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Abstract. The IBM Cell Broadband Engine (BE) is a novel multi-core chip with the potential for the demanding floating point
performance that is required for high-fidelity scientific simulations. However, data movement within the chip can be a ma-
jor challenge to realizing the benefits of the peak floating point rates. In this paper, we present the results of implementing
Sweep3D on the Cell/B.E. using an intra-chip message passing model that minimizes data movement. We compare the advan-
tages/disadvantages of this programming model with a previous implementation using a master—worker threading strategy. We
apply a previously validated micro-architecture performance model for the application executing on the Cell/B.E. (based on our
previous work in Monte Carlo performance models), that predicts overall CPI (cycles per instruction), and gives a detailed break-
down of processor stalls. Finally, we use the micro-architecture model to assess the performance of future design parameters for
the Cell/B.E. micro-architecture. The methodologies and results have broader implications that extend to multi-core architectures.
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1. Introduction

Recent technology advances in power efficient sin-
gle chip multi-processors (CMPs) have led many re-
searchers in the computer and computational sciences
to embrace the implementation and performance chal-
lenges that are brought to the forefront by these chips.
Many of the parallelism and data partitioning issues
have been investigated by the high performance com-
puting community for massively parallel computing
technologies, but the unprecedented degree of VLSI
integration has changed the relative performance costs
associated with communication, floating point compu-
tation, memory access and memory capacity. In par-
ticular, the Cell/B.E. is an intriguing new design with
204 Gflops (aggregate single precision) peak perfor-
mance [5,13], but more importantly has an internal bus
bandwidth of 205 GB/s. Although it was primarily de-
signed for the game market, the architecture, perfor-
mance and marketability of the chip make it an at-

*Corresponding author: Michael Lang, Los Alamos National Lab-
oratory, TA3 Bldg 2011, Los Alamos, NM 87545, USA. Tel.: +1 505
665 5756; Fax: +1 505 665 4939; E-mail: mlang @lanl.gov.

tractive exploration area for high-end technical com-
puting. For example, Los Alamos National Laboratory
has based its petaflop-scale system, Roadrunner [2], on
Cell/B.E. The system built by IBM will use Cell/B.E.s
paired with conventional AMD Opteron cores. Never-
theless, there are interesting questions and challenges
that arise regarding Cell/B.E.s suitability for scientific
applications. In this paper, we investigate some of these
challenges by focusing on Sweep3D, an application
with computational features that represent a significant
part of Los Alamos National Laboratory’s workload
and that of many physical simulations in general.

An early paper [17] describing the performance of
small kernels executing on the Cell/B.E. simulator
pointed out its potential for scientific computations.
More recent work [12] describes an implementation of
Sweep3D using a coordinated master—worker thread-
ing model that obtained good performance but trans-
ferred a significant multiple of the application’s to-
tal data volume between different memories in the
Cell/B.E. and was limited by memory-to-local store
bandwidth. Our paper furthers the investigation into
the suitability of the Cell/B.E. and provides a unique
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insight by considering a message-passing program-
ming model between the Cell/B.E. cores. This para-
digm minimizes data movement by using well-
understood data partitioning strategies. Intra-Cell/B.E.
message passing communication routines are devel-
oped allowing data communication proportional to the
partition’s surface (rather than the volume) to be trans-
ferred between memories. Since most cluster-based ap-
plications have been developed with message-passing
models, this programming paradigm appears to be a
general and evolutionary software development path
for these applications.

The performance of our single Cell/B.E. imple-
mentation is modeled using a novel Monte Carlo
method that we previously developed for in-order
micro-architectures [15,16]. In this paper we use it to
assess the effectiveness of enhancements to the archi-
tecture.

The contributions of this paper are as follows:

e Implementation and performance benchmark of
an intra-chip message-passing paradigm for the
Cell/B.E. using Sweep3D.

e Comparison of this paradigm with previous mas-
ter—worker task paradigm and comparison of the
Cell/B.E. performance with other multi-core ar-
chitectures.

e Performance models applied to the Cell/B.E.
micro-architecture.

e Predictions of performance for future architec-
tural improvements.

The outline of this paper includes the following sec-
tions:

— Section 1 — This introduction.

— Section 2 — A brief summary of the cell broadband
architecture.

— Section 3 — A description of the Sweep3D algo-
rithm.

— Section 4 — The intra-Cell/B.E. message passing
programming model and a comparison to previ-
ous paradigms.

— Section 5 — A description of the Cell/B.E. per-
formance model, and its validation and predic-
tions of Sweep3D performance on future micro-
architecture features.

— Section 6 — Basic performance results and a com-
parison to previous work.

— Section 7 — Conclusions and future work.

2. Cell broadband architecture

Figure 1 shows a block diagram of the Cell/B.E.

The Cell/B.E. is a nine-core heterogeneous proces-
sor [3-5,7,8,13]. One of the cores is based on the
64-bit PowerPC instruction set and is called the Power
Processing Element (PPE). The PPE employs a dual-
issue, in-order, 2-way simultaneous multi-threading
(SMT) pipeline. The other eight cores are homoge-
neous, implement a new instruction set, and are called
Synergistic Processor Elements (SPEs). The SPEs fea-
ture a dual-issue, in-order pipeline with support for
vector (or SIMD) operations. The peak floating-point
(FP) performance of the SPEs is 204.8 Gflops/s at
single-precision and 14.8 Gflops/s at double-precision.
The PPE runs the operating system and creates threads
on the SPEs. Communication between the PPE and the
SPEs is possible through a high speed bus called the
Element Interconnect Bus (EIB). The EIB is capable
of moving 96 bytes of data every cycle. The Cell/B.E.
also features an on-chip memory controller and I/O
controller which are connected to the EIB.

There are eight SPEs in a Cell/B.E. The SPEs con-
sist of two main blocks — a Synergistic Processor Unit
(SPU) and a Memory Flow Controller (MFC). The
SPU is the computation engine of the SPE, while com-
munication is handled by the MFC. Since the SPU uti-
lizes a statically scheduled, in-order pipeline, the hard-
ware does not reorder instructions at runtime to min-
imize stalls. The compiler must schedule instructions
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} b ¥ + + —
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Fig. 1. Cell/B.E. architecture.
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appropriately to minimize stalls. To help this effort,
the architecture provides a large register file with 128
128-bit registers. No distinction between FP and inte-
ger registers is made by the architecture. In addition to
the large register file, each SPU includes a single-level,
256 kB memory called the Local Store (LS). The LS is
the only memory that can be directly accessed by the
SPU and holds both the program and data. Since the
LS is very limited in size, mechanisms to quickly trans-
fer data to/from the LS are required. This is provided
by the MFC in the form of Direct Memory Access
(DMA). DMA requests can be initiated by both the
PPE and the SPU. Once a request has been queued, the
requester is free to continue with computation. Com-
pletion of DMA can be determined by querying the
appropriate status ports (or channels). Besides DMA,
the MFC supports mailbox and mutex synchronization
mechanisms.

The execution units (EU) in the SPU are orga-
nized into two logical partitions called even and odd
pipelines [3,5]. Two instructions may issue each cycle
provided that they issue to EUs on different pipelines.
All EUs are fully pipelined with the exception of the
double precision floating point (FPD). The FPD is the
only unit that is partially pipelined and the only unit
that has an effect on global instruction issue. When an
instruction is issued to the FPD, no other instruction
can be issued for the next 6 cycles.

All SPU instructions are 32-bits wide and two suc-
cessive instructions are fetched every cycle that the
pipeline is not stalled. Stalls in the pipeline occur due
to (1) wrong instruction mapping, (2) unresolved de-
pendence, (3) wrongly speculated branch, and (4) lack
of instructions in the instruction buffer (or run-out).
As an example of wrong instruction mapping, the in-
struction pair (FP, LOAD) can be issued in one cycle,
while the pair (LOAD, LOAD) requires two cycles to
issue. Stalls due to unresolved dependence are caused
by RAW hazards. For example, if a load instruction
to register $8 is immediately followed by an add in-
struction that consumes $8, the add will have to stall
for six cycles (the latency of the load to LS). Since the
SPUs do not have a dynamic branch predictor, the de-
fault prediction for a branch is not-taken. Therefore,
if a branch is taken, there is an 18 cycle penalty to
flush the pipeline and restart execution along the cor-
rect path. However, to help mitigate the high cost of
taken branches, a software-based hinting mechanism
is supported by the architecture. If the hint is correct
and occurs sufficiently ahead of the branch, the branch
penalty is reduced to zero cycles. The last stall con-

dition occurs when there are no instructions in the re-
spective buffers to feed the pipeline. This is possible
because access to the LS is arbitrated between DMA,
load/store operations, hint fetch and demand fetch for
instructions, with the latter having the least priority.
However, in practice we have found that the perfor-
mance effect of runout is negligible for Sweep3D be-
cause the instruction line buffer (ILB) that holds in-
structions waiting to enter the pipeline, can buffer up
to 112 instructions. If runout is an issue for other ap-
plications the ifetch instruction can be used [3].

A major feature of the instruction set for scientific
computations is that all floating point instructions are
SIMD - 4 single precision or 2 double precision re-
sults are produced from each SIMD instruction. SIMD
memory instructions load/store data that are located
in consecutive memory addresses. In the vernacular of
vector architectures, this amounts to a non-strided vec-
tor load/store in the LS. There are no scalar floating
pointing instructions and no strided or gather/scatter
memory operations from the LS. The data layout and
access patterns of the application must be constrained
to get optimal performance from the SIMD instruc-
tions. We now describe the Sweep3D algorithm and
then proceed to address the optimization choices that
relate to the Cell/B.E. architecture reviewed in this sec-
tion.

3. Sweep3D algorithm

In this section, we give a brief explanation of the ba-
sic algorithm and data dependences in the Sweep3D
application (a similar explanation is also given in [6]).
Sweep3D is a deterministic implementation of discrete
ordinates neutron transport [9]. The major field to be
calculated is ¥ which represents the particle flux at
spatial point (x, y, z) with energy, F, traveling in direc-
tion Q. The basic problem is discretized spatially into
micro-blocks (in previous papers these are referred to
as “cells” but to avoid confusion with the Cell/B.E.,
micro-blocks will be used), discrete angles and en-
ergy groups and is inherently 5 dimensional. However,
Sweep3D is a simplification that involves one energy
group and is thus four dimensional. The numerical so-
lution of the transport equation involves an iterative
procedure that has been referred to as the source it-
eration. The vast majority of the time is spent in a
“sweep” computation which involves calculations iter-
ating through the spatial coordinates for each discrete
angle. At a given angle, each micro-block has a flux
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Fig. 2. Sweep calculation. Not all micro-blocks can be computed si-
multaneously. Dependences between micro-blocks cause a diagonal
wavefront that can be computed in parallel. The figure is for an angle
starting in the top left corner. Each shaded micro-block on the diago-
nal needs an inflow from the micro-block on its North and West and
passes data to micro-blocks on its South and East.

conservation equation with seven unknowns — the flux
at each of six micro-block faces and the center. Bound-
ary conditions on the incoming flux at a given angle
complete a closed form solution. Figure 2 shows the
spatial dependences (in two dimensions only) for an
angle starting at the top left corner. Multiple angles
start in the same quadrant (corner) and can be com-
puted simultaneously, but angles starting in different
quadrants are dependent on previous quadrants.

Boundary fluxes are known at the faces of micro-
blocks at the top row and left column. Conservation
equations allow the flux at neighboring downstream
micro-blocks to be computed at their centers and out-
going faces. The flux across an outgoing face be-
comes the incoming flux for a neighbor’s face and the
computation proceeds in a diagonal wave across the
micro-blocks. Conceptually a lower triangular system
of equations could be explicitly written and solved,
but Sweep3D simply solves for the unknown fluxes at
each micro-block in place (i.e. in the original arrays).
This computation over all micro-blocks at each angle
is known as a “sweep”. One feature of the sweep al-
gorithm is that the angles are represented in two dif-
ferent ways — first as discrete angles (six per octant
per point for this investigation), and second, as four
moments (per point) of a spherical harmonic series —
Sweep3D transitions between the two different repre-
sentations. All 6 angles for each octant are computed
in 6 sweeps in physical space while transformations to
and from spherical harmonics are done before and after
each octant’s 6 sweeps.

Algorithmic data dependences limit the amount of
parallelism in the application. Octants depend on pre-
vious ones, but the flux for all angles in each octant

can be calculated simultaneously. Unlike many explicit
PDE solvers where all micro-blocks can be computed
simultaneously, the parallelism in spatial coordinates
is limited to those points that lie on the same diagonal.
In two dimensions, this is the diagonal line in Fig. 2. In
three dimensions, the micro-blocks that can be simulta-
neously computed are in a diagonal plane. In summary,
the dimensionality of spatial concurrency in Sweep3D
is one order less than the problem’s dimensionality [9].

Because of this, Sweep3D is typically parallelized
across multiple processors (in a cluster) by decompos-
ing in a two-dimensional processor grid. Two spatial
dimensions (I x J) are partitioned into sub-domains
across a P, by P, processor grid (Fig. 3).

However, parallel efficiency is drastically limited if
neighbor information along the edges of a sub-domain
is not communicated until all micro-blocks in the sub-
domain volume are computed. Therefore, a strategy is
employed where a subset of the sub-domain is com-
puted and then communicated. The subset is a block
of planes in the K direction. Varying the number
of planes in K-blocks changes the relative ratio of
compute-to-communicate times. The performance of
this parallelization strategy has been modeled and val-
idated [6]. In a later section, we apply this model to
our Sweep3D implementation on the Cell/B.E. to pre-
dict its performance on multiple SPUs within a single
Cell/B.E.

4. Sweep3D programming models for the Cell/B.E.

A number of papers have been published on pro-
gramming strategies for the Cell/B.E. [1,4,10,17] that
provide ideas for the coordination of the heterogeneous
cores and management of the separate memories. In
this investigation, we considered three major issues
that affect the choice of programming model.

First, a realistic problem size for Sweep3D requires
a multiple-processor implementation on a large clus-
ter. Consideration of practical solution times limits
subdomain sizes to within an order of magnitude of
10* micro-blocks on current parallel systems. Longer
solution times result if subdomains are smaller be-
cause the execution becomes communication domi-
nant, and larger domains result in a compute dominant
execution. The subdomain problem size becomes an
issue in the Cell/B.E. because the time for DMA ac-
cesses to main memory and the local stores of other
SPUs must be balanced with the compute time within a
SPU. Performance models of both the Cell/B.E. micro-
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Fig. 3. A 2D decomposition of Sweep3D on 8 SPUs showing the pipelining of computations in the K direction (grayed areas on each SPU on
the right). The computation began at the top corner in the foreground SPU and proceeds in the direction of the arrows so that each SPU is simul-
taneously computing a different K'-block. For comparison, the left picture shows the two processors that simultaneously compute subdomains in

the non-pipelined case at the completion of the foreground processor.

architecture and the multiple-processor scalability (ad-
dressed in a later section) will allow us to choose para-
meters that optimize for time.

Secondly, minimizing memory traffic is the key con-
cern. The ratio of loads to floating points operations
(64 bit) in Sweep3D is roughly 1:1. A Cell/B.E. im-
plementation of Sweep3D where all loads are com-
ing from the main memory will be bandwidth lim-
ited. Specifically, since the main memory bandwidth is
25 GB/s, double precision floating point applications
(with this 1:1 ratio) are limited to 3 Gflops/s. More
importantly, planned performance enhancements for
the Cell/B.E. for double precision floating point will
not lead to improved application performance above
3 Gflops. Our choice of programming model mini-
mizes data movement (maximizes the reuse of data in
the local store).

Finally, individual SPU performance requires a vi-
able vectorization strategy for the SIMD instructions
and instruction pipelining to hide local store mem-
ory latency. Vector and data-parallel algorithms for
many scientific applications have been extensively re-
searched (including Sweep3D [6]). As pointed out by
the designers of the Cell/B.E. [4], a spectrum of par-
allelism must be exploited from instruction-level to
thread-level to multi-core to multi-processor. We will
visit the area of pipeline stalls in the vector code later
in this paper where our micro-architecture model gives
a breakdown of stall conditions.

These three issues lead us to the following program-
ming decisions:

1. A SPU centric implementation — all computa-
tional work is done on the SPU.

2. Balance computation time of the subdomain vol-
ume with communication time of the subdo-
main’s surface.

3. Each SPU is a distributed memory computational
resource with its own subdomain.

4. Retain the original MPI message passing mod-
el [14].

5. Vectorization will be done over angles variable.

6. Use main memory as a backing store to mitigate
the limited 256 kB of local store.

A SPU centric implementation allows the main
computing power of the Cell/B.E. to be utilized. We
avoid the master/worker programming model where
the SPUs can be starved waiting for data and control
messages from the PPE. We balance the computation
and communication times by sending a full K-block
to each SPU and then only communicating the re-
sulting surfaces to the neighboring SPUs. In this way
we treating each SPU as a separate computation re-
source and retain the MPI [14] message passing model.
This model did require the development of a library of
SPU-to-SPU communication routines that implements
the semantics of blocking MPI send/receives using the
atomic mutex operations and SPU-SPU DMA capabil-
ities of the Cell/B.E. The performance of the commu-
nication library will be visited in Section 6.2.

To use the SPU optimally the SIMD units must be
fully exploited. In our case the contribution to the flux
from each angle for a given octant can be done con-
currently. To vectorize across the angles we must re-
order the loops in Sweep3D such that the loop on
angles is the inner most. Since there are six angles
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per octant and 2 double precision floating points per
SIMD instruction, the angle iterations are completely
unrolled and consists of three pipelined vectors with
2 elements each. When the contributions of the six an-
gles are transformed into the spherical harmonic mo-
ments, a vector reduction into a scalar coefficient oc-
curs.

Finally, we address the problem sizes that can be
accommodated by the limited amount of local store
(256 kB). The largest problem size that we can execute
is 1000 micro-blocks per SPU or 8000 per Cell/B.E.,
as we stated above, this is in agreement with typical
processor subdomain sizes that are used in practice.
However, with additional requirements of time depen-
dence, more angles, and multiple energy groups addi-
tional memory will be needed. Therefore, we use the
main memory as “backing store” for a SPU’s local
store. In this implementation, we define a SPU’s com-
putational work unit as one K -block (see Fig. 3) which
is read and written from the backing store. This solu-
tion does require the total data volume to be DMA’s
to the main memory over time, but the computational
granularity between DMAs is parameterized by the
K-block size and the total data movement is still or-
ders of magnitude less than previous implementations.
We now proceed to analyzing the performance of opti-
mized Sweep3D using the micro-architecture model as
a tool, and further to look at the performance increase
a fully pipelined double precision floating point would
yield for this application.

5. Performance modeling the micro-architecture
of the Cell/B.E.

In previous work [15,16], we have described a
novel modeling methodology for predicting the per-
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formance of applications executing on in-order micro-
architectures. The method characterizes the application
in terms of probability distribution functions and uses
Monte Carlo sampling methods to predict the CPI (cy-
cles per instruction) of an application in a matter of
seconds (4—6 orders of magnitude faster than a cycle
accurate simulation). The method has been validated
for the Cell/B.E. architecture where it was found to
have a typical prediction error of 3—4%. The predic-
tions on the Cell/B.E. take about 2 s of computer time.

In this section, we apply the model to our opti-
mized version of Sweep3D to show a breakdown of
the pipeline stall conditions in a SPU that contribute to
the CPI. Figure 4 shows that the major contribution to
stalls comes from the 64-bit floating point functional
units. The current Cell/B.E. stalls instruction issue for
7 clocks following a double-precision floating point in-
struction. Future versions of the Cell/B.E. will correct
this problem to reduce both the total FP latency as well
as improve the issue rate to one every clock. The model
predicts a 2x improvement for Sweep3D with the im-
proved floating point.

Figure 5 shows a detailed breakdown of the depen-
dence stalls categorized by the instruction causing the
stall. Very few stalls are associated with memory ac-
cesses to the local store (which has a 6 cycle latency).
Most stalls are coming from dependences in the float-
ing point instructions. The inner loops of Sweep3D are
unrolled 3 times (corresponding to the 3 vectorized an-
gle calculations). Three consecutive SIMD instructions
are independent, but the fourth uses results from the
first causing the FPD dependence stalls. The improved
floating point reduces the 64-bit FP latency (and the
overall execution time of Sweep3D), but causes more
dependence stalls because the issue rate is higher. For
a Sweep3D problem size with more angles, the inner

Stalls are due to:

e Intrinsic: instruction mapping
to odd/even pipelines

¢ Dependence: register read
after write hazards

e Branch: wrongly speculated
branches

e 64-bit floating point (an fpd
stalls all instruction issues for
7 cycles)

Fig. 4. CPI breakdown of optimized Sweep3D.
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Fig. 5. CPI breakdown of dependence stalls associated with instruc-
tion classes.

loops would be unrolled more resulting in less depen-
dence stalls. In other words, more angles could be done
with little or no extra cost.

6. Performance and results

We have implemented a C version of Sweep3D that
is vectorized using 64-bit floating point. The code was
compiled with the native gcc compiler with —O2 opti-
mization and uses libraries in the SDK2.1 toolkit. We
found no benefit from the XLC compiler due to the
hand tuned implementation. For those who have de-
tailed experience with Sweep3D runtime parameters,
the following timings are with fixups and dsa turned
off. Those features are not implemented in the current
code.

6.1. Single SPU performance

Single SPU sweep computation times for our im-
plementation are given in Table 1. Timings were mea-
sured with a hardware countdown decrementer that has
a resolution of 14.318 MHz (224 clock periods). Mea-
surements were taken for 1000 micro-blocks and 6 an-
gles per octant and the time per sweep loop was com-
puted. As we noted above, 99% of Sweep3D time is
contained in the three loops that comprise the “sweep”
computations. Loop 1 refers to the transformation from
spherical harmonics to angles. Loop 2 is the flux cal-
culation. Loop 3 is the transformation back to spher-
ical harmonics and contains a vector sum reduction.
Column 2 shows the number of SIMD instruction is-
sued in each loop, column 3 shows the type of SIMD
operation. Column 4 shows the best time for that loop

where we compute the best time as 8 clocks per double
precision floating point SIMD instruction. (Recall that
this is the fastest issue rate for 64-bit floating point op-
erations.) The double precision reciprocal is an inline
function and has 7 SIMD floating point ops. Finally
column 5 shows the measured time for each loop, and
column 6 is the ratio of best to actual.

As a basis for comparing the performance of the
SPU core to conventional processors, we show results
in Table 2 for a 10 x 10 x 10 problem. This is the largest
problem size that fits in SPU local store and would re-
side in cache on the Itanium and Opteron. A single
SPU core has approximately the same performance as
a conventional core. We note that no time has been
spent in hand optimizing the Itanium or Opteron ver-
sions.

6.2. Intra-Cell/B.E. message passing performance

For this work we implemented the MPI functions,
MPI_Send, MPI_Recv, MPI_Bcast, MPI_Barrier and
MPI_Allgather [14]. The basic methodology is to in-
voke a send/receive function from the SPU that passes
messages to the destination SPU over the EIB. For
a MPI_Send or MPI_Receive, the SPUs signal each
other using mutex locks and a DMA GET is initi-
ated by the receiver. In our implementation, we copy
the application data to a communication buffer using
the library function memcpy which caused a perfor-
mance bottleneck. We wrote a specific memcpy to han-
dle aligned arrays that eliminated the problem.

For use in Cell/B.E. clusters, the PPU acts as an MPI
server. The MPI function decides if the communica-
tion is internal or external to the Cell/B.E. In the exter-
nal case the sending SPU DMAs data to main memory
and then signals the PPE (using mutex locks) to initiate
a standard MPI send. The receiving PPE-SPU takes
corresponding actions. As expected, the intra-Cell/B.E.
communications are orders of magnitude faster than
the inter-Cell/B.E. communications. We report only on
single Cell/B.E. scaling in this paper. Figure 6 contains
times for an intra-Cell/B.E. send/receive pair using our
library. The linear fit to the data shows a startup time of
1.2 ps and a slope corresponding to a communication
rate of 12 GB/s.

6.3. Performance on multiple SPUs (weak scaling)
Table 3 contains the times for multiple SPUs in a

single Cell/B.E. The “best” time is computed with a
parallel efficiency model [6] that accounts for the lim-
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Single SPU times (clock periods) for the 3 sweep loops

Loops Number of SIMD 64-bit fp Type of SIMD operations Best time (cps) Actual time (cps) Percent (%)
Loop 1 9 9 mul-add 72 106 68
Loop 2 30 + 3 reciprocals 42 mul or add, 9 mul-add 408 451 90
Loop 3 22 16 add, 6 mul-add 176 239 74
Table 2 Table 3
Single SPU times for cache sized problem on various cores Cell/B.E. performance for 1-8 SPUs
Processor Time (ms) # SPUs — prob size Time Model time Best time
Single SPU 23 (ms) (ms) (ms)
Single core Itanium 2 29 1-5 x5 x400 248 248 248
Single core Opteron 19 2-10 x 5 x 400 263 264 250
4-10 x 10 x 400 268 267 253
Intra-cell communication 8—20 x 10 x 400 277 274 260
@ _
- /o/ Table 4
Q] // ’ Comparison for 50 x 50 x 50 problem size and validation of the
/' model on the improved PowerXCell8i
5 b // Previous Our optimization of
% © | // Sweep3D [4] Sweep3D
5 Cell/B.E. 1.3s 0.37s
E =2 //9/ PowerXCellSi N/A 0.195
@ e
E = | /
T /O/ 6.4. Results and comparison to previous work
2 dy
o | &O/é In Section 5 using the model we predicted a 2x im-
Tk : | : | : provement for Sweep3D with the improved floating
o . e point. The model was recently validated when we ran
0 2000 4000 5000 8000

message size(bytes)

Fig. 6. Intra-Cell/B.E. send/receive times as a function of message
size.

its on concurrency due to the data dependences de-
scribed in a previous section, but assumes that the
intra-Cell/B.E. communication and the main memory
reads/writes take no time. The model time gives the
predicted time assuming communications. The mea-
sured times are for 10 iterations with fixups and dsa
off. The problem size on a single SPU is 5 x 5 x 400
and the overall problem size scales linearly with the
number of SPUs.

The scalability from 1 to 8 SPUs is in good agree-
ment with the performance model. The loss of about
9% performance from the best time is due to commu-
nication overhead. It bears repeating that the Sweep3D
algorithm is not 100% parallel because of the wave-
front dependences and the best time is not constant
with increasing size and number of SPUs.

on the updated version of Cell/B.E., the PowerXCell8i.
For a 50 x 50 x 50 input we see 0.37 s on the Cell/B.E.
and 0.19 s on the PowerXCell8i as shown in Table 4.
Also shown for comparison is the results for the prob-
lem size reported in a previous study [12]. The perfor-
mance gain over the previously reported version stems
from the data movement, this is the major difference
between the implementations. In the previous work the
researchers employed a master—worker tasking model
where the PPU dynamically coordinated tasks among
the SPUs. A computational unit of work consisted of
a single line of micro-blocks in the I direction for a
given (J, K). This requires the (J, K) line and up-
stream lines corresponding to (J —1, K) and (J, K —1)
to be exchanged between main memory and a SPU’s
local store. Integrated over all (J, K) pairs, the amount
of data transferred is a large multiple of the total data
volume of Sweep3D. Our implementation moves the
resulting faces through the high speed EIB and takes
the PPE out of the critical path, only using it for initial-
ization and allocation of blocks of main memory.
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7. Conclusions and future work

In this paper we have shown that extending the
flat Sweep3D programming model to the Cell/B.E. re-
sults in excellent performance on a single socket. We
compare favorably to previous work done in a client
server type model reported in [12]. We have validated
the Monte Carlo performance model of the Cell/B.E.
micro-architecture and have shown that the predicted
2x benefit from double precisions pipelining exists in
the PowerXCell8i.

Future work includes investigating the scaling of on
a petaflop-scale hybrid cluster, Roadrunner [2]. This
will be accomplished by moving to a hybrid MPI
for the Cell/B.E. developed by the PAL team at Los
Alamos National Laboratory. The Cell/B.E. Messag-
ing Layer (CML) [11] is an open-source minimal MPI
layer for the Cell/B.E. that was inspired by the work in
this paper. The hybrid version will allow each SPU to
have an individual MPI rank and send messages across
all of the 97,920 SPUs on the Roadrunner system re-
gardless of their location.
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