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Abstract. Increasingly, distributed systems are being used to host all manner of applications. While these platforms provide a
relatively cheap and effective means of executing applications, so far there has been little work in developing tools and utilities
that can help application developers understand problems with the supporting software, or the executing applications. To fully
understand why an application executing on a distributed system is not behaving as would be expected it is important that not only
the application, but also the underlying middleware, and the operating system are analysed too, otherwise issues could be missed
and certainly overall performance profiling and fault diagnoses would be harder to understand. We believe that one approach
to profiling and the analysis of distributed systems and the associated applications is via the plethora of log files generated at
runtime. In this paper we report on a system (Slogger), that utilises various emerging Semantic Web technologies to gather the
heterogeneous log files generated by the various layers in a distributed system and unify them in common data store. Once
unified, the log data can be queried and visualised in order to highlight potential problems or issues that may be occurring in the
supporting software or the application itself.
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1. Introduction

Distributed systems provide platforms for all man-
ner applications whose design is based on paradigms
such as client–server, multi-tier, object-based, and
loosely coupled components. It is well known that
diagnosing problems with these distributed platforms
and the associated applications can be time consum-
ing and often difficult to solve. Unlike parallel com-
puting platforms, where there is a range of mature
tools for diagnosing problems, such as debuggers and
profiling tools that can be used either on executing
applications or in post-mortem modes. In the distrib-
uted computing arena, few tools exist to assist pro-
grammers with fault diagnoses and execution profil-
ing, apart from networking tools based on the Inter-
net Control Message Protocol (ICMP), e.g. ping, and
traceroute, or the Simple Network Management
Protocol (SNMP). These tools can aid fault or problem
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diagnoses, but really only help in the manual process
of elimination. Unlike, parallel processing platforms,
which are typically tightly coupled and homogeneous,
loosely coupled heterogeneous distributed systems add
further complexity into the fault or problem diagnoses
process.

Another common way of trying to diagnose prob-
lems is to examine the log files of the operating system,
middleware (e.g. application servers, message passing
libraries, or database transactions) and application spe-
cific logs. Typically logs are examined in isolation. For
example, if there were a problem with an Apache Axis
application, Apache Tomcat’s logs would be examined
to find events generated during operation. This is itself
a tedious and time consuming process, but also takes
expertise to identify the events related to problems that
may exist. Moreover, some events may indicate a prob-
lem, but its root cause may actually be produced by
the operating system or may be an underlying hard-
ware problem. In reality to fully understand a problem
or fault in a distributed system or application analyses
of events generated by the operating system, associated
middleware libraries and the application are necessary.
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We believe that it is possible to generate sufficient
log-based information within a distributed system and
application to understand more or less any fault or
problem that may occur. However, the events associ-
ated with these faults or problems are typically writ-
ten to log files in different formats and in numerous
locations. Therefore, to identify a fault or problem, all
these log files would to need be gathered, synchro-
nised, normalised and joined. Then, one could make
various queries across this combined log data store and
visualise the output in order to identify potential faults
or problems. The immediate issue that appears is how
to gather these heterogeneous log files, synchronise
their events so that they can be logically ordered, nor-
malise their data into a form, which means that differ-
ent but equal terms are fully understood, so a common
form is available, and finally unify all the data into a
common store that can be subsequently queried. There
are obviously several ways that these issues could be
addressed.

One way to unify these log files would to be use rela-
tional database technologies, an alternative way would
be to use various emerging Semantic Web technolo-
gies. We believe that relational database technologies
are too rigid, and unfortunately the format and syntax
of the log file would have to be known posteriori, as
would the database schema, and other information re-
lated to the set up and format of the database. Whereas,
with Semantic Web technologies there is much more
scope to use relatively free formats, and the data store
can ingest irregular data.

2. Related work

2.1. Introduction

Profiling and analysing parallel and distributed sys-
tems and their applications is not new, there are vari-
ous open source and proprietary systems that attempt
to undertake this task. In the following section, we out-
line the most popular open source contenders in this
field, and then we discuss how these systems are un-
able to tackle the over arching problems that typically
exist in the systems that we wish to explore. It should
be noted that we only detail and compare systems that
are capable of being used for both understanding the
behaviour of parallel and distributed systems and their
applications.

2.2. Related tools and systems

The NetLogger Toolkit [1,2] is a collection of tools
for analysing the performance of distributed systems
and applications. NetLogger provides a logging API
and is available for several languages including Java,
C, Python and Perl. The logging API is used to in-
strument applications that then writes trace data to
a log-forwarding daemon (netlogd) when they ex-
ecute. netlogd can multiplex logs from different
sources, combining them into a single log file. Net-
Logger also provides a visualisation tool that repre-
sents events against a timeline, and can also model pro-
file data in the same view, enabling the comparison of
resource-use against application progress. The timeline
can be zoomed in to focus on details.

SvPablo [3] is a graphical environment that can be
used to instrument application source code and sub-
sequently browse dynamic performance data. SvPablo
supports instrumentation via its graphical user inter-
face (GUI) and automatic use via its standalone Parser.
During the execution of instrumented code, its libraries
capture performance data and produce metrics, includ-
ing general software statistics and hardware counter
data on the execution dynamics of the instrumented
code. SvPablo can capture the execution behaviour of
codes that execute for hours or days on hundreds of
processors, as it produces statistics of execution be-
haviour. After application execution, data from each
processor is integrated into a single performance file
with additional statistics, which can be loaded into the
GUI and displayed along with the application source
code. The GUI provides an intuitive interface that al-
lows a user to examine source code that reveals further
statistics and useful details. By browsing the perfor-
mance data correlating it with the source code, users
can identify the performance bottlenecks in their ap-
plications rapidly. In addition, it provides a means for
users to conduct load balancing analysis and scalability
studies. SvPablo also includes Autopilot [4], which al-
lows performance data to be captured and rendered in
a three dimensional visualisation environment at run-
time, so that users can investigate their application’s
behaviour during execution and potentially optimise its
performance by manipulating individual variables or
initialising independent threads of control.

The Tuning and Analysis Utilities (TAU) toolkit [5,
6] provides facilities to instrument, monitor, analyse
and visualise parallel applications. TAU can collect
program trace data from Fortran, C, C++, Java and
Python-based applications using automatic instrumen-
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tation capabilities, provided by the Program Database
Toolkit (Dyninst), or via manual instrumentation us-
ing the API directly. TAU ParaProf provides various
(graph based) visualisation mechanisms to assist in
analysing parallel application performance. Emphasis
is placed on ParaProf’s ability to identify bottlenecks.
It can show aggregated information as well as focusing
on single threads and nodes. TAU includes conversion
tools that allow its data to be analysed and visualised
in several systems, such as, Jumpshot [7], Vampir [8],
and Paraver [9].

The Ganglia [10] system is a widely used moni-
toring suite for distributed systems, which focuses on
the gathering operational data that describes hardware
events and system status. It communicates event in-
formation through a hierarchy of daemons, which can
subsequently be visualised via a web-based interface
with information rendered on a timeline using bitmaps.
Events and system details are summarised in an XML
format. The information monitored is low-level and
system based, and not that of higher-level middleware
or applications.

2.3. Discussion

The systems listed earlier in this section are all pro-
ficient and used widely within sections of the paral-
lel and distributed computing communities. To fully
understand why an application executing on a distrib-
uted system is not behaving as would be expected
it is important that not only the application, but also
the underlying middleware, and the operating system
are analysed too, otherwise problems could be missed
and certainly overall performance diagnoses would be
harder to understand.

To obtain the necessary information to undertake a
full investigation of a distributed system, its middle-
ware and applications, the following would be neces-
sary with the tools just outlined:

• With Netlogger, calls would have to be added to
all the Python, Java, C and Perl programs, the out-
put events would be written to Log4J/Commons-
based log files, these files could be subsequently
viewed with the NetLogger Visualisation tool.

• SvPablo would either automatically or manually
instrument the applications; as well as use hard-
ware counters via the PAPI API [12], the output
would be written to a file and the resulting traces
can be visualised and analysed via its GUI.

• TAU would be used to instrument Fortran, C,
C++, Java and Python-based applications, the out-
put would be written to a file and then the output
would be visualised via ParaProf.

• Ganglia gathers low-level operating system-level
information, marks it up in XML, and the infor-
mation gathered is visualised via a Web browser.
Ganglia is an example of a suite that can provide
useful system information, however, it does not
integrate middleware and application data. More-
over, Ganglia does not help identify issues or
problem in systems, this is the task of the system
administrator who must analyse output graphs.

With three of the systems just mentioned (NetLog-
ger/SvPablo/TAU) in order to obtain a complete view
of a distributed system and its applications, it would
be necessary to instrument the application, all the mid-
dleware and the operating system. This would be an
almost impossible task as it would involve the instru-
mentation of hundred of programs, and then visualis-
ing and trying to understand the resulting output from
thousands of events. Moreover, Ganglia, just gathers
operating system-based data, it provides no tools for
profiling or analysis. As it can be seen from this brief
review of the most popular profiling and analysis sys-
tems; they are designed to be used with mainly homo-
geneous parallel systems and software, rather then the
heterogeneous and loosely couple distributed systems.

2.4. The Semantic Web

The Semantic Web is a vision of what the Web could
become. The World Wide Web Consortium (W3C) de-
scribes the Semantic Web as “a common framework
that allows data to be shared and reused across appli-
cation, enterprise, and community boundaries” [13]. In
the Semantic Web, information must be recorded and
communicated in such a way that a computer can in-
terpret whether a particular item of data is relevant to
its task. Semantic Web technologies allow data to be
augmented with machine-readable information, so that
they can do more useful things with it. The Seman-
tic Web is an evolving framework and the technolo-
gies that it consists of are often described in terms of a
stack, whose structure of allows independent improve-
ment and innovation at each layer.

We believe that the concepts and technologies that
underpin the Semantic Web can provide mechanisms
for unifying and storing the heterogeneous information
held in the distributed logs. These technologies have
the advantage that:
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Fig. 1. The semantic Web stack.

• information in any language can be encoded;
• there is a flexible, scalable, universal addressing

system;
• the XML format can provide serialisation for data

transfer between systems;
• the graph-based data model of the Resource De-

scription Framework (RDF) can, in theory, repre-
sent any data structure;

• RDF Schema and the ontology language (Web
Ontology Language – OWL) provide an extensi-
ble system through which vocabularies describing
data types and data structures can be formally de-
fined;

• also, the basic inference concepts of OWL may
allow conceptual unification of data.

The following section gives an overview of Seman-
tic Web technologies.

The layers of the Semantic Web are shown in Fig. 1.
The layers have been categorised broadly as relating
to syntax, i.e. the representation and identification of
raw data; semantics, the mechanism for describing
the meaning and structure of information; and knowl-
edge, which covers mechanisms for machine reason-
ing based on semantically encoded information. We
are particularly interested in the semantic layer of the
stack in our research.

2.4.1. Representing data in RDF
The W3C RDF Primer [14] describes RDF as a lan-

guage for representing information about resources.
It can represent information about things that can be
identified on the Web, even when they cannot be di-
rectly retrieved from the Web. RDF is a conceptual
graph-based data model. In RDF, information is con-
structed by defining statements [15] that consist of a

Fig. 2. An RDF statement.

node, an arc, and another node, which are known as the
subject, the predicate and the object (see Fig. 2).

This basic construct can be used to represent any
data structure. For example, a database table has rows
and columns, each row is identified using a unique key,
and within each row, its column ascribes the meaning
of data. The same structure can be represented in RDF.
A URI defines the unique key for the row, and each
column (property) is described by a URI. The combi-
nation of unique key (subject), column (predicate) and
value (object) makes up an RDF statement. By creat-
ing a statement for every data value, the database table
can be modelled.

2.4.2. The RDF Schema (RDFS)
Whilst RDF provides the ability to create a graph

of data, it is the RDF schema [16] that provides the
building blocks for more complex vocabularies by en-
abling the definition of data-types and structures within
an RDF graph. RDFS provides “all that is needed for
interoperability of the vast amount of data on the web”
[17]. RDFS defines the basic classes such as Resource,
Property and Literal, as well as useful properties such
as type, label and comment. RDFS also defines the
concept of classes, subclasses and properties, and in-
troduces concepts such as Bags, Sequences, Lists and
Reification. An important feature of RDFS is that it
is written in RDF, and (commonly) exists in the same
data model as the RDF data they describe. Data struc-
tures and formats can therefore be amended or en-
hanced without any need to adjust database schema.
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2.4.3. The Web Ontology Language (OWL)
Broadly speaking in computer science an ontology

is seen as a data model that represents a set of con-
cepts within a certain domain, as well as the relation-
ships between those concepts. The ontology is then
used to reason about the objects within that domain.
For our purposes, RDFS can be used to describe struc-
tures and data that are sufficient for many uses; how-
ever, it lacks some of the capabilities that may be re-
quired for some data structures. For example, there is
no concept of cardinality, so it is not possible to cre-
ate a Tricycle class that requires its instances to de-
scribe exactly three wheels. The Web Ontology Lan-
guage (OWL) [18] extends RDFS and provides a more
descriptive schema layer that can be used where the
basic definitions afforded by RDFS are not expressive
enough.

2.4.4. Rules/Query layer
The Rules/Query layer encompasses any system for

querying semantic data and applying the basic rules de-
fined in the two schema layers; it is where information
and knowledge can be inferred. There are several co-
existing query systems [19], most of which use an SQL
like mechanism to query and filter data. A W3C work-
ing group is working towards a standardised query lan-
guage called SPARQL [20].

3. System design

3.1. Data modelling

As a recap, the overall idea behind this work is that
we can capture logs of different types from within a
distributed system and use these to analyse and pro-
file the system itself and the applications that it hosts.
Therefore, it is necessary to consider four general types
of log file:

• Application: Executing applications often record
runtime events and debugging information into
log files. It is common for these logs to be gener-
ated by logging libraries [21], which have the ben-
efit of simplifying the creation of the more com-
mon logging formats.

• Middleware: These logs provide details about
what has been happening in the middleware layer.
This may include application server logs, such as
those of a service container such as Apache Tom-
cat [22], or more specific communication logs
generated by message passing libraries, such as
MPICH [23], which may record details of mes-
sages received and transmitted.

• System: These are created by operating systems
and their daemons. For example, in GNU/Linux
and BSD the syslog daemon [24] is used to cap-
ture and record logging messages from processes.

• Bespoke monitors and probes: These may exam-
ine a system without necessarily being part of it.
For example, applications that record system sta-
tistics such as CPU load or free memory, or net-
work monitors that record the number of colli-
sions in a subnet.

These different log files all record sequences of events.
Each event may be something that has occurred in the
system that is worth recording, or in the case of a sys-
tem monitor, the event may be a measurement of some
system properties. In a distributed system, events oc-
cur on different nodes, so the description of an event
consists of a time, a location and a description. This
requirement forms the basis for unification of different
logs.

3.2. Transformation requirements

The majority of log data formats offer terse and
barely human readable content that requires the ability
to infer meaning where it is often neither implied or
explicitly stated. For example, a human reader who un-
derstands the purpose and provenance of a log-file may
understand that the message “freemem 300K” is of
concern. However, without an explicit definition of the
semantics of that message a machine cannot interpret
it on behalf of the user. The explicit discovery, extrac-
tion and semantic mark-up of data contained in logs are
therefore essential to their automatic interpretation and
analysis. Transforming different types of log requires
domain specific knowledge, in order to extract the ap-
propriate information from each log record. It may also
require specialised vocabularies in order to classify the
extracted data. To convert each native log data format
required human interpretation to create a transforma-
tion system that was implemented as a Java interface
containing a transform method that takes a stream
of log data as input and returns a stream of RDF/XML
that can be added to a unified model. The creation
of a log transformer was thus reduced to the problem
of writing an RDF schema that describes the infor-
mation that the transformer extracts and implement-
ing the processLine method that associates the
RDF schema properties with the data that is extracted.
To aid the development of the prototype transform-
ers the AbstractLogTransformer uses Regu-



188 M. Baker and R. Boakes / Slogger: A profiling and analysis system

lar Expressions (RegEx), which may be defined in
the transformer constructor. This RegEx is matched
against each log line before being passed to the
processLine method.

3.3. Time requirements

Log events of different types, on systems, may differ
in their timing granularity. For example, Web servers
typically provide a coarse timing resolution of 1 sec-
ond, whilst instrumentation logs that focus on perfor-
mance may record their events with millisecond or
nanosecond resolution. Where granularity is coarse-
grain, the ordering of rows within the file may im-
ply event ordering. Furthermore, records from different
systems may not correlate chronologically due to poor
or non-existent clock synchronisation. Analysis and vi-
sualisation rely on the correct temporal ordering of
log records across different machines. The distributed
platform used to record the log data all had synchro-
nised clocks, in addition, high resolution (nanosecond)
clocks were used to time stamp events within the log
files. The fine granularity of log events allowed them
to be correlated, analysed and displayed in the correct
order.

3.4. Visualisation requirements

The parallel performance profiling and debugging
tools reviewed earlier in this paper collectively fulfil
many of the basic requirements for the analysis of dis-
tributed systems. However, the tools lack the adapt-
ability required for unifying heterogeneous data and
can typically only help to analyse a limited range of
data types using a visualisation tool that has been writ-
ten for a specific purpose. This narrow, specialised fo-
cus reduces the usefulness of the tool, and limits their
widespread use. Many existing tools provide duplicate
functions instead of providing a generalised solution.
For example, Jumpshot, NetLogger, and Vampir, pro-
vide mechanisms for plotting events against a timeline,
which was identified as a useful means of validating
whether heterogeneous data is correctly unified. Time-
line visualisation of unified data can be achieved by
either exporting data to a format that can be used by
existing tools, or, by creating a visualisation interface.

3.5. The proposed solution

We propose that Semantic Web technologies will
provide the necessary capabilities for Slogger’s mark-
up and unification of the heterogeneous log data, in
particular:

• Unicode allows text in any language to be incor-
porated, a key requirement for integrating log files
from a diverse global resources.

• The use of URIs to address each data item is flex-
ible and scalable.

• XML provides a widely accepted vehicle for text-
based data serialisation; this can enable unified
data to be stored as flat files or communicated to
other systems.

• RDF is a graph-based data model capable of rep-
resenting any data structure. RDF is a conceptual
data model, so it can be implemented in differ-
ent ways without affecting the operation of other
Semantic Web technologies. For example, the Se-
mantic Web stack on small systems may utilise
an in-memory data model, whereas in larger sys-
tems a database-backed model may be necessary.
In very large systems, a distributed database could
provide programmatic access to data.

• RDF schema can be defined within RDF so data
structures and types can be adapted as the appli-
cation demands.

• OWL provides potential for mathematical analy-
sis of systems, and allows basic logical inference.

4. Outline system framework

The Outline Framework (see Fig. 3) models the flow
of information from its point of creation, to visuali-
sation. Each functional capability was considered as
a separate module, allowing independent development
and evolution of distinct sub-systems, these are shown
in Fig. 4.

4.1. System components

4.1.1. Log date transferral
The Transfer Component consists of a number of

Outposts and a Ranch. Outposts advertise log availabil-
ity, prepare logs for transfer and send logs to the ranch.
The Ranch searches for outposts, discovers available
logs, arranges their delivery, and passes the retrieved
log to the Transformer. Once a log has been generated,
it must be moved from its initial location to where it
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Fig. 3. The flow of data from the actual logs to the visualisation phase.

Fig. 4. The Slogger framework.

will be transformed. There is a technical burden of dis-
covery and transfer of data from multiple nodes that
may be subject to security measures such as firewalls.
Also noteworthy is the problem that log files may be
large but only a small time-slice may be of interest
to the investigator. For example, if an error is known
to have occurred within a specific period, the ability to

transfer only log events that relate to that period may
be necessary. The design of the Transfer Component
is such that the ordering of the transfer and transfor-
mation stages could potentially be switched, allowing
the transformation process to be distributed within the
observed system. Solving the administrative details of
data transfer, for example, access control and estab-
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lishing trust across boundaries, are not a focus of this
work.

4.1.2. Transformers
Transformers are programs that convert log data

into RDF, adding semantic mark-up that describes
the meaning of each event contained within each log
record. A transformer manager must recognise the type
of each log that it receives so that the appropriate trans-
former can be selected. This may be achieved by pars-
ing the log content to discover patterns common to spe-
cific file types, or by examining a log description that is
transmitted by the Outpost. Once an appropriate trans-
former has been selected, it must process every line of
the log. For any log file, two levels of transformation
can occur. First, every log entry is described in terms of
a Generic Unified Log Format (GULF) schema, which
provides a basic vocabulary for describing the prop-
erties, and structure common to all log files. Second,
the content of the log entry may be more precisely de-
scribed using specialised schema.

4.1.3. The GULF schema
The review of monitoring and profiling tools iden-

tified that the NetLogger file format provided an ex-
tensible basis for generic log description. We also con-
sidered other logging frameworks, for instance, the
GGF-DAMED Top-n Events [25]. The GULF schema
defines five basic items that can be used to describe
every log entry; these are outlined in Table 1.

This format encodes no semantics other than for-
mally identifying the content of the message and giv-
ing it a common timestamp, however, this in itself is an
important inclusion in the graph because it ensures that
the log can be reinterpreted after the initial transforma-
tion. This constitutes a lossless record of the original
log entry so that subsequent re-interpretation is possi-
ble, if required. For brevity a qualified name (QName)
[26] of “g:” is used when referring to properties in
the GULF schema. There is some overlap between the
function of g:host and g:target, which arises
from expressive nature of URIs.

The log shown in Table 2 contains four records, each
consisting of an event time and a message describing
the event. Transformation of the first line should pro-
ceed as follows: a unique resource identifier is created
(see Fig. 5). The time is extracted and this is added
to the graph as a g:timestamp property. Next, the
message should be extracted and added to the graph as
a g:message property. Finally if no further process-
ing is necessary, the source IP address should be added
as a g:target property. This process must be re-
peated for each entry in the file until all entries have
been processed.

The implicit ordering present in the file is main-
tained by the creation of o:next and o:prev prop-
erties provided by the GULF-Order vocabulary. In the
case where times are not provided in the log file, there
should be no entry made in the graph, this is true

Table 1

Properties in the GULF schema

Property Description

timestamp The number of seconds elapsed since the epoch (00:00:00 1st Jan 1970)

nanopart The number of nanoseconds elapsed within the second designated by the timestamp (if specified or calculated)

target A unique identifier that describes the source of the event. This can be free text, which can be matched against other free text, or
a URI in which case the protocol gulf:// should be specified, followed by the host IP address (or DNS name if non-ambiguous)
then a path that identifies the resource, e.g.

gulf://Comp00/cpu.user

gulf://Comp00/jvm.thread.0001

Host The IP address or hostname where the event occurred (overlaps with “target”)

message The content of the original message after time information has been removed

date The date in whatever format the original log file defines it

Table 2

A simple log file that contains event records

Time Message

Thu 17th Feb 2005 11:30:01 bd /tmp/eer

Thu 17th Feb 2005 11:30:01 gm /tmp/rjb

Thu 17th Feb 2005 11:30:01 wd /tmp/eer /tmp/rjb

Thu 17th Feb 2005 11:30:02 lv hea /tmp/cpl
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Fig. 5. The log described in Table 2 after transformation into RDF.

for both the nanosecond time (g:nanopart) and the
epoch seconds time (g:timestamp). In Fig. 5 for ex-
ample, there is no nano-part because this is not defined
in the timestamp of Table 2.

4.1.4. Annotation
The process of annotation is one of adding meaning

to the graph as a whole as opposed to the transforma-
tion process, which imparts meaning to individual data
items. Annotators are used to add data to the model in
order to simplify its interpretation. Two forms of anno-
tator may be present in Slogger:

• Manual annotations may be a feature provided by
the user interface. For example, the addressability
of every data item allows book marking of partic-
ular points of interest.

• Automatic annotation may occur when data is
imported. After transformation, the new log data
shall be passed to any annotators that are avail-
able. Annotators may parse the graph and cre-
ate additional statements about the incoming data
to describe an artefact that is not apparent from
transforming log records in isolation. For exam-
ple, when message logs are imported from sev-

eral nodes the log entries represent messages that
are transmitted from one node and received at an-
other. An annotator might correlate these individ-
ual messages, creating an entry that addresses and
describes each in terms of its transmission, re-
ceipt, size and duration.

4.1.5. Storage and indexing
Storing data in a graph provides flexibility but re-

sults in relatively large data sizes when compared to
other storage systems, because the structure must be
encoded within the data. We estimated that a controlled
test could generate up to 500 Mbytes of graph data (see
Table 3) and that this would enable the model to be
manipulated in the memory of a desktop computer, and
possibly avoid the need for complex data management
solutions.

4.1.6. Visualisation
The Slogger visualisation of a timeline view com-

bined some of the features found in existing systems
and as such it was designed to show several types, in-
cluding:
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Table 3

Test data size – some assumptions and estimates

Assumption Estimate

An average of 5000 lines per log-file; 5 log-files per host; up to 8 hosts Maximum of 200,000 log records

Each log record will require on average 10 statements to describe it Maximum of 200,000 records * 10 = 2,000,000 statements

An average statement comprises 256 characters 2m*256 = 512000000 bytes

(488 Mbytes)

(a)

(b)

Fig. 6. The draft designs illustrating (a) a raw data timeline and (b) a combined program trace and profile representing the same data as (a).

• Events, a basic record that an event has occurred,
which may include common application debug-
ging information.

• Profiles, system performance or any other numer-
ical system state data that varies over time.

• Program Traces, using a topographical layout
similar to Jumpshot.

• Descriptions of messages that pass between nodes.

Figure 6(a) shows an example timeline representing
the events in a program execution. Figure 6(b) shows
how the topographical view, provided by Jumpshot,

can be combined with profile data, similar to the visu-
alisation provided by NLV, to provide a more intuitive
view of the same information.

5. System implementation

Java was chosen as the main implementation lan-
guage for several reasons, the most important being the
portability of Java byte-code, which increases the like-
lihood that Slogger can be utilised by a larger com-
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munity of researchers. The availability of several free,
open source RDF libraries was also influential. The
Jena library [26] was selected based upon its support
for several emerging query mechanisms that had the
potential to assist in analysing data, as well as its suc-
cessful use in other projects and the contribution of its
developers to the state-of-the-art through their exten-
sive involvement in the specification of Semantic Web
standards. Jena uses the MySQL database as backing
store, providing the option of directly using SQL in
or embryonic RDF query languages, such as SPARQL
[28].

The core functions of Slogger were developed us-
ing a test driven approach, where component devel-
opment was accompanied by the creation of a test
program. This helped in two ways; firstly, it kept de-
velopment focused on the higher-level requirements,
because when all the tests passed for a particular
component, its development was complete. Secondly,
and more importantly it helped trace any fundamental
problems that were found with the initial API design.

5.1. Component implementation

5.1.1. Transformers
The transformation system was implemented as a

Java interface containing a transform method that
takes a stream of log data as input and returns a
stream of RDF/XML that can be added to a unified
model. A Combined Log Format (CLF) transformer
was developed. This format was selected because of
its straightforward structure and widespread use. The

Combined and Common log formats are identical, ex-
cept that the combined format may include two addi-
tional fields (referrer and user-agent).

The Apache Error Log Format [21] is a generic log
format used by server software of the Apache project.
It complements the CLF by providing a more flexi-
ble repository for describing details of errors, debug-
ging information and program traces. The error log for-
mat specifies only four fields: date, host, error level
and an error description. The processing of the error
description provides an example of extracting specific
information from a log entry. If a path is discovered
within the error description (discovered by the pres-
ence of slash-separated text) this is added as an ex-
tra field, complementing the other data. There may be
cases where different problems have similar symptoms
or properties, so enabling the identification of those re-
lationships may be useful. To facilitate this, the path is
added to the graph as a URI, rather than as a literal,
which potentially provides a point for different graphs
to spontaneously link when merged (see Fig. 7).

MPJ-Express (MPJE) [29] is an implementation of
MPI-like bindings for Java. The MPJE log records
every message that is sent and received and the MPJ
Express Transformer (MPJT) converts this informa-
tion into RDF, using two schemas. The first of these,
the GULF Message Schema that describes general
message-passing properties that might be used to de-
scribe any type of message sent between any two
nodes. In this case it is used as the basis for describ-
ing an MPI like message but its abstraction allows it
to be used for other types of message, for instance, an

Fig. 7. Identifying a common factor between different events.
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Fig. 8. The log advertising and discovery process.

Table 4

Hardware monitor transformers

Name Description

MemInfo Memory use information

VMStat CPU, IO and swap information

LoadAvg Long term run queue information

HTTP request. The second schema, which is MPI spe-
cific, records the tag and context of the message. Tag
and context are fields used to uniquely identify a mes-
sage in MPJE. The Transformer utilises its knowledge
of the log source to distinguish whether a record is de-
scribing message transmission or receipt, this allows
the time field to be appropriately recorded.

Three system probes were created that record vari-
ous aspects of kernel performance on Linux systems.
The probes used the /proc file system in order to ex-
tract data at a configurable time interval, which was
then written to a log file. Each of the probes had an ac-
companying schema and log transformer that can ex-
tract the multiple highly specific data items from each
line and convert them to RDF (see Table 4).

A network probe was introduced to record ICMP
Ping times between nodes and a Ping Transformer was
created to utilise the information it records. Its role was
to test the ping time between two nodes on a network.

5.1.2. Log transfer
In order to unify the heterogeneous log information

it needed to be collected in one place. To facilitate the
discovery and collection of logs, an application was
developed for their transfer from node to Transformer.
Whilst rudimentary, the system provides a mechanism
for nodes to advertise available logs and transfer them

to a host that can transform them into RDF. The sys-
tem also provides a mechanism for filtering log files,
so only records describing events that occur during a
specified period are transferred. The transfer system
was implemented in Java, which was chosen because
of its availability on multiple platforms that potentially
allows data collection from a diverse range of systems.
We used a framework called Tycho [30] that is a pure
Java system that provides a distributed registry for pub-
lishing and discovering remote endpoints and an inte-
grated wide-area asynchronous messaging capability.

There are three participants in any log transfer
process, an Outpost, the Tycho Registry, and the Ranch
(see Fig. 8):

• An Outpost is installed on each compute node and
can be configured to provide details of specific
logs that are available for transfer. Each Outpost
in the system uses the Tycho Registry to advertise
its presence.

• The Ranch queries the Tycho Registry to discover
the available Outposts, and then communicates
directly with each Outpost to request details of the
available log files.

• When the Outpost receives a list of file requests
from the Ranch it responds with details of the
available log files including their name and type,
which can be used to select an appropriate trans-
former. The Ranch then requests the files. A re-
quest may define a period of interest, which is
used by the Log Filtering System.

The Log Filtering System provides two services that
improve the efficiency of log transfer. Firstly, a range
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check efficiently discovers log files that contain no rel-
evant events so that they can be ignored. Secondly, a bi-
nary search of the file identifies the first and last logs
entries that are relevant to a specified time period. The
process of opening each log file, reading each line, ex-
tracting the timestamp, and comparing it to the period
of interest, is one which must be extensible, because
different types of log use different means of encoding
the timestamp. The performance of regular expression
matching, however, was found to be a significant limi-
tation on the overall performance of the transformation
process. The range check provides an efficient means
of checking for file relevance that can be applied prior
to the use of the binary search to discover the exact
position of relevant data. The filtering algorithm has
two requirements for operation: firstly, log files must
be sequentially ordered; and secondly the underlying
file system must support random access files so that
the binary search can be executed directly on the file
without streaming the majority of content.

5.1.3. Visualisation
The literature review identified that the event-time-

line concept is common to many parallel program
analysis tools, and that it can provide a coherent
overview of different aspects of the operation of a
distributed system. The Scalable Vector Graphics lan-
guage (SVG) is a W3C specification [31] for describ-
ing two-dimensional graphics. SVG was selected over

other plotting libraries because it is based on XML, so
languages such as PHP can be used to generate a Web
page and also generate SVG. It is suited to the creation
of drawings that are based on templates, where spe-
cialised data can be added in order to finish the draw-
ing, such as plots. SVG can be viewed using several
common standards compliant Web browsers such as
Firefox [32] and Opera [33], where there is no require-
ment to install a special client on any machine that
is used to analyse data, removing a barrier to adop-
tion. Timeline interactivity is supported through SVG’s
compatibility with ECMAScript [34] allowing plots to
provide more information on their content. For exam-
ple, by letting the mouse hover over an event marker,
a full explanation can be revealed.

Figure 9 shows the four key modules of the Visuali-
sation Component, which are:

• The Control Panel (CP) module provides an
XHTML based interface that allows the user to
discover and select information that is included in
the time-line.

• The Timeline module, under direction from the
CP, creates an SVG plot incorporating events,
program trace information and hardware profiles.

• The Message Data module provides raw RDF
data describing messages that can be used by the
plot to render messages passing between hosts.

Fig. 9. The main components of the SVG visualisation component.
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• Supporting these classes is the RDF Lookup
Layer, a collection of several utility scripts that
provides database access capabilities, transform-
ing the retrieved RDF into objects and data struc-
tures that can be used directly by the PHP.

5.1.4. Using Slogger
The Slogger framework represents a proof of con-

cept and is not intended as a system for deployment.
It may, however, be useful to describe the necessary
process that a user might expect to follow in order to
utilise the framework:

• The Outpost is provided in a Java Archive (jar)
file and must be installed on each machine that
is to participate in the analysis. The log files that
the Outpost will make available to the Ranch are
specified in a configuration file, which details the
location and file type of each log.

• The Ranch is also deployed as a jar file and
when invoked it automatically discovers all run-
ning Outposts via the Tycho’s distributed registry.
Log files can then be requested and retrieved. If
a date range is specified this is communicated to
the Outpost so that retrieved data can be filtered
before transfer from the file.

• As log files are retrieved they are put into a trans-
formation queue. A bespoke transformer is re-
quired for each different type of log file in order
to extract useful data. The semantic encoding of
the extracted data will typically be based on a spe-
cialised schema that the user must create.

• When log files arrive in the transformation queue
the Ranch selects the most appropriate trans-
former and uses it to transform the log into RDF.
The resulting graph is then added to the RDF store
and thereafter its data may be included in a time-
line, by entering the appropriate start and finish
times in the control panel.

6. Slogger testing

The test environment shown in Fig. 10, which con-
sisted of eleven machines: Holly, Nellie, Labs and eight
compute nodes Comp00–Comp07. All the machines
used were configured with dual Xeon 2.8 GHz and
2 Gbytes of RAM. Holly and the compute nodes ran
GNU/Linux and Nellie ran Windows XP.

6.1. The test data

Within the test harness, several different types of
data were captured, using different recording mecha-
nisms. For example:

• System profile data was recorded using back-
ground scripts.

• Environmental data (for example, ping times be-
tween nodes) was also recorded using background
scripts.

• Programme trace data was extracted by instru-
mentation of the C version of the Linpack Bench-
mark, which was written to an Apache Error Log
file.

• Middleware communication data was gathered
from MPJ-Express (MPJE) logs.

• Data was transformed using the GULF schema,
with several specialised additional vocabularies.

6.2. Tests

Some of the tests were speculative and designed to
identify a suitable basis for subsequent tests. The ini-
tial focus was exploratory and aimed at understanding
the capabilities of the test platform and visualisation
component, before shifting towards program behaviour
analysis.

There were four main test groups:

• The Baseline tests establish how Slogger records
and represents data from an unloaded, and artifi-
cially loaded, system.

• The Linpack tests establish how the operation of a
sequential program appears within Slogger. Vari-
ous additional loads were applied to the test nodes
and the variation from the basic Linpack perfor-
mance was analysed.

• The MPJ-Test introduced more nodes to test Slog-
ger’s capabilities for handling larger amounts of
data, and analysing the operation of more com-
plex situations.

• The Ping-Pong tests introduced a second node so
program operation was dependent on communi-
cation between nodes. Basic operation was mea-
sured and described, then further tests were run
to apply different types of load so the programs
response could be analysed.
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Fig. 10. Test machines showing the flow of data.

6.2.1. Baseline test
The first test we undertook was that of establishing

an absolute baseline. Here we recorded a nodes perfor-
mance over a period of 300 seconds under effectively
idle conditions. We expected to see CPU User and CPU
System idling, memory in use not altering, and IO re-
maining static throughout. The results from this test
were as expected. That CPU User only hits a maximum
of 3%, and CPU System use hits 4%. The net result of
this use is reflected in the CPU Idle time, which ap-
pears to drop below 96% idle on only one occasion. As
would be expected there was very little change in terms
of memory use. This test also measures interrupts per
second and process runtime queues. There are fluctua-
tions near the beginning or end of the test, which were
caused by the test harness itself starting up. Overall,
this test showed firstly that Slogger visualisation could
recognise well identified measurements, and secondly
the expected performance of a “quiet” node.

6.2.2. Baseline stress tests
A tool was created to load nodes (stress tests) to

produce specific and controllable load levels. The tool
was produced because it provided a straightforward ap-
proach to generating configurable stress levels, which
can be easily incorporated into the test scripts. Stress
[35] (version 0.18.4) can generate four types of load:

• CPU creates n processes that each repeatedly cal-
culate a square root;

• IO creates n processes that repeatedly write any
kernel buffer data to disk (via the UNIX sync()
system call);

• VM creates n processes that repeatedly allocate,
then frees, a section of memory;

• HDD creates n processes that write a configurable
amount of data to the hard drive.

The stress tool was configured to create a 10 second
burst of four different types of load, CPU, VM, IO then
HDD. The aim was to demonstrate how each load af-
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Fig. 11. Stress test results.

fects a test node with no other programs running, and
should result in a plot with four distinct regions of ac-
tivity, interspersed with periods of inactivity at simi-
lar levels to the baseline graph. As expected, four dis-
tinct active periods can be identified in, Fig. 11 marked
as (a)–(d):

(a) The CPU User reading rises sharply to 100%
as the CPU Idle reading drops to 0%. This re-
flects that the stress CPU option was successful
in maximising CPU use.

(b) Under VM load, CPU User peaks at around 90%
with the remaining CPU time used by the sys-
tem (seen in the CPU System line). There is also
a sharp drop in free memory.

(c) Shows the period of IO load where CPU User
remains idle and instead, CPU System takes al-
most 100% of the available CPU.

(d) Corresponds to HDD load, and shows that inter-
rupts and context switches are seen to rise when
the hard disk is used.

The area of Fig. 11(b), where there is an apparent
drop in free memory, is magnified in Fig. 12 to show
how free memory decreases from 1650.58 Mbytes to a
low of 49.52 Mbytes. There is an apparent correlation
between the amount of memory dropping to 64 Mbytes
and a resulting drop in Memory Cache and Buffers.

The Baseline tests show that it is possible to cor-
rectly represent and visualise very specific system

loads using Slogger. Firstly, an absolute baseline was
established, then simple loads were applied and their
affect on the system observed. Various other loads
were applied (reported elsewhere [36]) to the sys-
tem and visualisations reflected the controlled varia-
tion within these loads, confirming that Slogger was
creating a true representation of the operation of the
system.

6.2.3. Linpack
Having established a basis for interpreting the out-

put of Slogger through the Baseline tests, we now show
the operation of a more complex sequential applica-
tion. For this purpose a C version of Linpack [36] was
used. Linpack performs linear algebra on a dense ma-
trix (of configurable size) filled with pseudo-random
numbers. Two modifications were made to the standard
program:

• A mechanism to repeatedly load a text file n times
was introduced. This served two purposes, it al-
lowed disk input to be analysed and it provided a
convenient mechanism for increasing the size of
some of the smaller program loops, so they could
be more easily seen.

• Instrumentation was added to create a program
trace written to an Apache Error Log file.

The Basic Linpack tests were run in order to un-
derstand how different configurations of the same sin-



M. Baker and R. Boakes / Slogger: A profiling and analysis system 199

Fig. 12. A simple stress test – zooming in on memory use.

gle threaded program might look in Slogger, and to
establish a suitable program configuration for com-
bining Linpack with artificially generated loads. Five
tests were created with matrix sizes of 4,000, 20,000,
30,000, 40,000 and 80,000. It was expected that Slog-
ger would show the instrumented Linpack program di-
vided into sections, with each of the main matrix mul-
tiplication loops in a section of its own. Each loop con-
sists of a call to the file load method, so these should be
visible in the plot. The plots looked similar across all
five-matrix sizes, however, their durations range from
30 seconds, to approximately 25 minutes for the fifth
test. In each, the sampling frequency of the system
monitor remains constant at 1 second, but appears to
increase in frequency (i.e. data points are closer to-
gether) as the duration of the visible tests increases.
This shows that Slogger can represent program opera-
tion over different time periods successfully.

Linpack is a computationally intensive test, so varia-
tions in CPU load provide a good indicator of changes
in activity. The visualisation results, an examples is
shown in Fig. 13, show that the basic profile of the
program does not change as matrix size increases, and
that a matrix size of 20,000 lasts long enough, and con-
tains enough detail, to be used in further load tests. The
Linpack tests built on the previously established basis
for interpreting output from Slogger. They have shown
how Slogger can be used to analyse the operation of
a program, and visualise a behavioural change in the
program brought about by external factors.

6.2.4. MPJ-Express (MPJE) tests
A basis has been established for analysing the oper-

ation of sequential programs through the Linpack tests.
The MPJE tests identify the additional capabilities nec-
essary to analyse a distributed program. Additional
communicating processing is introduced and Slogger’s
capabilities for handling and presenting larger amounts
of data are tested. The MPJTest program is part of the
MPJE suite. It is used for checking the correct oper-
ation of each MPJE method, to see if MPJE is work-
ing correctly. With MPJTest, Slogger can be used to
observe the communication on multiple nodes. In this
test, MPJE was started on eight nodes and the MPJTest
program configured to run all (see Figs 14 and 15).

6.2.5. The Ping Pong test
Previous tests have established that Slogger can be

used to analyse sequential programs, and, to visualise
logs from concurrently executing applications on mul-
tiple nodes. This next series of tests aimed to show that
Slogger can be used to analyse the operation of a sim-
ple distributed application (a Ping Pong test), whilst
different loads are applied to the system. The Ping
Pong test sends messages between nodes. The size of
these messages increases from 1 byte to 1 Mbyte. To
measure this, an additional annotator was created that
measures the average message size for all messages
during the last second.

Two nodes were configured to run the Ping Pong
application. This test establishes the basic operational
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Fig. 13. A basic Linpack test (matrix size 4,000).

Fig. 14. The MPJTest running on eight nodes.
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Fig. 15. MPJTest running on eight nodes (showing 18,718 messages).

profile for comparison in subsequent tests. The overall
profile of the Ping Pong application is shown in Fig. 16,
and is magnified in Fig. 17. The application appears to
place a slightly higher CPU User load on Comp06 than
on Comp07 (a peak of 96% as opposed to 74%). The
change in free memory appears to be approximately
the same for each node, although the amount of mem-
ory that is actually free is different. At the start and end
of each Ping Pong run, “barrier” messages are sent be-
tween the participating processes. Slogger allows mes-
sages to be filtered based on the sending method or
function. In Fig. 16 this capability is used to show only
the barrier messages. This test illustrates that Slogger
can record the operation of a distributed application,
and, visualise its basic operation.

6.2.6. Testing summary
In total over 500 end-to-end tests were executed.

A small selection are presented in this paper, the rest
can be found elsewhere [36]. Each test needed to
be designed and written in order to generate useful
and repeatable data. This data was then used to help

develop the Transformers and the Visualisation Com-
ponent. In this section we have presented a represen-
tative sample of those tests, that progressed incremen-
tally from observing an unloaded node, to analysing
a simple distributed application, combining data from
different types of log files showing system profile data,
messages detail captured by middleware logs, pro-
gram topography captured from a scheduler and exter-
nal data describing the state of the interconnect. The
tests illustrate that, although only a proof-of-concept
system, Slogger is capable of assisting post-mortem
analysis of distributed systems and applications.

7. Conclusions

The aim of this research and development was to
create a system that could transform and unify data
from different types of log file. We wished to discover
whether RDF was a suitable data model for unifying
the large heterogeneous data sets that are common in
parallel and distributed systems for post-mortem pro-
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Fig. 16. The Ping Pong test showing CPU and memory information.

Fig. 17. The Ping Pong test magnified with “barrier” messages shown.
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filing and analysis. The capabilities and file formats of
existing parallel profiling and analysis tools were re-
viewed, which provided a useful insight into the issues
that must be tackled in order to achieve the desired uni-
fication. We chose to focus on presenting data against
a timeline view, because this representation is common
to many of the suites that were reviewed.

We have designed and implemented a system that
can:

• Efficiently filter log files, whilst still on the origi-
nating server, in order to reduce the transfer load
on source and destination systems, and reduce the
amount of data that is transformed into RDF.

• Advertise, discover and transfer any type of log
file to a central server for inclusion in the unified
data store.

• Transform raw log data from any structured or
semi-structured log format into RDF, using a
combination of general and specific schema, al-
lowing all data to be described in common terms,
as well as allowing a precise definition of items
described by the log event.

• Annotate the transformed data in order to pro-
vide supporting data structures that span multiple
events on different nodes, for example, message
descriptions.

• Plot and visualise different types of information
against a timeline, with diverse types of data ren-
dered differently depending on the most appro-
priate way of communicating their meaning. For
example, a topographical view of program traces
and lines for profiles.

• The system also utilises OWL’s inference descrip-
tion to illustrate how data from different sources,
that uses different property types, can be com-
bined to form a single view of something mea-
sured from different systems at different frequen-
cies.

The work undertaken on Slogger using Semantic
Web standards to join this heterogeneous and distrib-
uted log data has shown that these emerging technolo-
gies have great potential. Obviously, an area of concern
is that marking-up the raw log data in RDF/XML cre-
ates very large files that need to be searched in order to
create information that can be analysed to find faults or
problems in the systems being studied. We believe the
flexibility and extensibility of the technologies that we
used outweigh the affects of working with large data
sets. In addition, the Semantic Web technologies avail-
able are maturing, becoming faster and more robust.

Moreover, the capabilities of emerging hardware (e.g.
multi-core processors, cheap RAM, and disk space)
also help overcome the problems of having to handle
very large data sets.

Slogger has been developed using Java, which al-
lows its components to be executed on any node that
has a JVM. The Outpost and Ranch systems have been
tested on GNU/Linux and Windows XP machines.
Slogger has been, and will continue to be, developed
and released under the GNU Public License. The vari-
ous GULF schemas have been released under the GNU
Free Documentation License.
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