicated even for this simple
mesh. However, it does have recognizable structures.
Notice that it is stratified by the topological dimen-
sion of the points. This is a feature of any cell complex
when represented as a Sieve.

M.G. Knepley and D.A. Karpeev / Mesh algorithms for PDE with Sieve I: Mesh distribution 227

Fig. 15. Distributed Sieve for mesh in Fig. 18.

e

ll) (l’s 0.0 1.0 05 1.0

'y

Fig. 16. Coordinate Section, with circular Sieve points and rectangular coordinate data.

Process ()

Fig. 17. Distributed coordinate Section.

The partition Overlap in this case is exactly the
one shown in Fig. 11; even though an edge partition
was used instead of the cell partition common for fi-
nite elements, the partition Section in Fig. 21 looks
the same although with more data. Not only is the clo-
sure of the edges included, but also their star. This is

the abstract method to determine all points in a given
partition. The Sieve Overlap after completion is
also much larger but has exactly the same structure. In
fact, all operations have exactly the same form because
the section completion algorithm is independent of
all the extraneous details in the problem. The final par-

228 M.G. Knepley and D.A. Karpeev / Mesh algorithms for PDE with Sieve I: Mesh distribution

/ I ‘i\\\/
/ ”'!5""%"\‘\“

/i
Fig. 18. The distributed triangular mesh. / // % < \‘
~ - % g. ‘\:. 5
Rt =
. D f-eﬁ.ﬁ \'Mt =
FE) 2 21 ¥l .s WUMNG
“ANSC YN
z e 12) 3@
6 i ~ O e
k.; \'}.‘!!;':L ",h 3 ’2’! ‘;“"\:,' -
) e
2 5 .'!\\" '\i} = ‘
3 P
5] EnY 29
24 35 20
15 16 O
4
0)
26 27 28
17 18 19
8 9 10

Fig. 19. A simple hexahedral mesh.

titioned mesh is shown in Fig. 22, where we see that
ghost cells appear automatically when we use a face
partition.

5. Conclusions

We have presented mesh partitioning and distribu-
tion in the context of the Sieve framework in order
to illustrate the power and flexibility of this approach.

Fig. 20. Sieve corresponding to the mesh in Fig. 19.

M.G. Knepley and D.A. Karpeev / Mesh algorithms for PDE with Sieve I: Mesh distribution 229

20 21 22 2

39 40 41

62 63 64 65 66 67 68 69 70 71 72 73 74
75 76 77 78 89 96 101 102 103 104 105 107 108

Fig. 21. Partition Section, with circular partition points and rec-
tangular Sieve point data.

i
]
i 2 3 0o
1 "
\ "
H
] 23 22 21 '
| '
i H
i
i IS 6 H
' H
' H
\ "
i H
i H
1 "
1 3 "
| . '
i H
' H
i 3 e 29
1 L}
i H
i 7 25 20 :
: H
' i
T 16 5 H
' 4 H
1 L}
i H
' H
i H
1 0 H
i H
' H
' H
' 26 27 2
' H
i H
' 17 18 19 !
: H
i H
' H
1 L}
! Process 0 H
L o o o o - "
T E T L
i H
' i
' H
i 22 21 '
1 "
i '
i 15 '
3
' 1 6 H
i H
' i
' H
1 L}
1 1
: ; ’ ;
i H
i H
! 34 29 H
' H
1 L}
i 24 25 20 '
: '
i '
H
i s 3 3 1 H
i H
' i
' H
1 L}
1 1
: 0 1 X
i H
i H
i H
! 27 28 H
1 L}
1 1
' 17 15 19 !
i
i H
' H
] 9 10 H
' H
1 L}
1 1
'
i Process | '

Fig. 22. Distributed hexahedral mesh.

Since we draw no distinction between mesh elements
of any shape, dimension, or geometry, we may ac-
cept a partition of any element type, such as cells or
faces. Once provided with this partition and an over-
lap sieve, which just indicates the flow of information
and is constructed automatically, the entire mesh can
be distributed across processes by using a single op-
eration, section completion. Thus, only a single paral-
lel operation need be portable, verifiable, or optimized
for a given architecture. Moreover, this same operation
can be used to distribute data associated with the mesh,
in any arbitrary configuration, according to the same
partition. Thus, the high level of mathematical abstrac-
tion in the Sieve interface results in concrete benefits
in terms of code reuse, simplicity and extensibility.

Acknowledgments

The authors benefited from many useful discussions
with Gary Miller and Rob Kirby. This work was sup-
ported by the Mathematical, Information, and Com-
putational Sciences Division subprogram of the Of-
fice of Advanced Scientific Computing Research, Of-
fice of Science, US Department of Energy, under Con-
tract DE-AC02-06CH11357.

References

[1] P.S. Aleksandrov, Combinatorial Topology, Vol. 3, Dover, Mi-
neola, NY, 1998.

[2] S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp,
D. Kaushik, M.G. Knepley, L. Curfman Mclnnes, B.F. Smith
and H. Zhang, PETSc users manual, Technical Report ANL-
95/11 — Revision 2.3.2, Argonne National Laboratory, Septem-
ber 2006; available at: http://www.mcs.anl.gov/petsc.

M.W. Beall, J. Walsh and M.S. Shephard, A comparison of
techniques for geometry access related to mesh generation, En-
gineering With Computers 20(3) (2004), 210-221.

G. Berti, Generic software components for scientific
computing, PhD thesis, TU Cottbus, 2000; available at:
http://www.math.tu-cottbus.de/~berti/diss.

[3

[t}

[4

finary

[5

=

G.E. Bredon, Sheaf theory, in: Graduate Texts in Mathematics,
Springer, New York, NY, 1997.

G.F. Carey, M.L. Anderson, B.R. Carnes and B.S. Kirk, Some
aspects of adaptive grid technology related to boundary and
interior layers, Journal of Computational Applied Mathematics
166(1) (2004), 55-86.

K.D. Devine, E.G. Boman, R.T. Heaphy, U.V. Catalyiirek and
R.H. Bisseling, Parallel hypergraph partitioning for irregular
problems, in: SIAM Parallel Processing for Scientific Comput-
ing, SIAM, Philadelphia, PA, February 2006.

[6

—_

[7

—

230

[8]

[9

—

[10]

(11]

(12]

[13]

[14]

[15]

[16]

M.G. Knepley and D.A. Karpeev / Mesh algorithms for PDE with Sieve I: Mesh distribution

R. Meyers et al., SNL implementation of the TSTT mesh inter-
face, in: 8th International Conference on Numerical Grid Gen-
eration in Computational Field Simulations, Honolulu, HA,
June 2002.

E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Pat-
terns, Addison-Wesley Professional, New York, N, 1995.

A. Hatcher, Algebraic Topology, Cambridge University Press,
New York, NY, 2002.

B. Hendrickson and R. Leland, A multilevel algorithm for par-
titioning graphs, in: Supercomputing’95: Proceedings of the
1995 ACM/IEEE Conference on Supercomputing (CDROM),
ACM Press, New York, 1995.

G. Karypis and V. Kumar, A parallel algorithm for multilevel
graph partitioning and sparse matrix ordering, Journal of Par-
allel and Distributed Computing 48 (1998), 71-85.

G. Karypis et al., ParMETIS Web page, 2005; http://www.cs.
umn.edu/ karypis/metis/parmetis.

M.G. Knepley and D.A. Karpeev, Sieve implementation, Tech-
nical Report ANL/MCS, to appear, Argonne National Labora-
tory, January 2008.

R.C. Martineau and R.A. Berry, The pressure-corrected ice fi-
nite element method for compressible flows on unstructured
meshes, Journal of Computational Physics 198(2) (2004), 659—
685.

E.S. Seol and M.S. Shephard, A flexible distributed mesh data
structure to support parallel adaptive analysis, in: Proceedings

(17]

(18]

[19]

(20]

(21]

of the 8th US National Congress on Computational Mechanics,
Austin, TX, 2005.

J.R. Shewchuk, Triangle: Engineering a 2D quality mesh gen-
erator and Delaunay triangulator, in: Applied Computational
Geometry: Towards Geometric Engineering, M.C. Lin and
D. Manocha, eds, Lecture Notes in Computer Science, Vol.
1148, Springer-Verlag, New York, NY, 1996, pp. 203-222.
From the First ACM Workshop on Applied Computational
Geometry.

N. Steenrod, The Topology of Fibre Bundles (PMS-14), Prince-
ton University Press, Princeton, NJ, 1999.

T.J. Tautges, MOAB-SD: Integrated structured and unstruc-
tured mesh representation, Engineering With Computers 20
(2004), 286-293.

T.J. Tautges, R. Meyers, K. Merkley, C. Stimpson and
C. Ernst, MOAB: A mesh-oriented database, Technical Report
SAND2004-1592, Sandia National Laboratories, April 2004.
C.A. Williams, B. Aagaard and M.G. Knepley, Development of
software for studying earthquakes across multiple spatial and
temporal scales by coupling quasi-static and dynamic simula-
tions, in: Eos Transactions of the AGU, American Geophysi-
cal Union, 2005 (Fall Meeting Supplemental, Abstract S53A-
1072).

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

