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Abstract. The techniques of formal experimental design and analysis are powerful tools for scientists and engineers. However,
these techniques are currently underused for experiments conducted with computer models. This has motivated the incorporation
of experimental design functionality into the Nimrod tool chain. Nimrod has been extensively used for exploration of the response
of models to their input parameters; the addition of experimental design tools will combine the efficiency of carefully designed
experiments with the power of distributed execution. This paper describes the incorporation of one type of design, the fractional
factorial design, and associated analysis tools, into the Nimrod framework. The result provides a convenient environment that
automates the design of an experiment, the execution of the jobs on a computational grid and the return of results, and which
assists in the interpretation of those results. Several case studies are included which demonstrate various aspects of this approach.
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1. Introduction

Scientific experimentation underpins just about ev-
ery aspect of modern life, from applied disciplines with
practical outcomes through to our theoretical under-
standing of the natural world. The idea of exploring
the world by controlling inputs and observing outputs
is so much part of modern culture that it escapes close
scrutiny in our education systems. In fact, many of us
don’t think about how to set up experiments in any for-
mal way.

Early last century researchers used ad hoc ap-
proaches to varying the controllable parameters of an
experiment. However, this changed in the 1920s when
Fisher devised a formal and structured approach called
Experimental Design [5,12,13]. Fisher showed how to
select parameters in order to obtain the maximum in-
formation for a given number of experimental runs.
Since then, Experimental Design has been used in a
wide range of activities, and is now a large and mature
theory, widely applied to scientific research and indus-
trial processes.

With the growing power and availability of com-
puters, physical experiments are increasingly being
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augmented or replaced by experiments with computer
models [19]. Such models typically have many input
parameters. Researchers use their knowledge of the un-
derlying science to select the parameters that will be
varied. Use of wide area computation “grids” allows
many thousands of runs, even for computationally in-
tensive models [31]. Even this, however, may be insuf-
ficient to explore all the input parameters of interest.

We perceive a need for more efficient experimen-
tal designs in the field of computer modelling. Facto-
rial and fractional factorial designs are the most com-
monly used experimental designs [5], but have been
underused in computer experiments. To facilitate these
techniques, we have developed tools that automatically
generate fractional factorial designs, perform the ex-
periment, and then provide an analysis of the results.
The tools interface with an existing tool called Nim-
rod/G [2], which is used to organise the execution of
the model using the parallelism offered by a computa-
tional grid. The new system, known as Nimrod/E, aug-
ments the existing Nimrod tool chain [2,3,25].

The behaviour and applicability of fractional fac-
torial designs is explored here for four case studies:
two simple mathematical functions where output val-
ues and relative importance of all parameter combina-
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tions can be easily determined, and two more complex
realistic scientific examples.

In this paper, Section 2 expands on the use of com-
puter models in research. The theory and application of
fractional factorial design is detailed in Section 3. Nim-
rod is described from a user’s point of view in Sections
4 and 5; the former gives a general overview of the
Nimrod toolset and the latter concentrates on the pro-
vision of fractional factorial experiments using Nim-
rod/E. Section 6 describes the use of Nimrod/E in four
case studies, chosen to demonstrate different aspect of
such experiments.

2. Experiments using computer models

Computer models are now ubiquitous in many areas
of research, in both physical sciences and social sci-
ences [19]. A model that can accurately mimic a real
world situation offers many advantages. It may enable
experiments in situations where the real system can-
not be used, where it may be physically impossible
[27], too expensive [1] or unethical [34] to manipulate.
The model may allow many more internal variables to
be monitored and so a more detailed understanding of
the behaviour. Availability of computer models has ex-
tended the possibility of experimentation to disciplines
that were formally descriptive. For example, an epi-
demiologist may explore different drug control strate-
gies (for example, providing public injecting rooms for
injecting drug users) and may evaluate metrics such as
the spread of communicable diseases like HIV/AIDS
and Hepatitis [20].

A similar trend is occurring in engineering design
[16]. Mathematical models are now sufficiently com-
plex to make realistic predictions of the performance
of machines and structures. This is typically cheaper
than traditional prototyping, and allows a more thor-
ough exploration of design parameters.

Computer models often have a very large num-
ber of input parameters and internal settings. Current
practice with these models typically involves the ex-
perimenter identifying which parameters to vary, se-
lecting input values for these parameters, and then gen-
erating all possible combinations of these values. In
some cases, such experimentation may be required just
to determine the domain over which the function oper-
ates. Each combination requires a run of the computer
model. So varying even a small number of parameters
can generate a huge number of runs (jobs).

The task of generating and running these jobs may
be automated by software such as the Nimrod family of
tools [2,3,25]. When the models are computationally
intensive, then the experiment will benefit by concur-
rent execution of jobs on a cluster or on the distributed
resources of a computational grid. Nimrod automates
the distribution of jobs over available resources and the
collation of results. The power of this approach is illus-
trated, for example, by an experiment performed at the
IEEE Supercomputing Conference in 2003 involving a
quantum chemistry code [31,33]. A single job with an
individual parameter combination took typically about
20 minutes to run on a fast Unix machine, and the pa-
rameter sweep generated 60000 such jobs, an 800 day
task for a serial machine. By using a global testbed of
multi-processor clusters as a computational grid, the
full experiment was completed within three days.

However, combinatorial explosion ensures that in-
creasing the number of parameters will quickly over-
whelm any computational resource. For example, just
10 parameters with four values each generate a mil-
lion jobs. In the language of experimental design [5],
this approach of taking the direct product of parameter
values is known as a full factorial experiment. Exper-
imental design shows how a suitably chosen subset of
the full factorial experiment will be sufficient to obtain
reliable results, given certain assumptions that usually
apply in practice. These techniques can be dramatically
parsimonious; in the 10 parameter situation above, re-
sults for a full sweep can be reconstructed from the
results of just 1024 jobs, with some confidence in the
results.

One difference between computer experiments and
physical experiments on real world systems is the re-
peatability of results. Results for physical experiments
have an unpredictable component, due to uncontrolled
inputs, or even quantum uncertainty. Statistical analy-
sis helps the experimenter to distinguish the signal
from the noise.

For computer experiments however, unless the mo-
del is designed with random number elements, the re-
sults it produces for a given set of inputs are always
the same. This gives the impression that the results are
exact and have no noise component, but close inspec-
tion of most computer models refutes this. For exam-
ple, many models are subject to floating point errors
which may accumulate to significant values. And most
models of real world systems use some discretization
of the continuum and the exact choice of this effects
the results. Further, models often use constant values
for settings that are in fact experimental values and
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hence subject to uncertainty. So the results of a com-
puter model do contain noise and can be treated as sin-
gle observations from a distribution. Thus the methods
of analysis used for physical experiments apply also to
computer experiments.

There is a considerable literature on the application
of experimental design to computer experiments [11,
24,28]. However, these techniques have not found wide
acceptance within many areas where computer exper-
iments are practised. We believe that a significant rea-
son for this is that they are not embedded in the design
tools of choice. To remedy this deficiency, we propose
to incorporate the techniques of experimental design
within the Nimrod job execution framework. The first
part of this project, the implementation of fractional
factorial design within Nimrod, has been completed.
We demonstrate the usefulness of the approach with a
variety of case studies.

3. Fractional factorial experimental design
3.1. Theory

A full factorial experiment consists of a number of
factors (parametersl), each with a number of levels
(values), with all combinations of the levels being per-
formed. The effects of each of the variables on the re-
sponse, called main effects, can be determined, as well
as the two-way interaction effects of each of the pairs
of factors, and higher-order interaction terms.

The simplest situation is where each factor takes
only two levels, a low value and a high one. Suppose
the factors are A, B, C, . .. and the output of interest is
¢. Then ¢ may always be written as

¢:]€+ {k1a+k2b+k3c+~~}
+ {kpab + kjzac + kyzbc+ - - -}
+ {kipzabc+ -} +---. 3.1

Here a is —1 when A takes the low value and +1 for
the high. Similarly b, ¢, . . . are —1 or 41 corresponding
to whether B, C, ... are low or high. The other sym-
bols are constant for a given output function and are
called “effects”, k is the mean effect, the k; are the
main effects, k;; are the two-way interaction effects,
and k. etc. are higher-order interaction effects. So,

IWe adopt Fisher’s nomenclature from this point on, referring to
function “parameters” as “factors”.

for example, if kj3 = —3.0 then the interaction of a
and ¢ makes a contribution of —3.0 to the output when
a and c are both high or both low, and a contribution of
+3.0 otherwise.

If there are n factors A, B, .. ., then there will be 2"
effects in formula (3.1). A full factorial experiment
consists of 2™ runs. Substituting the results into (3.1)
provides 2" linear equations for the effects, sufficient
to evaluate them. (In the presence of noise the val-
ues will be estimates rather than exact determinations.)
Assuming that the higher-order interactions contribute
negligible effects, then (3.1) can be approximated by
a formula with fewer terms, so a smaller set of runs
may be enough to determine estimates of the remaining
effects. The runs however must be appropriately cho-
sen since different combinations of inputs can give the
same linear equation for a truncated version of (3.1).

Suppose, for example, we only perform runs for
which abcde = +1, these constitute one half of a
full factorial experiment. Then the a term in (3.1) will
always have the same sign as the bcde term, so the
two terms are effectively combined as one, namely
(k1 + k2345)a. The estimate obtained for the primary
effect of A will then include the estimate for the inter-
action of B, C, D and E. We say that A is “biased” by
BCDE. Further, the estimate for AB will be biased by
CDE, AC will be biased by BDE, and so on. Assuming
that three-way interaction effects and higher are neg-
ligible, these biases will not be a problem. There are
now half as many simultaneous linear equations but
half as many effects to be determined. For this exam-
ple, ABCDE is called a “word in the defining contrast™;
each additional word in the defining contrast halves the
number of runs, resulting in a “fractional factorial de-
sign”.

To create a fractional factorial experiment the de-
signer must first decide which effects are required to
be estimated and which can be considered negligible.
Defining contrasts are then chosen that allow the for-
mer to be biased by the latter. More fully, the effects
are divided into three classes:

e Primary effects: effects for which estimates are
required.

e Secondary effects: effects for which estimates are
not necessarily required, but are not allowed to
bias the estimates of the primary effects.

e Other effects: effects for which estimates are not
necessarily required, and are allowed to bias the
estimates of the primary effects.
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For a full factorial design, the primary effects would in-
clude all effects, main effects, two-factor interactions,
three-factor interactions, and so on. By restricting the
primary effects, the size of the design (i.e., the number
of runs) can be reduced.

The most important fractional factorial designs are
described using a special shorthand terminology de-
veloped by Box [5]. These are referred to as “resolu-
tion III”, “resolution IV” and “resolution V”. In resolu-
tion III designs, the primary effects set is the set of all
main effects, while the secondary effects set is empty.
Hence, main effects might be biased by two-factor in-
teraction effects. In resolution IV designs, the primary
effects set is the set of all main effects, and the sec-
ondary effects set is the set of all two-factor interaction
effects. Main effects may only be biased by three and
higher-order interactions, but not two-factor interac-
tions, and the two-factor interaction effects may not be
estimable. In resolution V designs, the primary effects
set is the set of all main effects and the set of all two-
factor interaction effects, and the secondary effects set
is empty. With these designs all main effects and two-
factor interaction effects can be estimated, biased by
three-factor and higher order interaction effects. De-
signs with higher resolution than V can be produced
by extending this pattern, but these are less commonly
used since three-factor interactions are usually small.

Fractional factorial designs are easier to design and
analyse for two-level factors than for factors with more
than two levels. However, a 2" level factor is equiv-
alent to n two-level “pseudo-factors”, and hence the
theory and practice for two-level designs can be easily
extended to designs with factors with more than two
levels. For direct use of pseudo-factors, the number of
levels needs to be a power of two. For example if a
factor a has four levels, then these are indexed by two
pseudo-factors, say Al and A2, each corresponding to
one bit in the index. While it is convenient to design the
fractional factorial experiment in terms of the pseudo-
factors, the analysis is best conducted by using orthog-
onal polynomials for the main effects, and for the inter-
action effects for designs of resolution V. See Draper
and Smith [10] for more details.

3.2. Analysis

An experimental design will provide a list of runs
to be performed; each run assigns a value for each in-
put factor. (In computer modelling the runs are usu-
ally called “jobs”.) Once these jobs have run and each
produced a numerical result, then the estimates of ef-

fects, the coefficients in Eq. (3.1), can be obtained as
described above. These results can be used in various
ways.

1. The relative sizes of the effects may be of sci-
entific interest. For example, very small values
for the main effect and interactions of a partic-
ular factor suggest that the factor may be irrele-
vant in the model. If two factors have significant
main effects but a small interaction, then the fac-
tors are making independent contributions to the
result. The experimenter with knowledge of the
science is best placed to interpret and make use of
such results. In particular, disagreement between
the effect estimates and what would be expected
from the science may indicate problems with the
computational model.

2. Results for effects may suggest larger experi-
ments. For example if, in a resolution V exper-
iment, the two-way interactions AB and AC are
found to be large, it suggests that the three-way
interaction ABC may not be negligible. The ex-
perimenter may then add this to the primary ef-
fects and design a new experiment that will esti-
mate this effect.

3. An experiment with a small number of levels per
factor may be performed as a preliminary to one
with more levels. The factors found most signifi-
cant in the preliminary experiment might warrant
more levels in the later one.

4. When many levels are taken for a factor, the
effect corresponding to the least significant bit
gives an indication of the smoothness of the re-
sponse surface.

5. Knowledge of the relative sizes of effects can as-
sist in subsequent optimization [8] procedures.
For example, if factors have negligible effect then
it may pay to first perform a search that ignores
those factors, as reduced dimensionality assists
some search algorithms. Again, if the factors
fall into two groups with no interaction between
groups, the output will be the sum of two inde-
pendent parts. Then optimizing each part sepa-
rately is possible and may be advantaged by the
reduced dimensions.

6. Estimates of the effects can be used in Eq. (3.1) to
compute the results of a full sweep. Where there
are many factors, this may be the only practical
way to produce such results.

7. The results produced by predictions based on es-
timates of effects are a form of data smoothing as
higher order interaction effects are removed. The
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results may be used to reduce noise or to detect
errors in the results.

It follows from our discussion in Section 2 that the
estimates of effects should be treated as containing
some random noise. How do we decide whether the
values obtained are significant or just noise? The stan-
dard methods of analysis assume that the noise com-
ponents are normally distributed with a zero mean.
On this basis, two graphical methods have been de-
vised that display all the estimated effects and facilitate
judgement of their significance: the Daniel plot [9] and
the Lenth plot [17].

A Daniel plot shows the effects in numerical order
on probability paper. Under the hypothesis that none
of the factors affects the result, the plotted points will
fall in a straight line. Typically, most higher-order ef-
fects are negligible, and so many points do fall on a
line. Those points that clearly do not lie in the line are
probably significant. An example is shown in Fig. 7.
It clearly shows that single effects A, B and the inter-
action AB are significant. However, the assessment of
these plots is somewhat subjective.

An alternative display is the Lenth plot. Here the es-
timates of effects are plotted vertically as in Fig. 6, in
order from largest to smallest in absolute size. Hori-
zontal lines indicate the significance of the effects. The
inner dashed lines are known as ME (margin of error)
lines. Effects that are in fact zero have a probability of
95% of falling within these lines. The outer solid lines,
SME (simultaneous margin of error), apply to all effect
estimates as a group. If all effects are zero there is a
probability of 5% of one estimate falling outside these
lines. So if a point falls outside the SME lines then the
effect is probably significant, while if the point falls
within the ME lines then there is no strong evidence of
significance, non-zero values may just be noise.

Most computational models of course produce many
numerical results. Once a fractional factorial experi-
ment has been designed and run, a separate analysis
may be produced for each result. The effect estimates
may be very different in the separate analyses. For ex-
ample, one output may be strongly affected by fac-
tors A, B and C' while another by factors D, F and F'.
Such information may be significant in understanding
the computational model.

The fractional factorial methodology may give the
impression of a simple linear approach: pose the ques-
tion, design the experiment, take the measurements,
and interpret the results. However, real problems are
rarely as simple as that, as Box [6] has observed. Box
describes two categories of research: the initial “dis-

covery” phase that generates hypotheses, and the later
“testing” phase where they are confirmed or rejected.
As Box explains, there are no recipes for the discov-
ery phase of research. It depends on both implicit and
explicit knowledge of the researchers, on judgement
and on lateral thinking. It is typically a messy iterative
procedure. We see fractional factorial experiments as
a useful component in this iterative process.

4. The Nimrod toolset

Nimrod is a family of tools that facilitate paramet-
ric studies with computational models, that is, the ex-
ploration of the effect of varying the input parameters
on the results produced. Nimrod has been extensively
used for this purpose [7].

Nimrod/G [2] was designed to assist engineers and
scientists in performing such studies, using concur-
rent execution on a cluster of processors or the re-
sources of a computational grid. The user prepares
a “plan file” which specifies the experiment; Fig. 1
shows an example. The first section specifies the para-
meters (factors) and the values assigned (levels). The
“task” section specifies how the computational model
is to be executed using distributed execution. Here the
executable “compModel” is copied to a remote node
together with a generic input file, the input file is “sub-
stituted” to insert current values for the parameters and
the model then executed to produce results in a file
called “results”. This is then copied back to the root
node and given an extension “$jobname”, which is
a unique Nimrod identifier.

A plan file is expanded into a “run file” which lists
the appropriate parameter combinations required for
execution. The Nimrod/G core will run on a processor
called the “root node” whereas individual jobs are ex-
ecuted on “remote nodes”. Nimrod/G handles the file
transfers required to the remote nodes, execution of
computational tasks and transfer of results back to the
root node. The number of concurrent jobs is limited
only by the number of processors available. Thus the
user may achieve high concurrency without modifying
the executables and without concern for grid specific
details. A commercial version, enFuzion [4], has been
used in financial modelling, bio-informatics, graphics
rendering and modelling of power grids.

Nimrod/O [25] optimizes the numerical outputs of
computational models. It provides a range of optimiza-
tion algorithms and leverages Nimrod/G or enFuzion
to perform batches of concurrent evaluations. The user
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parameter temp float range from 200 to 300 points 2
parameter pressure float range from 5000 to 6000 points 4
parameter concent float range from 0.002 to 0.005 points 2
parameter material text select anyof “Fe” “Al”
task main
copy compModel node:compModel
copy inputFile.skel node:inputFile.skel
node:substitute inputFile.skel inputFile
node:execute ./compModel < inputFile > results
copy node:results results.S$jobname
endtask

Fig. 1. Plan file for a Nimrod/G experiment.

Nimrod Portal

Parameter Section

Add a new parameter Add a comment
rasks Section

+| task rootstart

+ | task nodestart

+| task main

+| task nodefinish

+| task rootfinish

Add a new task

w | from |200 to (300 Points | v 2

X temp label float w  range
x| |t pressure | label float |+ range
x| |t concent | label float * | range
x|t material | label text ~ | |select

w | from |5000 to 6000 Points |+ |4

|+ om 0002 |to0oos | [points w2

Fe
Add Al Remove

Save Cancel and Reload Text mode

Fig. 2. Nimrod portal planning page.

prepares a “schedule file”, which, like the Nimrod/G
plan file, specifies the parameters, their ranges and the
tasks required for execution of the model. But it also
specifies the optimization algorithms to be used and the
settings for the algorithms. Nimrod/O performs multi-
ple searches for an algorithm and multiple algorithms,
all in parallel.

Although all of the Nimrod tools can be used by ex-
perienced users in a “command line” mode, most users
prefer the interactive Nimrod Portal [22]. The Nim-
rod Portal uses drop down menus to design and run
an experiment and to select computational resources.
Such resources may be added or removed as the ex-
periment proceeds. The Portal allows a user to man-
age their computational testbed without resorting to the
detailed and complex command line tools used by the
underlying grid middleware.

Figure 2 shows a page from the Portal where the
user plans the experiment. When the user has selected
parameters and tasks, the “save” button will create a
Nimrod plan file.

Whilst a Nimrod user could apply the experimental
design techniques discussed in Section 3 by consult-

ing published tables of designs, or experimental design
programs, to prepare a run file, we have integrated the
techniques into the Nimrod tool chain. The result is
convenient and less prone to error, and is the motiva-
tion for the development of Nimrod/E.

5. The design and architecture of Nimrod/E

A fractional factorial experiment within the Nim-
rod framework is a four-stage process, as shown in
Fig. 3. Given the factors to be controlled and the lev-
els used for those factors, the first stage is the produc-
tion of an experimental design. For this purpose, we
have implemented the RSSEF algorithm (discussed in
Section 5.2) in a program called nimrodFracDes. The
program produces a Nimrod/G run file, which spec-
ifies which jobs are required. When Nimrod/G has
completed these jobs and assembled the correspond-
ing result files, a third application called nimrodFra-
cAn analyses the results, producing results in a graph-
ical form known as Daniel plots and Lenth plots. The
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mimrodFracDes

destgnfileJ

Daniel Plots

‘Lenth Plots

full parameter |
sweep results |

» Visualizations:

Fig. 3. Workflow for a Nimrod/E fractional factorial experiment.

application also uses these effect values to generate
the results of a full factorial experiment. It thus fills in
the results for the runs that have not been performed.
The results are then in a form suitable for visualization
software such as OpenDX [23]. However, we have not
incorporated a visualization component in the present
system.

5.1. The experiment schedule

The experimenter’s input may be confined to the
preparation of a “schedule” file. Such a file contains
four sections, as shown in the example of Fig. 4. The
first two sections are the standard format used in Nim-
rod plan files as described above. The following “de-
sign” section specifies either the resolution of the de-
sign, or else directly specifies the primary and sec-
ondary effects. Here the experiment will have resolu-
tion V.

The final (optional) section controls the analysis to
be done after the fractional factorial runs are complete.
For this experiment there will be three separate analy-
ses performed, corresponding to three different output

values found in the output file. Nimrod/E has a record
of which values for $jobname correspond to which
runs and hence can compute the estimates of the effects
for each of the three results.

5.2. Creation of the factorial design

Computer experiments often involve many factors,
more than traditionally handled in physical experi-
ments. Published tables of experimental designs do not
extend to more than 20 factors for resolution V. There
are several published algorithms for fractional factorial
design [14,15,18]. Of these, the only general purpose
one that can handle many factors is the SEF algorithm
of Liao and Iyer [18], which can cope with 80 fac-
tors at two levels each, for a resolution V design. This
may seem sufficient for practical purposes. However, if
more than two levels are required the number of factors
is significantly reduced. For example, with eight lev-
els per factor only 14 factors can be handled. Conse-
quently, we have developed a variant of that algorithm,
called RSSEF [26], which can handle 130 two-level
factors or 18 eight-level factors.
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parameter a float range from -1 to 1 points 2
parameter b float range from -1 to 1 points 2
parameter c¢ float range from -1 to 1 points 2
parameter d float range from -1 to 1 points 2
parameter e float range from -1 to 1 points 2

task main

copy testFunction node:testFunction

node:execute

./testFunction $a $b $c $d $e > results

copy node:results results.S$jobname
endtask
design
resolution 5
enddesign
results "NoNoise" in file "results" line 1 field 1
results "Noise30%" in file "results" line 2 field 1
results "Noisel00%" in file "results" line 3 field 1
Fig. 4. Schedule file for Experiment 1.
Nimrod Portal
Parameter Section
2 A= ftemp label foat |~/ |range |=|fom 200 ta 200 | |Points |+ |2 =
X |t B=pressure | label foat |~ =(imme * from 5000 1o |6000 :Pomts:v 4
X ||t C=concent | label Moat :V range ¥ from 0.002 to [0.005 'Pﬂh’ts:' 2
~ Fe
X1 D= material | label text | |select v Add | Al||  Remove
Add a new Add Jobs
Tasks Section
+ | task rootatart
+ | task nodestart
+ | task main
+ | task nodefinish
# | task rootfinish
Add a new task
Experimental Design Section

| direct specinication |+

Design Type

All single factors [P
ALl double factors [
51 aBS]ac
"5 BC BD
"5 co

S

s

PP

cam»

7

Results for Analysis

X growp name |conductivity filename stub output

X| 1| grow name |pamittivity tilename stub output

Add a new analysis of results

Save

Cancel and Reload

AP BPCP D

AD S

line nusber | line item |

line nusber 7 line item 1

Text mode

Fig. 5. Screenshot of Nimrod portal experimental design planning page.

5.3. The Nimrod/E portal interface

Access to Nimrod/E has been incorporated into the
Nimrod Portal. If an experiment is specified as Ex-
perimental Design then the page for editing a sched-
ule contains extra functionality for specifying the de-
sign and the results for analysis. Figure 5 shows this
page, with the four sections corresponding to the four
parts of an experiment schedule. In the “Design Spec-

ification” section the user may select the resolution
required for the experiment. Alternatively each main
effect and each two-way effect may be individually
specified as either primary (P) secondary (S) or other
(blank) thus allowing finer control of the design. There
is an alternative text mode interface that permits spec-
ification where a list of primary and secondary effects
is typed. This mode permits three-way and higher in-
teraction effects.
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The final section “Results for Analysis” is used to
specify where, among the results of the runs, the num-
bers for analysis will be found. In this case each run is
producing a file called “output” where these numbers
are written. Two analyses will be performed; one on
the first item in the first line, and another on the first
item in the second line.

When this design is saved, the Portal will use nim-
rodFracDes to compute the fractional factorial design
and the Nimrod/G run file. If the user has also selected
computational resources then no further user input is
required. The Portal will launch Nimrod/G to perform
the runs and, when the runs are complete, will apply
nimrodFracAn to produce the analyses.

6. Case studies

This section illustrates the use of Nimrod/E and re-
ports the results of four example experiments. The first
two use known output functions and are included to
demonstrate the principles of experimental design and
analysis. The third experiment uses a computational
model of heart muscle cells; the analysis was used to
gain insight into the nature of the objective calculated.
The final experiment is a re-analysis of data obtained
from an earlier large computational chemistry experi-
ment and demonstrates another use for Nimrod/E.

6.1. Experiment 1: A known quadratic response

This section illustrates the use of fractional factorial
design using a simple model where the response func-
tion is known. This function is

#(A,B,C,D,E)
=2A—B+0.1D+ AB
— 0.2AF +sintAC + kN, 6.1)

where NN is a random number selected from a rectangu-
lar distribution over an interval [0, 0.01], and k& will be
chosen later. We use two levels, —1 and +1, for each
parameter A, B,C, D, E.

In many computational models the input parameters
vary in importance, with some making negligible con-
tributions to the results. The response function (6.1) re-
flects this with D having only a small effect; F/ has a
small effect also, but only as an interaction with A. Al-
though C' is significant within the function, it appears
only in the sine term which is zero for the levels used,

so it has no effect in this experiment. This term is cho-
sen to illustrate the influence of the chosen levels.

The random number term, kNN, has been included
to illustrate this effect of noise on estimates of the ef-
fects. We perform experiments with various values of
k, namely 0, 0.3 and 1.0, to vary the noise component.
If & = 0, then the function is a linear combination
of single parameters and two-combination products, so
we should expect that a resolution V experiment will
give an exact reconstruction of the full factorial exper-
iment.

Figure 4 shows the schedule used for this experi-
ment, prepared by interaction with the Nimrod Por-
tal. Nimrod/E used this schedule to compute a resolu-
tion V design, which generated 16 runs as compared
to 23 = 32 for a full parameter sweep. The results are
presented in graphical form in the Lenth plots of Fig. 6.

With no noise the effect estimates exactly equal the
coefficients of formula (6.1), so that the results for the
16 jobs are sufficient to reconstruct all 32 results for
these levels. With 30% noise the small effect of the
0.1D term is obscured; the D effect is in the zone of un-
certainty between the ME and SME lines. With 100%
noise both the AE and D effects are within the ME
lines and so cannot be deemed as active.

The alternative presentation of effects using Daniel
plots is shown in Fig. 7. To save space only the 100%
noise case is shown. The points representing the effects
A, B, and AB clearly deviate from the straight line and
may thus be deemed significant.

This experiment illustrates item 1 in Section 3.2,
how fractional factorial design can identify the rela-
tive importance of factors and factor interactions, and
how these become obscured as the amount of noise in-
creases.

6.2. Experiment 2: A more complex known response

The next experiment explores the effect of the
choice of resolution, again using a model with a known
output function. In this experiment we concentrate on
the reconstruction of the full factorial experiment from
the results of fractional factorial ones, item 3.2.6 in our
list of applications.

In this example, the output function ¢(A4, A;, Az,
Ay, As, Ag) is defined recursively by ¢ = Ay, ¢; =
V/100.0 + ¢y +iA; fori =2,3,...,6 and ¢ = ¢s.
We use two levels, 0 and 1, for each input factor.
Nimrod/E was used to design three fractional-factorial
experiments, with Resolution III, IV, and V, respec-
tively. In each case the estimates of the effects were
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Fig. 6. Lenth plots for Experiment 1.

used to construct results for a full parameter sweep.
To assess the discrepancy between these estimated val-
ues E; and the genuine results of a full parameter
sweep, R;, the usual statistic SSD = S(F; — R;)?
was computed. As this statistic fails to indicate the er-
ror relative to the true values, a normalized statistic
SSND = S [(E; — R;)/R;]*> was also computed. Ta-
ble 1 shows the results for all of these experiments.
Resolution V produced results very close to the true
values, indicating that the effects of interactions of
more than two factors are small. The results illustrate
the trade-off between the number of runs and the accu-
racy of the predictions; as the resolution is decreased,
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Fig. 7. Daniel plot for Experiment 1 for 100% noise data.

Table 1

Reconstruction of a full sweep from fractional-factorial Experi-
ment 2

Resolution No. runs SSD SSND
11 8 1.26939 0.0111786
v 16 3.89334e-3 3.43098e-05
\Y% 32 9.46657e-12 8.31543e-14

the number of runs reduces but the accuracy of the pre-
dictions also falls, but is still high. The close agree-
ment between predictions and true values demonstrates
a major justification for the fractional factorial ap-
proach.

6.3. Experiment 3: lonic flux in a cardiac model

This experiment concerns a mathematical model of
excitation-contraction coupling in the rabbit ventricu-
lar muscle cells [30]. In the model a system of ordinary
differential equations is used to describe the intracel-
lular ionic fluxes (for Ca?T and Na™). The model in-
corporates many features of cell structure and is able
to reproduce experimental data using parameters based
on measurements in rabbit cells. In this experiment we
extended the model to incorporate Mgt -nucleotide
regulation [21]. The experiment involves validation of
the updated model by varying nine input parameters
(see legend in Fig. 8) so that the predicted INak, Ica,
Iyca and Isgrca currents are as close as possible to
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Fig. 8. Lenth plot for Experiment 3.

the experimentally measured. This was phrased as a
optimization problem using Nimrod/O, minimizing the
sum of the moduli of the differences between com-
puted metabolic factors (INak, Ica, Ipcas IsErca) and
experimental values.

The code is implemented in Matlab, and each com-
putation takes about 10 minutes on a high end worksta-
tion. Prior to running Nimrod/O, we decided that a pre-
liminary parameter sweep with Nimrod/G would indi-
cate the broad features of the objective landscape and
this might lead to more efficient searches in Nimrod/O.
However, with nine parameters a full sweep becomes
a large undertaking, so we performed a Nimrod/E ex-
periment instead.

Here we denote the metabolic factor inputs as
A,B,...,G,H and J (by convention [ is not used
to denote factors in experimental design). Two val-
ues were chosen for each of these factors which were
judged from experience to span the realistic range.
A resolution V experiment was designed and executed.

Figure 8 shows the Lenth plot for the most signif-
icant effects on the basis of the resolution V exper-
iment. Clearly, all nine factors had a significant ef-
fect. Of the two-way interactions, the significant ones
are AB,DE,DF,GJ,GH and HJ. Other combinations
cannot be distinguished from noise. This prompted
a closer look at the model which explained this re-
sult. The factors fall into four groups {A, B}, {C},
{D,E,F} and {G, H, J}. It turned out that only the
first group affects the first term in the objective, only
the second affects the second term, and so on. Thus we
would expect no interactions between factors in differ-
ent groups. Whilst the result was obvious with hind-
sight, the work demonstrated the power of a tool like
Nimrod/E — we had not expected this result, and were
treating the computational model as a black box. No-

tably, Nimrod/E’s analysis discovered the lack of cou-
pling between certain factors without detailed knowl-
edge of the code. The reasons for this lack of coupling
only became obvious to us once we looked inside the
computation.

The result also had significant implications for the
Nimrod/O run that was to follow. As discussed in
item 3.2.5, a more efficient search was possible by sep-
arately optimizing the four components of the output.

6.4. Experiment 4: A quantum model for complex
molecules

This experiment concerns quantum chemical models
— based on the Schrédinger equation — of assemblies
of atoms as found in large biomolecules. The prob-
lem with using a pure quantum mechanical approach is
that these methods are extremely computationally ex-
pensive, and thus can normally only be applied to rel-
atively small molecules. Hybrid quantum mechanics—
molecular mechanics (QM/MM) models, on the other
hand, just describe a small, “active” region by accurate
quantum techniques, while the surrounding larger, “in-
active” region is treated with more approximate classi-
cal force fields. As a result, they tend to be faster than
a full quantum chemistry computation. Unfortunately,
the two involved physical concepts are so different that
they cannot be easily combined. One approach to solve
this combination is to saturate each of the quantum
chemical bonds between both regions with a single pa-
rameterized “capping atom”, instead of with the bulk
of the large molecule. This capping atom is not real,
but can be adjusted by a hypothetical pseudopotential
function [35], as shown in Fig. 9.

This experiment explores such a capping potential
for a carbon—carbon single bond, using the “group dif-
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Fig. 9. Replacement of part of the structure with a capping atom (F)
and a pseudopotential.

ference potential” (GDP) approach of Sudholt et al.
[31-33]. In this model, ethane (CH3—CH3) is used for
the parameterization. One of its methyl groups (CH3)
is substituted by an isoelectronic fluorine atom (F) and
a pseudopotential of the form

Ugr(r) = A exp(—C?"z) + B exp(—Drz), (6.2)

where r is the radius. Here parameters A, B,C, D
are to be determined that will provide the best fit be-
tween the model and target properties of ethane and
the methyl radical. This is assessed by a normalized
least squares expression. The quantum chemistry code
GAMESS [29] was used to compute the model proper-
ties used in this comparison, each task taking about 20
minutes of computation time.

The experiment used the results of the very large
sweep over the A, B, C, D parameter space described
in [31]. The results showed a huge variation in the size
of the output results, from ~500 to over 10'1, so we
decided to analyse the logarithms of these values rather
than the direct values.

With four factors, a resolution V fractional factor-
ial design is just a full sweep. A resolution IV design
does give a reduction of 50% in the number of runs
but biases the estimates of effects. We used Nimrod/E
to perform a resolution IV experiment with two lev-
els per parameter. Figure 10 is a Daniel plot for the re-
sults. It shows that the effect largest in absolute size
is the four-factor interaction ABCD, which can be un-
derstood from the mathematical form of the pseudopo-
tential. This indicates that the usual result, that higher
order effects are smaller than lower order ones, fails
in this case. So a reconstruction of the full sweep us-
ing results of the resolution IV experiment cannot be
expected to give accurate results here. This case study
illustrates the robust nature of the methodology which
indicates when a full sweep is required. Nothing is lost
by performing a fractional factorial experiment first as
the full sweep can be designed to perform only the
missing runs.
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Fig. 10. Daniel plot for Experiment 4.
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Fig. 11. Histogram of results for Experiment 4.

There was however one application of fractional fac-
torial analysis that was useful with this data. We de-
cided to use a design with more than two levels per fac-
tor. In the original data the number of levels were not
powers of two, so we extracted a subset using 8 levels
for each factor A and B, and 4 levels for each of C
and D. This produced a data set of 1024 values. A his-
togram of these values, Fig. 11, revealed a gap in the
distribution. A small proportion of results were very
large, over 21, with nothing in the range 18-21. This
gap was not evident in the full dataset which showed a
contiguous distribution. This naturally raised the ques-
tion as to whether the outlying results were valid, or
a symptom of a failure of the model. To explore this we
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Fig. 12. Correlation between predicted and actual values for Experi-
ment 4.

used reconstruction from a fractional experiment as a
smoothing filter on the data, as discussed in Section 3.2
item 7.

Nimrod/E was used to design a resolution I'V exper-
iment, run the experiment, and produce predicted val-
ues. In Fig. 12 the predicted values are graphed against
the actual values on a scatter plot. The correlation is
not high, but sufficient to indicate that all the outliers,
the points on the right side, are aberrant, they reveal
a discontinuity in the response function. A likely ex-
planation is failures in the GAMESS calculations that
were not flagged to the output. This example illustrates
the application of fractional factorial design to assess
the validity of data produced by computational exper-
iments. Here we see the cyclical nature of experimen-
tation, results feeding back into the model which may
then be adjusted and produce the next round of re-
sults.

7. Conclusions and further work

This paper illustrates the use of fractional factor-
ial methods in design of computer experiments. Frac-
tional factorial designs typically offer a large saving
in the number of jobs required to explore a parame-
ter space, but also provide a robust way of indicating
when a full sweep might be required. Furthermore they
provide tools for the experimenter to assess the rel-
ative importance of the various parameters and their

interactions and offer insights into the computational
model.

To facilitate these methods we have developed a
tool, Nimrod/E, which automates the design of the ex-
periment, interfaces with Nimrod/G for the execution
of the experiment, and then provides tools for the final
analysis. A complete project may be controlled from
the Nimrod Portal. This offers a considerable advan-
tage over previous approaches that require operator in-
tervention to supply a design appropriate to the situa-
tion.

We have illustrated the effectiveness of Nimrod/E
with four case studies. Two of these were hypotheti-
cal examples used to demonstrate the basic functions,
but two were real world scientific experiments. Im-
portantly, Nimrod/E produced useful results in both
of the real world studies. In the cardiac modelling
work, Nimrod/E detected the structure of the underly-
ing computational model without any specific details,
and allowed us to make an improvement in the overall
performance of a subsequent optimization run. In the
quantum chemistry work we showed the necessity of
a complete parameter sweep and that it was not possi-
ble to perform a simpler and cheaper experiment than
the one we did. Further, a comparison of the fractional
factorial predictions with results of the full sweep was
used to investigate questions raised by some of the
model outputs.

We see the implementation of fractional factorial de-
signs as the first stage of a continuing project. Other ex-
perimental designs offer advantages, for example: em-
pirical kriging methodology, Latin hypercube designs
and maximum entropy designs [11]. We hope to in-
clude them in the final suite of Nimrod/E tools.
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