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Abstract. PHASTA falls under the category of high-performance scientific computation codes designed for solving partial differ-
ential equations (PDEs). Its a massively parallel unstructured, implicit solver with particular emphasis on fluid dynamics (CFD)
applications. More specifically, PHASTA is a parallel, hierarchic, adaptive, stabilized, transient analysis code that effectively
employs advanced anisotropic adaptive algorithms and numerical models of flow physics. In this paper, we first describe the par-
allelization of PHASTA’s core algorithms for an implicit solve, where one of our key assumptions is that on a properly balanced
supercomputer with appropriate attributes, PHASTA should continue to strongly scale on high core counts until the computa-
tional workload per core becomes insufficient and inter-processor communications start to dominate. We then present and ana-
lyze PHASTA’s parallel performance across a variety of current near petascale systems, including IBM BG/L, IBM BG/P, Cray
XT3, and custom Opteron based supercluster; this selection of systems with inherently different attributes covers a majority of
potential candidates for upcoming petascale systems. On one hand, we achieve near perfect (linear) strong scaling out to 32,768
cores of IBM BG/L; showing that a system with desirable attributes will allow implicit solvers to strongly scale on high core
counts (including petascale systems). On the contrary, we find that the relative tipping point for strong scaling fundamentally
differs among current supercomputer systems. To understand the loss of scaling observed on a particular system (Opteron based
supercluster) we analyze the performance and demonstrate that such a loss can be associated to an unbalance in a system attribute;
specifically compute-node operating system (OS). In particular, PHASTA scales well to high core counts (up to 32,768 cores)
during an implicit solve on systems with compute nodes using lightweight kernels (for example, IBM BG/L); however, we show
that on a system where the compute node OS is more heavy weight (e.g., one with background processes) a loss in strong scaling
is observed relatively at much fewer number of cores (4,096 cores).
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1. Introduction and contributions

PHASTA is a parallel, hierarchic (2nd to 5th or-
der accurate), adaptive, stabilized (finite-element) tran-
sient analysis tool for the solution of compressible or
incompressible flows. It falls under the realm of com-
putational/numerical methods for solving partial dif-
ferential equations which have matured for a wide
range of physical problems including ones in fluid me-
chanics, electromagnetics, biomechanics, to name a
few. PHASTA (and it’s predecessor ENSA) was the
first massively parallel unstructured grid LES/DNS
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code [8,9,12] and has been applied to flows ranging
from validation benchmarks to cases of practical in-
terest. The practical cases of interest not only involve
complicated geometries (such as detailed aerospace
configurations or human arterial system) but also com-
plex physics (such as fluid turbulence or multi-phase
interactions) resulting in discretizations so large that
only massively parallel processing (MPP) systems of-
fer the resources required for obtaining desirable solu-
tions in a relevant time frame.

PHASTA has been shown [9,14,38,39] to be an
effective tool using implicit techniques for bridging
a broad range of time and length scales in various
flows including turbulent ones (based on URANSS,
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DES, LES, DNS). It has also effectively applied re-
cent anisotropic adaptive algorithms [19,25,26] along
with advanced numerical models of flow physics [7,10,
33–36]. Many of its application cases have been suf-
ficiently complex that grid independent results could
only be obtained by efficient use of anisotropically
adapted unstructured grids or meshes capable of main-
taining high quality boundary layer elements [25] and
through scalable performance on massively parallel
computers [30].

In this paper we do not provide a detailed description
of the physical models and mathematical formulations
used in PHASTA (which are discussed in detail in the
above references) rather we focus our attention on the
parallelization of PHASTA’s core algorithms for mas-
sively parallel processing and present how they scale
across a variety of current near petascale systems, in-
cluding IBM BG/L, IBM BG/P, Cray XT3, and custom
Opteron based supercluster.

Many applications have looked into similar issues
pertaining to weak or strong scaling using structured or
unstructured grids with explicit or implicit solves, for
example, see [2,13,16,18,21,23,31,37] and references
cited therein. Our contributions are two fold:

1. We demonstrate for the first time to the best
of our knowledge that an unstructured, implicit
solver is able to achieve strong scaling out to
32,768 cores on a balanced system like IBM
BG/L. This result was achieved by employing
a set of distributed data structures that enabled
proper use of mesh partitioning schemes and in
turn allows for: (a) balancing both of the major
work components of an implicit solver, i.e., form-
ing the linear system of equations and finding so-
lution to the formed linear system, without in-
volving any re-distribution of data and (b) bal-
ancing communications per core despite the ir-
regular mesh structures that are integral to un-
structured, implicit solvers.

2. We observe that systems on which PHASTA does
not scale well (such as Opteron based superclus-
ter) there is interference between OS jitter and
the amount of real compute work that exists be-
tween subsequent global allreduce operations in
an implicit solve. In contrast, previous studies on
OS jitter have largely examined its effects from
a pure time delay perspective [1,20,22]. We ob-
serve when modest amounts of real work oc-
cur (such as 1 million multiply-add operations
(MADDS)) between subsequent global allreduce
operations, the time spent in allreduce increases

significantly due to OS interference and in turn
leads to the loss of strong scaling at relatively
fewer core counts.

2. Parallel flow solver

2.1. Basics of flow solver

The computational work involved in PHASTA, and
other similar implicit methods, mainly consists of two
components: (a) formation/assembly of the linearized
algebraic system of equations and (b) computation
of solution to the linear system of equations. In the
first component, entity-level evaluations over the mesh,
specifically element-wise integration based on numer-
ical quadrature, are performed to form system of equa-
tions, Ax = b (where b is the right-hand side or
residual-vector and A is the left-hand side or linearized
tangent matrix of b with respect to the unknown so-
lution coefficients x that need to be computed at any
given non-linear iteration step). The resulting system is
highly sparse but involves large number of unknowns
and non-zero entries in an implicit solve. Thus, the sec-
ond work component of PHASTA finds solution to the
formed system of equations by using pre-conditioned
iterative solvers suitable for large, sparse systems (e.g.,
GMRES [24,29]).

More specifically, in PHASTA the Navier–Stokes
equations (conservation of mass, momentum and en-
ergy) plus any auxiliary equations (as needed for tur-
bulence models or level sets in two-phase flows) are
discretized in space and time. Discretization in space
is carried out with a stabilized finite element method
which interpolates using hierarchic, piecewise polyno-
mials [38,39] that are integrated using Gauss quadra-
ture whereas implicit integration in time is performed
using a generalized-α method [11]. The resulting non-
linear algebraic equations are linearized to yield a
system of equations which are solved using iterative
solvers, e.g., GMRES is applied to the linear system
of equations Ax = b. Note that under the explicit
solve (e.g., when generalized-α time integrator is re-
placed by an explicit scheme such as explicit Runge–
Kutta scheme) there is no need for iterative solvers and
thus the steps required for parallelization of explicit
methods are a subset of the ones required in implicit
methods. However, implicit methods are highly desir-
able for stiff cases with multiple time scales and thus,
employed by PHASTA. This brief description of the
numerics allows us to focus our attention on current
parallel-paradigm for an implicit solver.
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2.2. Parallel paradigm

In this section, we discuss the parallelization of the
two main work components of PHASTA described
in the previous section. Element-level integrals in-
volved in forming the system of equations for finite
element methods are well suited for parallel comput-
ers as the underlying grid or mesh can be partitioned
into balanced parts which can be distributed among
processors. Similarly, the resulting system of algebraic
equations are distributed among processors and are
solved in parallel using iterative methods (which em-
ploy sparse matrix-vector Ap products). For a mesh
with fixed element topology and order, balanced parts
within a partition implies that each part contains as
close to the average number of elements as possible
(see Fig. 1).

For other cases such as ones with mixed element
topology or order, weights reflecting the work for
every individual element are assigned to enable cre-
ation of parts with balanced work load. Good parti-
tioning schemes (such as graph-based ones) not only
balance the work load but also minimize the amount
of communication required between parts (software li-
braries such as ParMETIS [15] and Zoltan [40] are
commonly used). In case of PHASTA, mesh elements
are used as the basis for partitioning and in turn the
amount of communication is proportional to the num-
ber of degrees-of-freedom (dofs), or unknowns in the
system of equations, that are shared between parts,
i.e., ones that appear on inter-part boundaries as shown
in Fig. 2. Note that the computational effort of the
equation formation stage involves load proportional to
the number of volume (interior or n-dimensional) el-
ements in a part whereas the communication effort
is peer-to-peer and depends on surface (boundary or
(n − 1)-dimensional) elements at inter-part boundaries
of a part that is shared in segments with multiple neigh-
boring parts [5].

The second work component involves on-part Ap
products, which is not proportional to the number of
elements but to the number of dofs on a part (both
shared and non-shared, where a non-shared dof re-
sides solely on one part and do not appear on inter-part
boundaries). Partitioning schemes can be used with
dofs as the basis for load balance but typically this is
not necessary as element balance, with sufficient load
per part, and minimization of amount of communica-
tions typically results in a reasonable dof balance as
well.

Fig. 1. Partition of coarse mesh of arterial bypass.

Fig. 2. Solid dots indicate shared dofs.

A concept of a partition-graph describing the in-
teractions between parts within a partition is used as
the kernel for parallelization under PHASTA. Each
partition-graph vertex represents a part whereas each
partition-graph edge represents interaction between a
pair of parts sharing dofs that is required to recover
complete values for entries associated with shared
dofs. Since partitioning of a mesh leads to sharing of
dofs between two or more parts, as shown in Fig. 2,
every shared dof resides as an image on each part shar-
ing it. Only one image among all images of a shared
dof is assigned to be the owner thereby making all
other images explicitly declared to be non-owners, see
Fig. 3. This process insures that the sum total of dofs
based on owner images over all the parts within a par-
tition is independent of the partitioning and is equal to
the number of (unique) dofs in the aggregate mesh.

Such a control relationship among images of shared
dofs allows owner image of each shared dof to be
in-charge for data accumulation and update to obtain
complete values, and in turn bounds communication
tasks between only those pairs of parts that involve
owner image(s) on one side, i.e., there is no commu-
nication task between two parts that contain only non-
owner images of dofs shared among them (as shown
in Fig. 4). Thus, under PHASTA any partition-graph
edge connects only those pair of parts that involves
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Fig. 3. Solid dot denotes an owner image whereas hollow ones indicate non-owners.

(a) (b)

Fig. 4. Schematic of partition-graph: arrows indicate communication task. (a) Parts B and D do not interact (as no shared owner). (b) Pair of
parts sharing dofs interacts (as owner image(s) involved).

communication task, where a communication task (de-
fined on both parts in a pair) is based on peer-to-
peer or point-to-point communication. A communica-
tion task involving two connected parts is comprised
of all the shared dofs among them such that owner im-
ages reside on a part at one side (referred to as owner
side within a given task) and the corresponding non-
owner images on the other part (referred to as non-
owner side). Typically for three-dimensional unstruc-
tured meshes each part contains on the order of 40
partition-graph edges connecting it with other neigh-
boring parts (where a connected neighboring part is re-
ferred as peer). Moreover, the structures specifying the
communication tasks are pre-computed and stored for
each part while the partition or mesh remains fixed dur-
ing the analysis phase. The control relationship among
images based on ownership is established and main-
tained by the underlying mesh database library (for
more details see [28]).

Typically, with one part per processor (or process),
each processor executes a copy of the analysis code
to handle the mesh elements and communication tasks
associated with its part. In each non-linear iteration
step, every processor first performs interpolation and
numerical integration of the linearized finite element
equations over the elements on its local part to form
the associated portion of the residual vector (b) and
tangent matrix (A). Collectively, all processors have
the same information as in the serial case but no one
processor holds the entire tangent matrix, A, nor the
residual vector b. This bounds the amount of memory
required on any processor as the number of rows of
A and b on a given processor depends on the num-
ber of (non-shared and shared) dofs residing on its lo-
cal part (which is a fraction of the aggregate number
of dofs). To understand our progress towards the solu-
tion of equations, we introduce the notion of a com-
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plete value. We will consider a matrix- or vector-entry
to be complete when it has exactly the same value in a
parallel (or partitioned) case as it will have in a serial
one (i.e., unpartitioned case). After numerical integra-
tion on local parts, values only in those rows of b (in
each processor) are complete that are associated with
non-shared dofs since shared dofs residing at inter-part
boundaries are individually incomplete (referred as on-
processor value) because their contributions are dis-
tributed among their images (due to the compact sup-
port of basis or shape functions used in finite element
methods). Similarly, rows of (sparse) A that are asso-
ciate with non-shared dofs contain complete values. On
the other hand, rows of A that are related to shared dof
contain incomplete values in those columns (with non-
zero entries) that are linked with shared dofs. In other
words, any non-zero entry in (sparse) A is incomplete
when both its row and column are associated with a
shared dof, conversely an entry is complete when ei-
ther its row or column is associated with a non-shared
dof.

Once on-processor values in both A and b are as-
sembled from element-level contributions on a part,
pre-computed communication tasks are used to ob-
tain complete values (only) in the residual vector (b)
within each processor. Though many codes elect to
communicate the (incomplete) entries of matrix (A) to
make them complete and then (re-)distribute the ma-
trix based on rows, PHASTA limits its communication
to entries of vectors (such as b) and do not perform
any re-distribution of data, as the former approach has
more significant scaling challenges at high core counts.
Complete values in any vector (such as b and simi-
lar ones) are obtained through two-passes over all the
communication tasks. In the first pass the non-owner
side of each task sends whereas owner side receives to
accumulate into complete values. In the second pass
the owner side with complete values sends (to all non-
owner sides) whereas each non-owner side receives to
update its values with complete ones. To be clear, at
this point of the algorithm the right-hand side or resid-
ual vector (b) is distributed across parts but each entry
in it is complete while the left-hand side or tangent ma-
trix (A) is distributed but with incomplete values in en-
tries associated with shared dofs (as described above).

The second work component (followed by the first
step of formation of system of equations) involves find-
ing the solution update vector (x) based on iterative
solvers that employ q = Ap products. Note in case of
PHASTA, on-processor Ap products results in vector
q that is partitioned and distributed similar to b. And it

contains incomplete on-processor values due to its for-
mation using incomplete on-processor values in the en-
tries of A (provided vector p contains complete values
as in vector b). Complete values in q are then assem-
bled through two-pass communication stage that ex-
ploits the distributive property in Ap (or any) product
(i.e., (x+y)z = xz+yz, where x and y are incomplete
values in distributed A associated to two images of a
shared dof on different processors and z is a complete
value in vector p for the same shared dof ; such a logic
can be applied similarly to cases with more than two
images of a shared dof ).

It is important to mention that obtaining complete
values in q is not the end of the step. Iterative solvers
also require computation of global norms of vector q,
and its dot-product with vectors obtained from prior
Ap products. Since any vector such as q or other
similar ones are partitioned and distributed among
processors, first an on-processor dot-product is com-
puted (requiring no communication) but then, to ob-
tain a complete dot-product, a sum across all proces-
sors is performed through global summation using col-
lective communication (that is of allreduce type). It
is important to notice that such a collective commu-
nication involves reduction of data globally based on
arithmetic operations. Also note that in computing an
on-processor dot-product value, only the owner image
of each shared dof takes active part to correctly ac-
count for its contribution in the complete (or global)
dot-product. Successive Ap products, along with ob-
taining complete values in resulting vector and its or-
thonormalization, lead to an orthonormal basis of vec-
tors which are used to find an approximate solution to
update vector x (e.g., GMRES [24,29]) and mark the
end of a non-linear iteration step. See [27] for further
details on parallel aspects of PHASTA.

3. Near petascale systems

In this section, we describe each of the three types of
supercomputer systems used in this performance study
(summarized in Table 1). We begin with IBM Blue
Gene architecture, followed by the Cray XT3 and fin-
ish with custom Opteron based supercluster (Ranger,
TACC).

IBM Blue Gene/L is an ultra large-scale supercom-
puter system that has grown to 212,992 proces-
sors in one specific instance at Lawrence Liv-
ermore National Laboratory. The Blue Gene ar-
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Table 1

Summary of near petascale systems considered in this study

System type Processor Network RAM CPCN CPION OS

IBM BG/L @ RPI CCNI PPC 700 MHz Torus+ 12 TB 2 64 IBM BLRTS

IBM BG/P @ ALCF ANL PPC 850 MHz Torus+ 80 TB 4 256 IBM CNK

Cray XT3 @ PSC AMD 2.6 GHz Torus 4 TB 2 188 Cray Catamount

Ranger @ TACC AMD 2.3 GHz Full CLOS 123 TB 16 218 Linux CentOS

Notes: CPCN refers to the number of cores per compute-node. CPION represents the number of compute cores per I/O node. + denotes (only
in the case of IBM Blue Gene systems) that there are additional networks beside the torus network (see discussion for details). CCNI stands
for Computational Center for Nanotechnology Innovations at Rensselaer Polytechnic Institute (RPI), ALCF stands for Argonne Leadership
Computing Facility at Argonne National Laboratory (ANL), PSC stands for Pittsburgh Supercomputing Center and TACC for Texas Advanced
Computing Center.

chitecture balances the computing power of the
processor against the data delivery speed and ca-
pacity of the interconnect, which is a 3D torus
along with auxiliary networks for global com-
munications, I/O and management. This led de-
signers to create slower, lower-power/energy-
efficient compute nodes (only 27.5 kW per
1,024-nodes) consisting of two IBM 32-bit Pow-
erPCs running at only 700 MHz with a peak
memory of 1 GB per node. A rack in BG/L sys-
tem is composed of 1,024 nodes consisting 32
drawers with 32 nodes in each draw. Addition-
ally, there are specialized I/O nodes that per-
form all file I/O and higher-level OS functional-
ity. Nominally there is one dedicated I/O node
for every 16 compute nodes. The BG/L compute
node do not support virtual memory, sockets or
many of the other standard Unix system inter-
faces.

IBM Blue Gene/P is an successor of BG/L system
where the core count per node is increased from
2 to 4 and the CPU frequency is increased from
700 MHz to 850 MHz. The 3D torus, global
and barrier networks of both the systems are
fairly similar. Like BG/L, the operating system
on BG/P is divided into two parts, one consists of
compute node kernel (CNK) which is a minimal
OS with simplified memory management and no
direct I/O. All I/O is handled through dedicated
I/O nodes which run a full OS kernel. Further,
its energy efficiency is better than a BG/L sys-
tem. The two Blue Gene systems used in this
study are BGL-CCNI, which is a 32,768 core
BG/L system (16 racks) with 12 TB of aggre-
gate memory located at RPI’s CCNI [4], and In-
trepid which is a 163,840 core (40 racks) BG/P
system with 80 TB of aggregate memory located
at ANL [3].

Cray XT3 is similar in design to the IBM Blue Gene
systems in that it uses a custom-designed inter-
connect based on a 3D torus topology and a cus-
tom reduced OS kernel called Catamount that
executes on all compute nodes. All file I/O is
routed through 22 dedicated IO processors for
the 4,136 cores of the Bigben system (at PSC)
used in this performance study. A key design
difference as compared to IBM Blue Gene sys-
tems is the use of CPU cores with much higher
clock rate. In the case of the XT3, 2.6 GHz AMD
Opteron processors are used. The relative power
usage based on Flops is higher on Cray XT3 sys-
tems as compared to IBM Blue Gene systems
(see Table 2 in [32]).

Sun Constellation Linux Cluster located at the Uni-
versity of Texas at Austin is a fully custom
tightly-coupled cluster based supercomputer
system (Ranger, TACC) built using 2.3 GHz
AMD quad-core Barcelona processors with
16 cores per node (using 4 quad-cores) with
32 GB of RAM per node. The core count per
node is significantly increased as compared to
either IBM Blue Gene or Cray XT3 systems.
The total system has 62,976 processors with a
combined total RAM of 123 TB. Each node con-
nects to a fully non-blocking CLOS InfiniBand
switch as opposed to a 3D torus interconnect
used by both IBM Blue Gene and Cray XT3 sys-
tems. Additionally, there is a significant depar-
ture from the use of a customized, vendor spe-
cific operating system. On each compute node
the CentOS Linux distribution is installed with
its own local storage as well as connection to a
1.73 PB global file system managed through 72
I/O 4-way Sun servers (where an I/O core will
handle traffic for roughly 218 CPU cores).

A contrast of these systems leads into two distinct
categories (such a distinction will become more clear
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Fig. 5. Spectrum of co-location of OS and system software functionality on compute-nodes. This study focuses on the two extremes which is
IBM BG/L (near complete separation) and Ranger, TACC (full OS services and systems software available on each compute node). The dotted
lines denote estimations of these systems based on available system literature.

as we present the results on parallel performance of
PHASTA). One category includes IBM Blue Gene and
Cray XT3 systems which will be shown to demon-
strate near perfect scaling, while other includes custom
Opteron based supercluster (Ranger, TACC) where
parallel performance is shown to degrade (under strong
scaling of an implicit solve). The spectrum of these
systems is depicted in Fig. 5. Figure 5 coupled with
data from Table 1, shows that as the amount of OS
functionality placed on compute nodes is increased, the
number of CPU cores being served by a single I/O core
increases from as few as 64 compute cores per I/O node
in the case of IBM BG/L system up to 218 compute
cores as in the case of Ranger at TACC. Additionally,
we see a marked shift from the use of custom, reduced
OS kernels, to stock Linux distributions. This suggests
that more and more of the OS heavy lifting, such as ac-
cess to local and remote file systems, memory manage-
ment services and even system health services, are ex-
ecuted on compute nodes. The key advantages of such
integrated systems approach are both the flexibility and
its costs. The increased flexibility allows system ad-
ministrators the ability to tune OS services at a finer
granularity such as controlling the number of file sys-
tem processes which impacts file system performance.
Additionally, users are able to directly access any com-
pute node allocated under their run-job and directly
monitor and debug their high-performance codes. On
the other hand, in the case of current IBM Blue Gene
systems the number and capacity of I/O nodes are fixed

for each system (as are other hardware aspects of the
system) and debugging complexity is increased due to
a lack of a full Unix socket interface along with sup-
port for a multi-programmed compute-node environ-
ment (e.g., a debugger process cannot simply be started
on each compute node and attach itself to a current
collection of running MPI tasks). Additionally, in the
case of BG/L, simple alignment exceptions are only re-
ported to the RAS logs and so users are required to con-
tact system support staff to get their program exception
data as part of an overall debugging and performance
tuning process. On the cost side of integrated systems,
the compute nodes and I/O nodes are able to leverage
readily available hardware and open source software
resulting in potentially more computational power per
unit dollar spent. However, a relevant question to ask
is; does this translate to programs that can scale to a
significant fraction or all of the system’s available com-
puting power? Our results suggest at least for strong
scaling performance of an implicit solver the answer
to this question is no. We therefore discuss the pri-
mary concerns related to those system attributes that
are relevant to strong scaling performance of PHASTA,
or other scientific computation codes in general, using
implicit techniques:

• How operating system design (on compute nodes)
limits strong scaling?: Compute nodes on both
IBM Blue Gene and Cray XT3 systems run mi-
crokernel or lightweight OS for minimum over-
heads (such as BLRTS or CNK in case of IBM
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Blue Gene along with Linux on I/O nodes and
Catamount in case of Cray XT3), whereas on
Ranger at TACC compute nodes run x86_64
Linux 2.6 kernel from the stock CentOS Linux
distribution. When coupled with many cores per
node, the theory says that the OS load can be
evenly spread over all the CPUs using services
like irq-balance [1] and no one single task
is overly penalized. However, we observe that the
amount of OS functionality co-located on com-
pute nodes becomes important for strong scaling
in an implicit solve due to fine grain synchroniza-
tions dictated by necessary global collective com-
munications (of allreduce type). This attribute is
specifically critical for strong scaling on high core
counts as for a fixed size problem each core takes
a relatively small fraction of aggregate computa-
tional load and the effect of system overheads at
any instance in time becomes more and more sig-
nificant on higher and higher core counts.

• How interconnect design limits strong scaling?:
IBM Blue Gene and Cray XT3 systems are based
on custom three-dimensional torus interconnect
with auxiliary networks on IBM Blue Gene sys-
tems dedicated to global communications, I/O
and management, which results in a logarithmic
growth in message delay as the core count grows.
On the other hand, Ranger uses InfiniBand in-
terconnect with a full-CLOS fat-tree topology
(managed by 2 core switches). The message de-
lay (as reported) between any two nodes on the
(roughly) 62K cores Ranger system is held con-
stant at 2.1 µs across the 7-stage switch fabric vs.
a minimum delay of sub-1 µs and a maximum de-

lay of 6 to 7 µs on a BG/L system with 64K cores.
Features of interconnect (including bandwidth, la-
tency, capacity and topology) play an important
role in both point-to-point and collective commu-
nications. However, with our current study, we
have not hit these potential (interconnect related)
barriers to strong scaling. PHASTA scales near
perfectly on 32K cores of IBM BG/L at the full
system scale we have available at RPI’s CCNI
facility (note, we are still conducting our larger
scaling studies on BG/P at ANL). Thus, for the
reminder of this study we focus on the OS in-
duced scaling limitation, but clearly acknowledge
the need to re-examine any interconnect induced
scaling limitations that arise in the future.

4. Strong scaling results and analysis

In this section, we present strong scaling perfor-
mance results and analysis for PHASTA when using an
implicit solve on three types of supercomputer systems
including IBM Blue Gene, Cray XT3 and Sun Constel-
lation Linux Cluster. The physical problem case con-
sidered under this study is a real application and in-
volves blood flow (incompressible) simulation in the
cardiovascular system as shown in Fig. 6, specifically it
is a subject-specific case of abdominal aortic aneurysm
(AAA), which develops complex flows involving tran-
sitional/turbulent features (that commonly arise in dis-
eased arteries like ones with aneurysms [17]). The
mesh used in this case consists of approximately 105M
elements (where M denotes million), which was cre-
ated using parallel adaptive meshing techniques, lead-

Fig. 6. Flow speed at an instant in a subject-specific aneurysm (left: volume rendered, right: cross-sections).
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ing to distributed system of equations with approxi-
mately 4 × 18.5M unknowns in aggregate (note that
there are 4 field variables at every one of the 18.5M
mesh points comprising pressure and three compo-
nents of velocity). In aggregate, there are around 275M
non-zero blocks in the tangent matrix (A) with 13
(= 4 × 4 − 3) entries in each block. 3 entries less from
4 × 4 is due to the fact that in every block, terms related
to coupling of pressure with each of the three veloc-
ity components are symmetric. Note that the execution
times included are those of the analysis portion where
fixed number of time steps and non-linear iterations per
step are solved to obtain a converged solution at every
step; in this study we considered 5 time steps with 4
non-linear iterations per step. Thus, this study excludes
the time spent in pre-processing and post-processing
steps (e.g., does not include the time spent in initializa-
tion of simulation or checkpoint of solution data).

4.1. Parallel performance results

Figure 7 shows the speedup and Table 2 provides
the execution time of PHASTA runs for AAA case
over various massively parallel systems. Multiple exe-

cutions (i.e., O(5) trials) of each case were carried out
to collect the timing information, where less than 2%
variation in execution times was observed (exception-
ally low on Blue Gene systems; about 0.2%). The num-
ber of cores utilized in these runs range from 1,024 to
8,192 including three doublings in core counts, i.e., run
on 1,024 cores is used as the base for each system. This
range was chosen since in this range significant loss
in scaling occurs in the case of custom Opteron super-
cluster at TACC and it also covers the full system in the
case of BibBen at PSC. Execution time for AAA case
(considering the time for base runs on 1,024 cores) is
lowest on Cray XT3 containing cores with fastest clock
rate of 2.6 GHz followed by that on Ranger at TACC
with core frequency of 2.3 GHz (these runs were done
after cores of Ranger were upgraded in June 2008).
Highest execution time is observed on IBM BG/L that
has slowest core with clock rate of 700 MHz, while
that on IBM BG/P is slightly lower than BG/L as it has
cores with clock rate of 850 MHz. Although the focus
of this study is on parallel performance of PHASTA,
it is worth mentioning that PHASTA applies block-
ing strategy to optimize for single core performance
on various systems. Further, work is underway to con-

Fig. 7. PHASTA’s strong scaling performance in an implicit solve on various massively parallel systems.
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Table 2

Execution time (in seconds) of PHASTA runs for AAA case over 1,024 to 8,192 cores on various supercomputer systems

ncores IBM BG/L @ RPI CCNI IBM BG/P @ ANL Cray XT3 @ PSC Opt. Cluster @ TACC

1,024 1052.4 942.34 406.94 527.87

2,048 529.1 484.37 162.94 257.82

4,096 267.0 244.08 84.04 156.80

8,192 130.5 126.74 – 118.93

duct core-level performance analysis based on hard-
ware performance counters using PAPI, TAU or Cray-
Pat.

Similar speedup on both IBM BG/L and BG/P sys-
tems is noticed which is very close to linear (or ideal)
performance out to 8,192 cores, see Fig. 7 (these
runs were done under virtual-node mode on BG/L and
quad-mode on BG/P using all cores within a node for
both the IBM Blue Gene systems, and without any
explicit double-hummer optimizations [6]). Cray XT3
system demonstrates super-linear scaling (as shown in
Fig. 7) with over 20% extra efficiency on both runs
over 2,048 and 4,096 cores (again, both cores of a node
were used for runs on Cray XT3). This super-linear
behavior is likely due to the increase in cache size on
higher core counts, also note that the sub-linear scal-
ing from 2,048 to 4,096 cores of Cray XT3 is indica-
tive of the drift towards the loss of strong scaling. Per-
formance on custom Opteron supercluster shows lin-
ear scaling on 2,048 cores but degrades on 4,096 and
8,192 cores resulting in parallel efficiency of around
84% and 54% respectively, see Fig. 7 (as other sys-
tems, all 16 cores of 4 quad-core Opterons within a
node were used in these runs). In summary, parallel ef-
ficiency of PHASTA on IBM Blue Gene (both BG/L
and BG/P) and Cray XT3 systems is near perfect (in
fact super-linear in the case of Cray XT3) but a sig-
nificant loss is observed in the case of custom Opteron
supercluster at 4,096 and 8,192 cores.

Before analyzing the loss of scaling on Ranger and
demonstrating scaling limitation due to OS interfer-
ence, we show that the application is scalable (on a
system with desirable attributes). In Fig. 8, we pro-
vide strong scaling for the same problem case on BG/L
where the total number of cores used range from 512
to 32,768 (32K) cores including 6 doublings in core
counts. It shows near perfect strong scaling out to
32,768 cores of IBM BG/L system (which is the full
scale of system at CCNI, RPI). Note that the paral-
lel efficiency is either 100%, or slightly above, up to
16,384 cores, and is about 93% on 32,768 cores. It is
important to note that within a partition of 32K parts in
total, the average number of mesh elements per part is

close to 3,200 (about 700 mesh points per part), which
is very low implying not only that computational load
per core becomes insufficient when compared to com-
munications (due to high surface-to-volume ratios in
lightly loaded parts) but also that imbalances among
parts is relatively higher (both in terms of communica-
tions and computations). This study demonstrates that
BG/L system has very desirable attributes of massively
parallel systems in the context of implicit scientific
computation codes. IBM BG/L is the first system in
the Blue Gene series which underscores the potential
of upcoming high-performance systems for petascale
computation. Efforts are underway to perform these
studies on other systems and on larger core counts, for
example, Cray XT5 and BG/P. In terms of OS noise,
BG/L system is the current “gold standard” for being
a virtually noiseless system [1]. Consequently, on near
noiseless supercomputer systems, PHASTA is capable
to achieve strong scaling for an implicit solve at the
full system scale.

4.2. Parallel performance analysis

As previously indicated in Section 3, we associate
the scaling loss on Opteron based supercluster due to
OS jitter/interference. One could also consider inter-
connect as the potential reason for the loss of strong
scaling (see discussions on two major system attributes
that are relevant to strong scaling performance of
PHASTA, or other scientific computation codes in gen-
eral, using implicit techniques) but we show that this
is not the case at the tipping point of strong scaling on
Ranger. To test the current hypothesis of OS induced
scaling limitation, we performed two sets of experi-
ments. These experiments were carried out on 4,096
cores where the tipping of strong scaling is observed
on Ranger for the AAA case considered in this study.
Note that based on the clock rate of the underlying
cores, tipping point of strong scaling on Ranger occurs
relatively at fewer number of cores as compared to the
scaling on the IBM BG/L system (shown in Fig. 8).

In the first set of experiments we demonstrate that
the point-to-point network is not causing the loss of
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Fig. 8. PHASTA speedup and execution time out to 32,768 cores of IBM BG/L at CCNI, RPI.

(a) (b)

Fig. 9. Strong scaling results on Ranger at TACC for two work components of an implicit solve. (a) Speedup in eqn. formation.
(b) Speedup in eqn. solution.

scaling whereas show that collective communications
incur significant delays in allreduce operations. This
is done by analyzing the performance of both, equa-
tion formation and equation solution, work compo-
nents of PHASTA. The equation formation component
strictly executes MPI_Isend and MPI_Irecv operations
(along with MPI_Wait and equivalent ones) without

any global collective operations. As shown in Fig. 9(a),
equation formation scales perfectly (slightly super-
linear) out to 4K cores of Ranger, TACC. However,
this is not the case for the equation solution component
of PHASTA, shown in Fig. 9(b), because it involves
global communications and we observe significant de-
lays incurred in allreduce operations. To confirm these
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delays in allreduce operations, we store the results
of all allreduce operations (i.e., O(10,000) operations)
during one execution, and then use these stored re-
sults for allreduce operations in a subsequent execu-
tion leading to a “re-run” of PHASTA with virtually
zero-cost allreduce operations. The outcome of this
test shows a “re-gain” in strong scaling of PHASTA at
4K cores of Ranger with 96% parallel efficiency. It is
worth mentioning that the recorded allreduce data was
retrieved based on an array via a running index leading
to negligible cost.

The next question that arises is how to distinguish
between the role of a poor performance of allreduce
due to the interconnect (or software implementation)
with that of OS interference. Our experimental solution
to this issue (based on second set of tests) is two fold.
First, we added a global barrier operation prior to each
allreduce operation in the equation solution component
of PHASTA and measure the time spent in allreduce
operations as well as in the barriers. All timing data
are collected using the rdtsc cycle counter instruc-
tion which is realized as inline assembly code [1]. The
results from this simple exercise, show that the barrier
operations absorb the delays (i.e., the time observed in
allreduce operations is now spent in the barriers) and
in turn the allreduce operations now show the same la-
tency as in isolation without presence of any compu-
tational work. This leads to our final experiment and
its results are shown in Fig. 10. In this final experi-
ment, we constructed a simple, but vital allreduce per-
formance test. The test is a tight loop consisting of a
fixed number of multiply-add operations such as 1M
MADDS which is followed by an allreduce operation

Fig. 10. Total time spent in allreduce operations with and
without computational work in between.

in each iteration of the loop (note, 1M MADDS are
performed on same scalars to avoid any influence of the
memory subsystem). We find that when this fixed mod-
est work is non-zero (i.e., 1M MADDS as compared to
0 MADDS) there is a significant increase in the time
spent in the allreduce operations (note that the time
spent in allreduce calls is accumulated by only wrap-
ping the allreduce operation within the timer calls).
This in our view captures the essence of the OS jit-
ter phenomena (such as intermittent kernel interrupts)
and shows its strong degrading impact on a real ap-
plication which is an additional finding to the previ-
ous time-based studies [1,20,22]. As long as there is
zero work as denoted in by the line for 0 MADDS
in Fig. 10, the number of allreduce operation per OS
interrupt is high. However, as fine grain amounts of
work are added, there are fewer and fewer full allre-
duce/work cycles completed per OS interrupt. Addi-
tionally, as the number of cores increases, so does the
probability that an allreduce operation will incur delay
that describes the observed loss of scaling on Ranger
(note that the impact of synchronized OS interrupts
could be tolerable as shown by benchmarks in [1]). De-
tailed study on this issue will require use of specialized
tools such as KTAU [20], along with significant effort
from both the application and system teams to obtain
detailed data on kernel interrupts. It is worth mention-
ing that TACC team recognized OS interference issue
on PHASTA and applied improvements (by suppress-
ing certain background processes) that lead to parallel
efficiency of 84% on 4,096 cores with upgraded system
which was around 77% prior to it.

5. Conclusions

We demonstrated that on properly balanced super-
computer systems, unstructured implicit codes are ca-
pable of achieving strong scaling on full scale of the
system; we showed strong scaling out to 32,768 cores
on full IBM BG/L system at CCNI, RPI. On one
hand implicit codes based on unstructured meshes are
considered challenging but are an important class of
methods for petascale systems since they allow ef-
ficient consideration of many interesting real-world
problems that would be prohibitively expensive to con-
sider with contrasting methods using structured grids
(mesh grows too large) and/or explicit methods (time
step becomes too small and in turn increases the to-
tal number of time steps for a fixed time interval). For
such a method based on unstructured and implicit tech-
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niques, achieving scalability on a balanced system not
only enables the solution of extremely large problem
cases but also allows for significant compression in the
solution time for a given problem (by a speedup fac-
tor directly proportional to the aggregate computing
power of the system used). We also showed that an
unbalance in a system attribute, specifically compute
node operating system (OS), can impact strong scal-
ing of a real application. In particular, systems with
lightweight OS kernels on compute node (and rela-
tively much lower overheads) were shown to exhibit
excellent strong scaling of implicit schemes (for exam-
ple, out to 32,768 cores of BG/L) while systems with
more complete OS kernels on compute nodes (and rel-
atively higher overheads) were shown to achieve lim-
ited strong scaling. This result was observed in the real
application code and was verified with a microbench-
mark code that showed the degrading impact of OS jit-
ter/interference on parallel performance of collective
operations.

Acknowledgments

We would like to acknowledgment funding support
from NSF (under PetaApps project, OCI-0749152) and
computing resources support from CCNI-RPI (BGL-
CCNI), TeraGrid (Ranger at TACC and Bigben at PSC)
and ALCF at ANL (Intrepid). We would also like
to acknowledge that the results presented in this ar-
ticle made use of software components provided by
ACUSIM Software Inc. and Simmetrix Inc.

References

[1] P. Beckman, K. Iskra, K. Yoshii, S. Coghlan and A. Nataraj,
Benchmarking the effects of OS interference on extreme-scale
parallel machines, Cluster Comput. 11 (2008), 3–16.

[2] M. Behr, M. Nicolai and M. Probst, Efficient parallel simu-
lations in support of medical device design, in: NIC Series,
vol. 38, NIC, Jülich, 2007, pp. 19–26.

[3] Argonne Leadership Computing Facility, ANL, Argonne, IL,
available at: http://www.alcf.anl.gov.

[4] Computational Center for Nanotechnology Innova-
tions (CCNI), Rensselaer Technology Park, North Greenbush,
New York, available at: http://www.rpi.edu/research/ccni.

[5] I. Foster, Designing and Building Parallel Programs: Concepts
and Tools for Parallel Software Engineering, Addison-Wesley,
Reading, MA, 1995.

[6] IBM XL Compiler Development Group, Exploiting the dual
FPU in Blue Gene/L, in: Online IBM Support Documentation,
2006.

[7] T.J.R. Hughes, L. Mazzei and K.E. Jansen, Large-eddy simula-
tion and the variational multiscale method, Comput. Vis. Sci. 3
(2000), 47–59.

[8] K.E. Jansen, Unstructured grid large eddy simulation of flow
over an airfoil, in: Annual Research Briefs, NASA Ames/CTR
Stanford University, 1994, pp. 161–173.

[9] K.E. Jansen, A stabilized finite element method for computing
turbulence, Comput. Method. Appl. M. 174 (1999), 299–317.

[10] K.E. Jansen and A.E. Tejada-Martínez, An evaluation of the
variational multiscale model for large-eddy simulation while
using a hierarchical basis, Number 2002-0283, Reno, NV,
2002. (40th AIAA Annual Meeting and Exhibit.)

[11] K.E. Jansen, C.H. Whiting and G.M. Hulbert, A generalized-
α method for integrating the filtered Navier–Stokes equations
with a stabilized finite element method, Comput. Method. Appl.
M. 190 (1999), 305–319.

[12] K.E. Jansen, Unstructured grid large eddy simulation of wall
bounded flow, in: Annual Research Briefs, NASA Ames/CTR
Stanford University, 1993, pp. 151–156.

[13] P. Jetley, F. Gioachin, C. Mendes, L.V. Kale and T. Quinn,
Massively parallel cosmological simulations with ChaNGa, in:
Proc. of IEEE Intl. Parallel and Distributed Processing Symp.
(IPDPS), IEEE, Miami, FL, April 2008.

[14] A.K. Karanam, K.E. Jansen and C.H. Whiting, Geometry based
preprocessor for parallel fluid dynamics simulations using a hi-
erarchical basis, Eng. Comput. 24(1) (2008), 17–26.

[15] G. Karypis and V. Kumar, Parallel multilevel k-way partition-
ing scheme for irregular graphs, SIAM Rev. 41 (1999), 278–
300.

[16] D.K. Kaushik, D.E. Keyes and B.F. Smith, High performance
parallel implicit CFD, Parallel Comput. 27 (2001), 337–362.

[17] J.C. Lasheras, The biomechanics of arterial aneurysms, Annu.
Rev. Fluid Mech. 39 (2007), 293–319.

[18] D.J. Mavriplis, M.J. Aftosmis and M. Berger, High resolution
aerospace applications using the NASA Columbia supercom-
puter, Int. J. High Perform. C. 21(1) (2007), 106–126.

[19] J. Mueller, O. Sahni, X. Li, K.E. Jansen, M.S. Shephard and
C.A. Taylor, Anisotropic adaptive finite element method for
modeling blood flow, Comput. Method. Biomec. 8(5) (2005),
295–305.

[20] A. Nataraj, A. Morris, A.D. Malony, M. Sottile and P. Beck-
man, The ghost in the machine: Observing the effects of ker-
nel operation on parallel application performance, in: Proc. of
the ACM/IEEE Conference on Supercomputing, ACM/IEEE,
Reno, NV, 2007.

[21] L. Oliker, A. Canning, J. Carter, C. Iancu, M. Lijewski,
S. Kamil, J. Shalf, H. Shan, E. Strohmaier, S. Ethier and
T. Goodale, Scientific application performance on candidate
petascale platforms, in: Proc. of IEEE Intl. Parallel and Dis-
tributed Processing Symp. (IPDPS), IEEE, Long Beach, CA,
March 2007.

[22] F. Petrini, D.J. Kerbyson and S. Pakin, The case of the missing
supercomputer performance: Achieving optimal performance
on the 8,192 processors of ASCI Q, in: Proc. of the ACM/IEEE
Conference on Supercomputing, ACM/IEEE, Phoenix, AZ,
2003.

[23] D. Porter and P. Woodward, Bursts of stellar turbulence, in:
Proj. in Sc. Comput., PSC, 2007.



274 O. Sahni et al. / Strong scaling analysis of a parallel, implicit solver

[24] Y. Saad and M.H. Schultz, GMRES: A generalized minimal
residual algorithm for solving nonsymmetric linear systems,
SIAM J. Sci. Stat. Comput. 7 (1986), 856–869.

[25] O. Sahni, K.E. Jansen, M.S. Shephard, C.A. Taylor and M.W.
Beall, Adaptive boundary layer meshing for viscous flow sim-
ulations, Eng. Comput. 24(3) (2008), 267–285.

[26] O. Sahni, J. Mueller, K.E. Jansen, M.S. Shephard and C.A. Tay-
lor, Efficient anisotropic adaptive discretization of cardiovas-
cular system, Comput. Method. Appl. M. 195(41–43) (2006),
5634–5655.

[27] O. Sahni, C.H. Whiting, M.S. Shephard and K.E. Jansen, Scal-
able finite element flow solver for massively parallel comput-
ers, in preparation.

[28] E.S. Seol and M.S. Shephard, Efficient distributed mesh data
structure for parallel automated adaptive analysis, Eng. Com-
put. 22(3) (2006), 197–213.

[29] F. Shakib, T.J.R. Hughes and Z. Johan, A multi-element group
preconditioned GMRES algorithm for nonsymmetric systems
arising in finite element analysis, Comput. Method. Appl. M. 75
(1989), 415–456.

[30] M.S. Shephard, K.E. Jansen, O. Sahni and L.A. Diachin, Paral-
lel adaptive simulations on unstructured meshes, J. Phys. Conf.
Ser. 78 (2007), 012053.

[31] G. Staffelbach, L.M.Y. Gicquel and T. Poinsot, Highly parallel
large eddy simulations of multiburner configurations in indus-
trial gas turbines, in: Proc. of the Cyprus Intl. Symp. on Com-
plex Effects in LES, Univ. of Cyprus/CTR at Stanford Univ.,
Limassol, 2005.

[32] IBM Blue Gene team, Overview of the IBM Blue Gene/P
project, IBM J. Res. Dev. 52(1,2) (2008), 199–220.

[33] A.E. Tejada-Martínez and K.E. Jansen, Spatial test filters for
dynamic model large-eddy simulation on finite elements, Com-
mun. Numer. Meth. En. 19 (2003), 205–213.

[34] A.E. Tejada-Martínez and K.E. Jansen, A dynamic Smagorin-
sky model with dynamic determination of the filter width ratio,
Phys. Fluids 16 (2004), 2514–2528.

[35] A.E. Tejada-Martínez and K.E. Jansen, On the interaction be-
tween dynamic model dissipation and numerical dissipation
due to streamline upwind/Petrov–Galerkin stabilization, Com-
put. Method. Appl. M. 194(9–11) (2005), 1225–1248.

[36] A.E. Tejada-Martínez and K.E. Jansen, A parameter-free dy-
namic subgrid-scale model for large-eddy simulation, Comput.
Method. Appl. M. 195 (2006), 2919–2938.

[37] V. Venkatakrishnan, Implicit schemes and parallel computing
in unstructured grid CFD, in: Proc. 26th CFD VKI Lect. Series,
VKI, Rhode-Saint-Genese, 1995.

[38] C.H. Whiting and K.E. Jansen, A stabilized finite element
method for the incompressible Navier–Stokes equations using
a hierarchical basis, Int. J. Numer. Meth. Fl. 35 (2001), 93–116.

[39] C.H. Whiting, K.E. Jansen and S. Dey, Hierarchical basis in
stabilized finite element methods for compressible flows, Com-
put. Method. Appl. M. 192 (2003), 5167–5185.

[40] Zoltan, Zoltan: parallel partitioning, load balanc-
ing and data-management services, available at:
http://www.cs.sandia.gov/zoltan.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


