
Scientific Programming 17 (2009) 309–323 309
DOI 10.3233/SPR-2009-0291
IOS Press

Exploiting fine-grain thread parallelism on
multicore architectures

P.E. Hadjidoukas, G.Ch. Philos and V.V. Dimakopoulos
Department of Computer Science, University of Ioannina, Ioannina, GR-45110, Greece
E-mails: {phadjido, gfilos, dimako}@cs.uoi.gr

Abstract. In this work we present a runtime threading system which provides an efficient substrate for fine-grain parallelism,
suitable for deployment in multicore platforms. Its architecture encompasses a number of optimizations that make it particularly
effective in managing a large number of threads and with low overheads. The runtime system has been integrated into an OpenMP
implementation to allow for transparent usage under a high level programming paradigm. We evaluate our implementation on
two multicore systems using synthetic microbenchmarks and a real-time face detection application.

Keywords: Multicore architectures, OpenMP, multithreading, runtime systems

1. Introduction

Multicore architectures (MCAs) have become ubiq-
uitous, and systems based on MCAs are these days
a commodity, offering a very accessible means of
achieving increased application performance. While
CPUs with 2–8 cores have been already available in
the last few years, the day when there will exist tens or
hundreds of cores on a single die does not seem to be
very far away [15].

Programming efficiently such systems is a neces-
sity that in many cases becomes a headache. The rea-
son is that because MCAs are the mainstream architec-
ture, mainstream programmers (with years of sequen-
tial programming experience) will be called to program
them. These programmers will be faced with prob-
lems and challenges that up to now were exclusive to
the high-performance computing (HPC) community.
However, traditional non-HPC programmers are more
oriented towards productivity (and easiness of develop-
ment) than performance. As such, programming mod-
els and supporting system software for MCAs have to
be relatively easy to use and at the same time able to
produce significant performance figures.

MCAs can be viewed as full SMP systems on a
chip. In fact, this is the view most current operating
systems have, hence not differentiating between SMPs
and MCAs. While the similarities are indeed many,
there are some subtle differences that are crucial for
application performance. To start with, the cores in
MCAs have a deeper hierarchy of memory sharing than

the CPUs in an SMP. While the latter share only main
memory, MCA cores typically share both memory and
L2 caches. This favors computational locality and re-
sults in high core-to-core communication speeds. On
the other hand, L2 caches in MCAs are much smaller
(they are expected to one or two orders of magnitude
smaller) than the L2 caches collectively be present in a
similarly sized SMP system. Sharing such small caches
will easily lead to cache conflicts in MCAs, and may
have a negative impact on application performance.

MCAs are becoming non-uniform memory access
(NUMA) machines. There is a significant difference
when an access hits on a shared L2 cache and when
the access has to go all the way to main memory. The
NUMA factor will be even bigger as tens or hundreds
of cores will have to be interconnected by either an on-
chip network or a very deep hierarchy of shared caches.
SMPs on the other hand are mostly considered UMA
machines and are treated as such by both the program-
mer and the runtime system.

MCAs will provide many cores; the Intel 80-core
prototype is already almost 2 years old [15]. In SMPs,
the CPUs were typically limited to single-digit num-
bers, reaching 16 or 32 in some high-end systems.
While applications for a limited number of CPUs can
be coarser, for MCAs they will have to be finer in order
to utilize efficiently the available computational power.

In conclusion, while MCAs are similar to SMPs,
there exist enough and important differences to justify
reconsidering the design of all software levels, from
system software up to the application level.

1058-9244/09/$17.00 © 2009 – IOS Press and the authors. All rights reserved

310 P.E. Hadjidoukas et al. / Exploiting fine-grain thread parallelism on multicore architectures

In this paper we consider a runtime threading sys-
tem capable of leveraging MCAs, producing high per-
formance execution while hidden under an easy-to-use
programming model. In particular, we make the case
that OpenMP [18] is a very appropriate programming
model for today’s and most probably tomorrow’s mul-
ticore systems. This stems from the fact that it pro-
vides high-level abstractions and incremental program
development without altering the base programming
language, making it thus accessible to traditional non-
HPC programmers. At the same time we have found
that it allows for advanced runtime systems to take full
advantage of the underlying processing hardware.

The rest of the paper is organized as follows. Sec-
tion 2 presents the design of our runtime system. In
Section 3 we discuss the integration of our runtime
system into an OpenMP compiler so as to make its
usage transparent to the application programmer. Sec-
tion 4 assesses the effectiveness of our design; we
present experimental results which include both syn-
thetic microbenchmarks and a full-fledged application.
Section 5 discusses related work and, finally, Section 6
concludes the paper.

2. The threading runtime system

We consider runtime libraries that will be called to
harness the multiplicity of processing cores through
multiple threads. Threads is the natural choice for par-
allel execution. Even in the case of new application-
domain languages, where the programmer is not di-
rectly exposed to threads, but uses a higher-level ab-
straction, the underlying runtime system is based on
threads (e.g. Cilk [4]).

While threading systems always strived for perfor-
mance, we have identified a number of characteris-
tics that threading systems for MCA platforms will be
called to provide and handle efficiently:

• Load balancing is a prerequisite for high-perfor-
mance execution. Although, this will be a very
serious issue when a larger number of cores is
available, it is also important today. For example,
nested parallelism may actually lead to increased
execution times if the workload is not balanced
appropriately.

• A large number of threads. This is a necessity,
not only because multicore CPUs will consist of
many cores but also because, even with a rela-
tively small number of cores, a large number of

low-overhead threads may help towards balancing
the load. A few coarse threads on a few cores can
easily lead to load imbalance and underutiliza-
tion of the system. Large numbers of fine-grain
threads will be required, along with an efficient
management of their execution.

• Effective scheduling. Traditional SMP-style
thread scheduling (e.g. based on processor affin-
ity) will not suffice. NUMA factors will have to be
taken into account, especially when a larger num-
ber of cores becomes available. Some form of hi-
erarchical scheduling seems appropriate, so as to
match the hierarchy in architecture and memory
sharing.

We have designed PSTHREADS, a high-performance
threads library architected to meet the above require-
ments in a multicore environment. It exports a POSIX

threads-like interface and implements a two-level
thread model, where non-preemptive user-level threads
are executed on top of kernel-level threads that act as
virtual processors.

2.1. Core design

Although user-level multithreading has tradition-
ally implied machine dependence, the PSTHREADS li-
brary is completely portable because its implementa-
tion is based entirely on the POSIX standard. Its vir-
tual processors are mapped to POSIX threads, while the
primary user-level thread operations, i.e. creation and
context-switching, are provided by UTHLIB (Underly-
ing Threads Library), a platform-independent thread
package. These operations are based on the manage-
ment routines of the jmpbuf or ucontext_t struc-
tures, although they can also be emulated using exclu-
sively POSIX threads. UTHLIB utilizes a queue-based
recycling mechanism for the underlying threads. The
routines required for multiprocessor synchronization
and queue management are implemented in a sepa-
rate module. Locks are internally mapped to POSIX

mutexes or spinlocks, taking into account the non-
preemptive threads of the library. The routines and the
exported application programming interface of UTH-
LIB are both utilized by the PSTHREADS runtime li-
brary, which actually implements the two-level thread
model (Fig. 1).

Two important features of PSTHREADS are (a) the
utilization of different data structures for the
psthread descriptor and the underlying thread (i.e.
stack) and (b) the adoption of a lazy stack alloca-

P.E. Hadjidoukas et al. / Exploiting fine-grain thread parallelism on multicore architectures 311

Fig. 1. General design of the PSTHREADS library.

tion policy. Thus, the stack of a psthread is allo-
cated right before the first context-switch to it, which
means that a psthread binds an underlying thread at
that time. This results in minimal memory consump-
tion and actual thread migrations between processors.
Specifically, a large number of threads can be spawned
without having to allocate an equal number of stacks.
Thus, better load balancing can be achieved, with low
runtime overheads due to the user-level operations.
Moreover, stack size can be fixed and large enough,
which simplifies and accelerates stack management.

Each virtual processor runs a dispatch loop, select-
ing the next-to-run user-level thread from a set of
ready queues, where threads are submitted for execu-
tion. There are local (per virtual processor) queues and
one optional global queue that can be used for coarse-
grain tasks. A second set of queues is also available for
the recycling of thread descriptors. The thread creation
routine of PSTHREADS, which always tries to reuse a
descriptor, does not imply insertion of the thread to a
ready queue. Instead, an additional routine allows the
user to specify the queue where the thread will be sub-
mitted for execution and whether it will be inserted in
the front or at the back of the specified queue. More-
over, a parent thread does not have to join explicitly
each child thread: a wait routine suspends the exe-
cution of the current thread until all its child threads
have finished. Whenever a thread is blocked, the library
scheduler is invoked and another thread with its own
stack can be dispatched for execution on the same vir-
tual processor.

Load balancing is achieved through work steal-
ing [5], according to which an idle virtual processor
first checks its local ready queue and then tries to steal
work from the queues of the other virtual processors.

The queue architecture allows the runtime library to
represent the layout of physical processors. For in-
stance, a hierarchy can be defined in order to map the
coupling of processing elements in current multicore
architectures.

2.2. Scheduling

When many threads are spawned or nested paral-
lelism is exploited, kernel level thread models over-
subscribe the system processors and time-sharing in-
creases significantly runtime overheads. In addition,
scheduling threads that map to inner levels of par-
allelism becomes difficult with respect to their bind-
ing to specific processors in order to favor compu-
tation and data locality. Limiting the number of cre-
ated threads avoids the excessive runtime overheads
but can easily cause load imbalance. The utilization of
non-preemptive user-level threads allows the runtime
library to manage parallelism explicitly, which is not
possible for the case of kernel threads.

In the PSTHREADS library, an idle virtual processor
extracts threads from the front of its local ready queue
but steals from the back of remote queues. This pro-
vides support to an adaptive work distribution scheme
for the management of general unstructured nested par-
allelism. In particular, threads that are spawned at the
first level of parallelism are distributed cyclically and
inserted at the back of the ready queues. For inner lev-
els, the threads are inserted in the front of the ready
queue that belongs to the virtual processor they were
created on. This scheme favors the execution of in-
ner threads on a single processor and improves data
locality.

The work stealing mechanism has been designed to
work hierarchically, assuming the existence of thread
groups. Specifically, the virtual processors are orga-
nized as a hierarchy of groups, which can be arbi-
trary. Thus, an idle virtual processor first examines the
ready queues of its adjacent virtual processors in the
lowest level group it belongs to; if no work is found,
it tests the queues of the remaining processors in the
group one level higher and so on. Due to our two-level
thread model, there is a 1:1 mapping between virtual
and physical processors and, thus, the queue hierarchy
of the runtime library can be mapped directly to the
hardware architecture. In our runtime system, we do
not introduce any additional ready queues. This sim-
plifies the implementation and avoids the overhead of
moving threads across queues of different levels. Hav-
ing a single queue for each higher level group can re-

312 P.E. Hadjidoukas et al. / Exploiting fine-grain thread parallelism on multicore architectures

sult in hot spot contention, if all processors try to ac-
cess that queue. Due to our hierarchical visiting or-
der, however, the accesses to the ready queues are per-
formed more evenly between virtual processors. An
outline of our hierarchical work stealing mechanism,
with the assumption that groups of the same level have
equal size, is presented in Fig. 2. The group size at each
level can be arbitrary. In particular, they can be defined

by the user or discovered during PSTHREADS initial-
ization to match the hierarchical organization of the
system cores. Figure 3 shows an example of the work
stealing algorithm and the hierarchical visiting order of
the queues for a specific virtual processor.

The Cilk runtime system [4] also maintains a lo-
cal ready queue for each processor (so does the Intel
Threading Building Blocks, TBB, library [20]). The

GroupSize[0..NLevels-1]: # VPs in each group at a given level
/* private data */
MyID: current virtual processor
visited[0..N-1]: flags initialized to zero at every call

visited[MyID] = 1; /* local queue was empty */
thread = NULL;
Level = 0;
while (Level < NLevels) {
nvisits = 0;
VPGroupSize = GroupSize[Level];
VPGroupID = MyID / VPGroupSize;
VPGroupBase = VPGroupID*VPGroupSize;
if (Level == 0)

vp = MyID;
else

vp = (MyID + GroupSize[Level-1]) % VPGroupSize + VPGroupBase;
while ((thread == NULL) && (nvisits < VPGroupSize)) {

if (!visited[vp]) {
visited[vp] = 1;
thread = DequeueWork(vp);

}
vp = (vp + 1) % VPGroupSize + VPGroupBase;
nvisits++;

}
if (thread != NULL) break;
Level++;

}
/* execute thread */

Fig. 2. Outline of the hierarchical thread scheduling algorithm.

Fig. 3. An example of the work stealing algorithm and the visiting order of the remote queues for virtual processor #4. The group sizes at
levels 0, 1 and 2 are 3, 6 and 12, respectively.

P.E. Hadjidoukas et al. / Exploiting fine-grain thread parallelism on multicore architectures 313

ready queue is an array of lists, with each list cor-
responding to a specific level of parallelism. An idle
processor selects randomly a ready queue and, if this
is nonempty, extracts the thread from the tail of the list
that corresponds to the outermost level of parallelism.
Due to random stealing, however, these systems do not
take into account any hierarchy among the processing
cores. Other approaches (e.g. [17]) utilize an hierarchi-
cal queue scheme: the ready queues are organized as a
tree, having a central queue at the root and local ready
queues all the way down to the leaves. A processor has
access only to the queues that reside on the path be-
tween its own local ready queue and the highest-level
central queue. The drawback of this scheme is that it
defines a fixed partitioning of the system processors
and can lead to load imbalance.

2.3. Enhancements for fine-grain parallelism

The efficient support of a large number of threads
has motivated further improvements in the library, re-
lated to memory recycling and thread barriers.

Both PSTHREADS and UTHLIB employ a queue-
based recycling mechanism for the psthread de-
scriptors and the underlying stacks respectively. As a
central queue approach provides load balancing but
suffers from high contention, recycling is performed
through local queues. The thread creation routine al-
ways tries to recycle a thread from the local queue
and finished threads are inserted locally too. To deliver
the best performance, however, parallel programs that
spawn many threads must rely on the local recycling
without requiring access to the other queues. UTHLIB

achieves this goal due to the lazy stack allocation pol-
icy: in the case of single-level parallelism, one under-
lying stack per virtual processor is adequate for any ar-
bitrary number of threads. Moreover, each level of par-
allelism introduces at most one stack on each virtual
processor. A minor improvement of this mechanism,
which avoids the access to the local recycling queue
(although it is contention-free), is the support for stack
handoff. Specifically, a finished thread does not recy-
cle its stack but instead (a) replaces its descriptor with
the subsequent thread’s descriptor, (b) re-initializes its
own execution state, and (c) resumes execution.

In contrast to underlying threads, local recycling
does not imply optimal memory management of thread
descriptors. Due to work stealing in PSTHREADS,
threads can run and finish on any virtual processor.
Therefore, local recycling queues will have available
descriptors that can be consumed during thread cre-

ation. If, however, spawning of parallelism is mostly
performed on the same virtual processor, there will
be one producer and many consumers for the thread
descriptors. To overcome this issue we implemented
a direct-reuse mechanism for the descriptors. Specifi-
cally, we have introduced a variant of the thread cre-
ation routine (psthread_create_ex) that can ac-
cept a previously allocated descriptor. If the pointer
to the descriptor is not set (i.e. has the value NULL)
then the recycling mechanism is activated, otherwise
the memory of the provided descriptor is used. When
such a thread finishes, the library does not recycle the
memory of the corresponding descriptor. It is the user’s
responsibility to save the pointer to the descriptor, in
order to reuse it later in a subsequent thread creation
call.

Figure 4 shows an example of thread creation using
the direct memory reuse method. Initially, a number of
threads (N) are created and submitted for execution in
the queue of virtual processor 0. As the thread descrip-
tors have not been set, the pthread_create_ex in-
volves memory allocation for each descriptor. In the
second loop, however, the creation routine takes as in-
put the previously allocated descriptors and hence does
not activate the recycling mechanism.

The PSTHREADS library also implements barriers
between its user-level threads, exporting a set of rou-
tines similar to that of POSIX threads. The barrier ini-
tialization function takes as argument the number of
the threads that will call the barrier, while the wait
function suspends the calling thread until the specified
number of threads reach the barrier. An efficient spin-
ning barrier implementation cannot be used because
we cannot make any assumption about the number of
participating threads (i.e. there may be more than the
number of processors). In a simple implementation,
similar to that presented in [7], each psthread that
reaches a barrier is inserted in the private queue of
that barrier and releases the underlying virtual proces-
sor. The last thread extracts and reinserts each blocked
thread in the ready queue of the virtual processor that
was previously executing it. To avoid contention at
the barrier queue, we have introduced an optimization
to our barrier implementation. Specifically, the barrier
initialization routine, does not use a single queue but
allocates an array of pointers to thread descriptors. The
size of the array is equal to the number of threads that
will join the barrier. The barrier wait routine is also
extended to include as second argument the id of the
thread, which must be provided by the programmer or
the software that utilizes PSTHREADS (e.g. OpenMP

314 P.E. Hadjidoukas et al. / Exploiting fine-grain thread parallelism on multicore architectures

int i;
psthread_t t[N];
psthread_attr_t attr = PSTHREAD_ATTR_DEFAULT;

/* 1st round - thread descriptors are allocated */
for (i = 0; i < N; i++) {

t[i] = NULL;
psthread_create_ex(&t[i], &attr, func, arg);
psthread_enqueue(t[i], 0);

}
psthread_waitall(); /* wait all child threads */

/* 2nd round - thread descriptors are provided */
for (i = 0; i < N; i++) {

psthread_create_ex(&t[i], &attr, func, arg);
psthread_enqueue(t[i], 0);

}
psthread_waitall();

Fig. 4. An example of using psthreads with the variant of the thread creation routine. Thread descriptors are allocated only during the first loop.

runtime library). Whenever a thread reaches a barrier,
it registers itself in the array, at the position that is de-
termined by its id. The last thread accesses the array
and reinserts every descriptor in the appropriate ready
queue.

3. A runtime system for OpenMP

OpenMP [18] has become a standard paradigm for
shared memory programming, as it offers the advan-
tage of simple and incremental parallel program devel-
opment, in a high abstraction level. One of the reasons
that OpenMP has been so successful is that it does not
change the base language; application programmers
continue to use C/C++ or Fortran, augmented with di-
rectives that take effect only if an OpenMP compiler
is used. In addition, the programmer does not have to
deal with threading details, as these are taken care of by
an accompanying runtime library. As a result, OpenMP
is a programming model quite accessible to non-HPC
programmers.

OpenMP was designed with SMP architectures in
mind and as such it fits the MCA model quite nicely,
albeit it may not always deliver top performance as
almost all implementations seem to have scalability
problems when the number of threads increases signifi-
cantly. For example, it has been demonstrated [11] that
under fine-grain nested parallelism, where a large num-
ber of threads have to be managed, almost no imple-
mentation has a graceful behavior. However, this does
not mean OpenMP is unsuitable for fine-grain paral-

lelism. We show here that a high-performance runtime
support library for OpenMP may allow applications
to reach high performance levels. OpenMP is proba-
bly not ready for the many-core era as it does not cur-
rently allow for NUMA exploitation. However, there
have been quite a few proposals in the open litera-
ture for NUMA extensions and it is certainly going to
be one of the key concepts for the next versions of
OpenMP [3,8].

We have integrated PSTHREADS into OMPi [19],
a source-to-source compiler for OpenMP/C V2.5.
OMPi takes as input C source code with OpenMP di-
rectives and outputs transformed but equivalent C code
augmented with calls to OMPi’s runtime system. The
resulting program is compiled by the system’s native
C compiler and linked with the runtime library produc-
ing the final executable.

The runtime system of OMPi has been designed
with modularity in mind and makes it particularly sim-
ple to modify its threading primitives or incorporate
new ones. OMPi, through its compilation process maps
OpenMP threads to abstract execution entities (EEs).
The runtime system of OMPi provides the EEs that will
carry out the work of OpenMP threads and controls
their operation and synchronization. It has been archi-
tected with an internal interface that facilitates the inte-
gration of arbitrary EEs. It consists of two modules; the
first module (ORT) groups EEs, coordinates them and
schedules their execution within worksharing regions,
but it does not implement them. The second module
(EELIB) is the one that actually implements the execu-
tion entities. A number of EELIBs that provide thread

P.E. Hadjidoukas et al. / Exploiting fine-grain thread parallelism on multicore architectures 315

EEs are available for OMPi, including libraries that are
based on POSIX threads and Solaris threads. Finally,
there is one more library that provides heavyweight
processes as EEs and interfaces with arbitrary software
DSM cores, providing transparent execution on clus-
ters [19].

We have implemented a custom EELIB to inter-
face with PSTHREADS. The EELIB that integrates
PSTHREADS into OMPi is relatively straightforward
because spawning of threads is performed explicitly,
while thread pooling is provided by the thread li-
brary. OpenMP thread self-identification is based on
thread local storage that PSTHREADS supports, and
OpenMP barriers are directly mapped to PSTHREADS

barriers. Upon application startup, the value of the
OMP_NUM_THREADS environment variable deter-
mines the number of virtual processors. If this vari-
able has not been set or its value exceeds the system’s
processor count, the number of virtual processors
is set equal to the number of physical processors.
Thus, OMPi maps the OpenMP threads to lightweight
PSTHREADS and the number of kernel-level threads
never exceeds the number of physical processors.
This approach minimizes the OpenMP runtime over-
heads, especially when nested parallelism is enabled,
and manages to exploit fine-grain parallelism. In ad-
dition, the internal thread scheduling scheme of the
PSTHREADS library favors the execution of inner-level
OpenMP threads on a single processor and improves
data locality.

4. Experiments

4.1. Methodology

The integration of the PSTHREADS library into an
OpenMP environment allows us to evaluate the effi-
ciency of its threading primitives using standard mi-
crobenchmarks that have been proposed for OpenMP
instead of designing our custom ones. Moreover, using
various OpenMP implementations we have a straight-
forward comparison between different threading ap-
proaches.

For this purpose, we use the EPCC microbench-
mark suite [6], which measures the overhead of the
OpenMP constructs, including the costs for creating
parallelism (threads), locking and barriers. However,
this suite is only applicable to single-level parallelism;
running the benchmarks with a large number of threads
can give an overhead estimation that is not accu-

rate. Evaluating nested parallelism based on applica-
tion speedups [1,25] gives overall performance indi-
cations but does not reveal potential construct-specific
problems. To study how efficiently OpenMP imple-
mentations support nested parallelism and exploit fine-
grain parallelism, we have extended both the synchro-
nization and the scheduling microbenchmarks of the
EPCC suite [11].

The technique followed in the EPCC microbench-
mark suite for measuring the overhead of OpenMP di-
rectives, is to compare the time taken for a section of
code executed sequentially with the time taken for the
same code executed in parallel, enclosed in a given
directive. According to our approach, the core bench-
mark routine for a given construct is represented by a
“task” (not to be confused with the task directive intro-
duced in OpenMP 3.0). Each “task” has a unique iden-
tifier and utilizes its own memory space for storing its
table of runtime measurements. We create a team of
threads, where each member of the team executes its
own “task”. When all “tasks” finish, we compute the
global mean of all measured runtime overheads. The
method is outlined in Fig. 5. The team of threads that
execute the “tasks” expresses the outer level of paral-
lelism, while each benchmark routine (“task”) contains
the inner level of parallelism.

In Fig. 5, if the loop (lines 4–6) is not parallelized,
the “tasks” are executed in sequential order. This is
equivalent to the original version of the microbench-
marks, having each core benchmark repeated more
than once. On the other hand, if nested parallelism is
enabled, the loop is parallelized (lines 1–3) and the
“tasks” are executed in parallel. The number of simul-
taneously active “tasks” is bound by the number of
OpenMP threads that constitute the team of the first
level of parallelism. To ensure that each member of
the team executes exactly one “task”, a static sched-
ule with chunksize of 1 was chosen at line 2. In ad-
dition, to guarantee that the OpenMP runtime library
does not assign fewer threads to inner levels than in the
outer one, dynamic adjustment of threads is disabled
through a call to omp_set_dynamic(0).

In OpenMP implementations that provide full nested
parallelism support, inner levels spawn more threads
than the number of physical processors, which are
mostly kernel-level threads. Thus, measurements ex-
hibit higher variations than in the case of single-level
parallelism. In addition, due to the presence of more
than one team parents, the overhead of the parallel
directive increases in most implementations, possibly
causing overestimation of other measured overheads.

316 P.E. Hadjidoukas et al. / Exploiting fine-grain thread parallelism on multicore architectures

void nested_benchmark(char *name, func_t originalfunc) {
int task_id;
double t0, t1;

1 #ifdef NESTED_PARALLELISM
2 #pragma omp parallel for schedule(static,1)
3 #endif
4 for (task_id = 0; task_id < p; task_id++) {
5 (*originalfunc)(task_id);
6 }

<compute global statistics>
<print construct name and statistics>

}

main() {
<compute reference time>
omp_set_num_threads(omp_get_num_procs());
omp_set_dynamic(0);
nested_benchmark("PARALLEL", testpr);
nested_benchmark("FOR", testfor);
...

}

Fig. 5. Extended microbenchmarks for nested parallelism overhead measurements.

To resolve these issues, we increase the number of in-
ternal repetitions for each microbenchmark, so as to be
able to reach the same confidence levels (95%).

4.2. Microbenchmark results

We conducted our experiments on a server with
4 dual-core Intel Xeon Paxville 3.0 GHz CPUs running
Linux 2.6. We provide results for two free commer-
cial and two freeware OpenMP C compilers that sup-
port nested parallelism. The commercial compilers are
the Intel C++ 10.0 compiler (ICC) and Sun Studio 12
(SUNCC) for Linux. The freeware ones are GNU GCC

4.2 and OMPi 1.0.0. We have used the default settings
of the OpenMP runtime libraries and the -O3 optimiza-
tion flag in all experiments.

Our first experiment demonstrates our lightweight
runtime support as the number of OpenMP threads
increases. Figure 6 presents the overheads of the
parallel (thread creation) and barrier OpenMP
constructs, increasing the number of threads from 8 up
to 64 on a dedicated machine and having a single-level
of parallelism. We observe that GCC, SUNCC and OMPi
with POSIX threads (OMPi) exhibit significant over-
heads while both ICC and OMPi + PSTHREADS achieve
good performance for up to 32 OpenMP threads. For

more threads, however, the Intel compiler fails to main-
tain stability and only the overheads of the OMPi +
PSTHREADS compiler increase linearly with the num-
ber of threads (i.e. proportionally to the number of
user-level context switches). This is attributed to the
lower contention of user-level threads on the process-
ing cores.

In the second experiment we focus on the evaluation
of OpenMP runtime support for nested parallelism, us-
ing the extended EPCC microbenchmarks. A selec-
tion of the obtained results is given in Figs 7 and 8,
for the synchronization and scheduling microbench-
marks. Each plot includes the single-level overheads
of each system for reference. We have chosen a log-
arithmic scale for the y-axis for clarity. Both the
OMP_NUM_THREADS environment variable and the
number of “tasks” are equal to the number of process-
ing cores in the system (8).

Figure 7 includes the overheads for the parallel
and barrier constructs. As the number of active
threads increases when nested parallelism is enabled,
the overheads are expected to increase accordingly. We
observe, however, that the parallel construct does
not scale well for the GCC, Intel and OMPi compilers.
For both of them, the runtime overhead is more than
an order of magnitude higher in the case of nested par-
allelism. For ICC this could be attributed, in part, to

P.E. Hadjidoukas et al. / Exploiting fine-grain thread parallelism on multicore architectures 317

Fig. 6. Single-level runtime overheads for large number of threads.

the fact that threads join a unique central pool before
getting grouped to teams [27]. On the other hand, both
OMPi + PSTHREADS and SUNCC clearly scale bet-
ter and their overheads increase linearly, with SUNCC,
however, exhibiting higher overheads than OMPi for
both single level and nested parallelism.

While ICC exhibits similar behavior for the
barrier construct, both GCC and OMPi show sig-
nificant but not excessive increase. The Sun com-
piler seems to handle inter-team barriers quite well
showing a decrease in the actual overheads. OMPi +
PSTHREADS manages to deliver the best performance,
showing the advantage of user-level threading: in-
ner levels are executed by lightweight threads, which
mostly live in the processor where the parent thread is,

eliminating most intra-team contention and the associ-
ated overheads.

Figure 8 includes representative results from the
scheduling microbenchmarks and specifically for sta-
tic and guided schedules with a chunksize of 1. As be-
fore, we observe that the overhead of both scheduling
policies increases substantially for the Intel compiler
and considerably for GCC and OMPi. In contrast, the
overheads of the guided scheduling policy actually de-
crease for both SUNCC and OMPi + PSTHREADS. For
the Sun Studio compiler, this is attributed to the appro-
priate use of atomic primitives and processor yielding,
which can significantly reduce thread contention dur-
ing the dynamic assignment of loop iterations. OMPi
with user-level threading achieves the same goal be-

318 P.E. Hadjidoukas et al. / Exploiting fine-grain thread parallelism on multicore architectures

Fig. 7. Overheads for parallel and barrier when one or two levels of parallelism are exploited.

cause it is able to assign each independent loop to
a team of non-preemptive user-level OpenMP threads
that mainly run on the same virtual processor.

4.3. A fine-grain application

In this section, we evaluate our runtime system us-
ing a fine-grain parallel face detection application. The
system is based on a special highly-structured neural
network topology and provides the best so far, in terms
of accuracy, face detection. The face detection sys-
tem utilizes a fast pipeline method that is highly par-

allelizable due to its simplicity. Details can be found
in [14].

As shown in [14], when processing a single image
the performance of the face detection system does not
scale linearly as the processor count increases. This is
attributed to the inherent load imbalance, as the algo-
rithm includes a small number of parallel iterations and
the computational load cannot be distributed evenly to
the system processors/cores. The exploitation of nested
parallelism can provide an effective solution to the
above and thus ameliorate the performance of the face
detection system because additional fine-grain paral-
lelism, in terms of inner parallel loops, is extracted

P.E. Hadjidoukas et al. / Exploiting fine-grain thread parallelism on multicore architectures 319

Fig. 8. Overheads of static and guided loop scheduling when one or two levels of parallelism are exploited.

from the application. The inner loops belong to the
second level of parallelism, which is executed by new
teams of OpenMP threads. Lightweight runtime sup-
port is crucial for better performance of the face detec-
tion system, considering the requirement for real-time
processing of a single image.

All our experiments we conducted on a server
equipped with an Intel Xeon Quad-core X5355 proces-
sor (2.66 GHz, 4 MB L2 cache) and 2 GB of main
memory. The operating system was Debian Linux 2.6.

Table 1 presents a sample of the runtime overheads
for the parallel and forOpenMP constructs under

Table 1

Nested parallelization overheads on the quad-core system (µs)

OpenMP compiler Parallel For

GCC 4.2 553.24 21.39

SUNCC 38.63 14.86

ICC 60.81 8.35

OMPi (psthreads) 3.51 3.65

320 P.E. Hadjidoukas et al. / Exploiting fine-grain thread parallelism on multicore architectures

nested parallelism, measured using the microbench-
marks described in Section 4.1. In this experiment,
both the number of “tasks” and OpenMP threads are
equal to 4, resulting in 16 OpenMP threads that com-
pete for computational resources. Comparing with the
results on the eight cores, the performance of ICC

is significantly improved on the quad-core system,
mainly because this experiment generates less con-
tention per processor. We also observe that OMPi con-
tinues to exhibit the lowest runtime overheads of all
OpenMP implementations.

Figure 9 depicts the speedups of the parallel face
detection system for a standard single-face test im-
age (355 × 237 pixels wide), exploiting either a sin-
gle or two levels of parallelism. For the case of sin-
gle level parallelism, we observe that all configurations

have similar performance and manage to improve the
face detection responsiveness. OpenMP parallelization
is the key factor that provides real-time performance
(i.e. �25 images/s) to the face detection system. We
observe that the scalability of the face detection system
is higher when nested parallelism is exploited using the
OMPi compiler and 4 OpenMP threads. In this case,
OMPi + PSTHREADS attains the maximum speedup
(3.66×), which is significantly improved, by up to
23%, compared to the corresponding 2.97× speedup
for the single-level parallelism case, increasing thus the
image processing rate.

When two OpenMP threads are used (T = 2) for
each parallel region, the three OpenMP compilers ex-
hibit speedups that are better than that of OMPi and
higher than the corresponding number of threads. This

Fig. 9. Speedups of face detection, exploiting a single level and two levels of parallelism. T is the value of the OMP_NUM_THREADS environ-
ment variable, and represents the number of threads at each nesting level.

P.E. Hadjidoukas et al. / Exploiting fine-grain thread parallelism on multicore architectures 321

is reasonable because these configurations utilize 4
(2 × 2) total kernel threads, which run on all system
processing cores. On the other hand, OMPi utilizes only
two kernel threads. Using 3 OpenMP threads (T = 3),
we observe that all the compilers exhibit similar per-
formance, with slightly higher speedup for the Intel
compiler. PSTHREADS, however, uses one less proces-
sor than the others, which means that the overheads of
the other OpenMP systems are significantly higher. As
the number of OpenMP threads increases, more fine
grain parallelism is exploited. Thus, the contention of
the OpenMP kernel-level threads, which become more
than the processing elements, is also increased.

5. Related work

Hybrid thread models provide a combination of par-
allelism and low overhead, having the advantages of
both user-level and kernel-level models. With the ex-
ception of few Unix vendors (HP-UX and IBM/AIX),
most POSIX threads libraries nowadays follow the
kernel-level model, in which user threads are associ-
ated one-to-one to kernel entities. NGPT (Next Gen-
eration POSIX Threads) was a hybrid model imple-
mentation of POSIX threads for Linux, which was
abandoned in favor of NPTL (Native POSIX Threads
Library) [12]. If POSIX thread libraries followed a hy-
brid implementation, however, the runtime overheads
would be reduced, allowing the creation of several
threads without additional performance cost, as shown
in [21].

Only few runtime systems implement an efficient
and portable two-level threads model for multiproces-
sor and multicore systems. Some of them have been
used to provide runtime support to an OpenMP com-
piler. StackThreads/MP is a fine-grain thread library
that provided efficient but not portable support for
dynamic nested parallelism as runtime module of an
experimental version of the Omni OpenMP compiler
[25]. Marcel [26] is a portable thread library that fea-
tures a two-level thread scheduler, provides a POSIX-
compliant interface and runtime support to a modified
version of the GNU OpenMP compiler. We have ex-
perimented with integrating Marcel into OMPi [13]. We
observed slightly higher overheads than PSTHREADS,
mainly due to its more complex implementation and
preemptive thread scheduling.

McRT (Many-Core RunTime) [22] is a runtime en-
vironment for tera-scale chip multiprocessors that sup-
ports fine-grain parallelism, concurrency abstractions

for easier parallel programming and supports plat-
form and application heterogeneity. McRT includes an
OpenMP adaptor that translates the API used by the
Intel C compiler to the core McRT API.

NthLib is an efficient user-level threads library that
provides runtime support to the NANOS OpenMP
compiler [2]. Nested parallelization is based on the
concept of thread groups, which are determined
through appropriate OpenMP extensions. A group of
threads is composed of a subset of the total number of
available threads, while the rest threads support the ex-
ecution of nested parallel constructs. Therefore, the to-
tal number of threads never exceeds that of available
processors and, hence, the runtime overheads of nested
parallelism are equal to those of single level. This ap-
proach, however, can lead to load imbalance because it
does not fully exploit fine-grain parallelism and some
processors may remain idle.

Tiny threads (TNT) [10] is a thread model for the
Cyclops64 architecture and has been proposed as the
first component of a Thread Virtual Machine targeted
to cellular architectures. TNT is part of a microkernel
for the C64 that runs directly on top of the C64 archi-
tecture aimed to high efficiency at the expense of porta-
bility. A dispatched thread will run until completion,
without releasing the underlying hardware thread even
if it is sleeping. The integration of TNT into the Omni
runtime library [23] provides an OpenMP infrastruc-
ture for the C64, without considering multiple levels of
parallelism though [9].

Besides OpenMP, thread libraries have provided
runtime support to other parallel programming ap-
proaches too. Intel Threading Building Blocks [20]
is a C++ library for multi core processors that does
not require a special runtime or compiler. The library
maps user tasks into threads which can be run in par-
allel and relieves the programmer from the overhead
of manually optimized thread design when conven-
tional threads are used. Factory [24] is a similar object-
oriented parallel programming substrate which allows
programmers to express multigrain parallelism without
having to manage it.

Cilk [4] is a parallel programming language that
does not use explicit threading but Cilk frames, which
are generated by its cilk2c compiler. The Cilk runtime
system maintains a local ready queue for each proces-
sor and deploys an efficient work-stealing scheduler.
The EARTH programming model [16] follows a two-
level hierarchy formed by threaded functions and
fibers. Fibers are lightweight threads that are sched-
uled using a dataflow approach and executed in a non-

322 P.E. Hadjidoukas et al. / Exploiting fine-grain thread parallelism on multicore architectures

preemptive manner. Hence, a fiber is never interrupted
and must never block.

The above runtime libraries do not support global
barriers between their work units. Whenever a work
unit is blocked, the execution vehicle invokes the run-
time scheduler and runs the selected work unit on the
same stack. Therefore, these runtime libraries can not
be used in an OpenMP implementation. On the con-
trary, PSTHREADS is a runtime framework that pro-
vides a lightweight implementation of nested OpenMP
parallelism.

6. Conclusion

We presented the runtime architecture of
PSTHREADS, a high-performance user-level threads li-
brary for efficient exploitation of fine-grain parallelism
on multicore architectures. The library has been inte-
grated into the runtime library of the OMPi OpenMP
compiler, resulting in lightweight nested parallelism
support. We have developed a methodology for mea-
suring OpenMP construct overheads under nested par-
allelism. Using the developed microbenchmarks we
evaluate the runtime overheads and demonstrate the
advantages of user-level multithreading compared to
the traditional kernel thread based approaches.

PSTHREADS allow for effective exploitation of fine
grain parallelism with large numbers of threads,
through hierarchical scheduling and work stealing
techniques. Our current research targets support for
heterogeneous cores and NUMA-aware thread sched-
uling.

References

[1] D. an Mey, S. Sarholz and C. Terboven, Nested parallelization
with OpenMP, International Journal of Parallel Programming
35(5) (2007), 459–476.

[2] E. Ayguade, M. Gonzalez, X. Martorell, J. Labarta, N. Navarro
and J. Oliver, NanosCompiler: Supporting flexible multilevel
parallelism in OpenMP, Concurrency: Practice and Experience
12(12) (2000), 1205–1218.

[3] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. Harris, C.A.
Nelson and C.D. Offner, Extending OpenMP for NUMA Ma-
chines, in: Proc. of the 2000 ACM/IEEE Conference on Super-
computing, Dallas, TX, USA, 2000.

[4] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson,
K.H. Randall and Y. Zhou, Cilk: An efficient multithreaded
runtime system, Journal of Parallel and Distributed Computing
37(1) (1996), 55–69.

[5] R.D. Blumofe and C.E. Leiserson, Scheduling multithreaded
computations by work stealing, in: Proc. of the 35th An-
nual Symposium on Foundations of Computer Science (FOCS),
Santa Fe, NM, USA, 1994, pp. 356–368.

[6] J.M. Bull, Measuring synchronization and scheduling over-
heads in OpenMP, in: Proc. of the 1st European Workshop on
OpenMP (EWOMP’99), Lund, Sweden, September 1999.

[7] D.R. Butenhof, Programming with POSIX Threads, Addison
Wesley, 1997.

[8] B. Chapman, F. Bregier, A. Patil and A. Prabhakar, Achieving
performance under OpenMP on ccNUMA and software distrib-
uted shared memory systems, Concurrency and Computation:
Practice and Experience 14(8/9) (2002), 713–739.

[9] J. del Cuvillo, W. Zhu and G. Gao, Landing OpenMP on
Cyclops-64: An efficient mapping of OpenMP to a many-core
system-on-a-chip, in: Proc. of the 3rd Conference on Comput-
ing Frontiers, Ischia, Italy, 2006, pp. 41–50.

[10] J. del Cuvillo, W. Zhu, Z. Hu and G.R. Gao, TiNy threads:
a thread virtual machine for the Cyclops64 cellular architec-
ture, in: Proc. of the 5th Workshop on Massively Parallel
Processing (WMPP’05), Denver, CO, USA, April 2005.

[11] V.V. Dimakopoulos, P.E. Hadjidoukas and G.Ch. Philos, A mi-
crobenchmark study of OpenMP overheads under nested
parallelism, in: Proc. of the Int’l Workshop on OpenMP
(IWOMP’08), West Lafayette, IN, USA, May 2008.

[12] U. Drepper and I. Molnar, The native POSIX thread library for
Linux, Technical report, Red Hat, Inc., January 2003.

[13] P.E. Hadjidoukas and V.V. Dimakopoulos, Nested parallelism
in the OMPi OpenMP C compiler, in: Proc. of the European
Conference on Parallel Computing (EUROPAR’07), Rennes,
France, August 2007.

[14] P.E. Hadjidoukas, V.V. Dimakopoulos, M. Delakis and C. Gar-
cia, A high-performance face detection system, Concurrency
and Computation: Practice and Experience 21 (2009), 1819–
1837.

[15] T.G. Mattson, R. Van der Wijngaart and M. Frumkin, Program-
ming the intel 80-core network-on-a-chip terascale processor,
in: Proc. of the 2008 ACM/IEEE conference on Supercomput-
ing (SC’08), IEEE Press, Piscataway, NJ, USA, 2008, pp. 1–11.

[16] C.J. Morrone, G. Tremblay, J.N. Amaral and G.R. Gao,
A multi-threaded runtime system for a multi-processor/multi-
node cluster, in: Proc. of the 15th Annual Int’l Symposium
on High Performance Computing Systems and Applications,
Windsor, ON, Canada, June 2001.

[17] D.S. Nikolopoulos, E.D. Polychronopoulos and T.S. Pap-
atheodorou, Efficient runtime thread management for the nan-
othreads programming model, in: Proc. of the 2nd IEEE
IPPS/SPDP Workshop on Runtime Systems for Parallel Pro-
gramming, Vol. 1388, Orlando, FL, USA, April 1998, pp. 183–
194.

[18] OpenMP architecture review board, OpenMP C and C++ Ap-
plication Program Interface, Version 2.5, May 2005.

[19] G.C. Philos, V.V. Dimakopoulos and P.E. Hadjidoukas, A run-
time architecture for ubiquitous support of OpenMP, in: Proc.
of the 7th Int’l Symposium on Parallel and Distributed Com-
puting (ISPDC’08), Krakow, Poland, June 2008.

[20] J. Reinders, Intel Threading Building Blocks: Outfitting C++
for Multi-Core Processor Parallelism, O’Reilly Media, Inc.,
Sebastopol, CA, USA, 2007.

P.E. Hadjidoukas et al. / Exploiting fine-grain thread parallelism on multicore architectures 323

[21] R. Rufai, M. Bozyigit, J. Alghamdi and M. Ahmed, Multi-
threaded parallelism with OpenMP, Parallel Processing Letters
15(4) (2005), 367–378.

[22] B. Saha, A. Adl-Tabatabai, A. Ghuloum, M. Rajagopalan, R.L.
Hudson, L. Petersen, V. Menon, B. Murphy, T. Shpeisman,
E. Sprangle, A. Rohillah, D. Carmean and J. Fang, Enabling
scalability and performance in a large scale CMP environment,
SIGOPS Oper. Syst. Rev. 41(3) (2007), 73–86.

[23] M. Sato, S. Satoh, K. Kusano and Y. Tanaka, Design of
OpenMP compiler for an SMP cluster, in: Proc. of the 1st Eu-
ropean Workshop on OpenMP (EWOMP’99), Lund, Sweden,
September 1999.

[24] S. Schneider, C.D. Antonopoulos and D.S. Nikolopoulos, Fac-
tory: An object-oriented parallel programming substrate for
deep multiprocessors, in: Proc. of the 1st Int’l Conference on

High Performance Computing and Communications (HPCC
2005), Sorento, Italy, September 2005, pp. 223–232.

[25] Y. Tanaka, K. Taura, M. Sato and A. Yonezawa, Performance
evaluation of OpenMP applications with nested parallelism, in:
Proc. of the Fifth Workshop on Languages, Compilers and Run-
Time Systems for Scalable Computers (LCR’00), Rochester,
NY, USA, May 2000.

[26] S. Thibault, A flexible thread scheduler for hierarchical mul-
tiprocessor machines, in: Proc. of the 2nd Int’l Workshop
on Operating Systems, Programming Environments and Man-
agement Tools for High-Performance Computing on Clusters
(COSET-2), Cambridge, MA, USA, June 2005.

[27] X. Tian, J.P. Hoeflinger, G. Haab, Y.-K. Chen, M. Girkar
and S. Shah, A compiler for exploiting nested parallelism in
OpenMP programs, Parallel Computing 31 (2005), 960–983.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

