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Abstract. Scientific workflows are a means of conducting in silico experiments in modern computing infrastructures for
e-Science, often built on top of Grids. Monitoring of Grid scientific workflows is essential not only for performance analysis but
also to collect provenance data and gather feedback useful in future decisions, e.g., related to optimization of resource usage.
In this paper, basic problems related to monitoring of Grid scientific workflows are discussed. Being highly distributed, loosely
coupled in space and time, heterogeneous, and heavily using legacy codes, workflows are exceptionally challenging from the
monitoring point of view. We propose a Grid monitoring architecture for scientific workflows. Monitoring data correlation prob-
lem is described and an algorithm for on-line distributed collection of monitoring data is proposed. We demonstrate a prototype
implementation of the proposed workflow monitoring architecture, the GEMINI monitoring system, and its use for monitoring
of a real-life scientific workflow.
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1. Introduction

Scientific workflows are used by the scientists to
perform in silico experiments. They provide numerous
benefits, among others, the automation of a computa-
tion process, ease of use important for non-IT experts,
and opportunity to share and reuse experience in the
scientific community. Monitoring of scientific work-
flows is important in many scenarios, to name a few
typical ones:

e An application developer is using a tracing and
profiling information concerning a workflow run
in order to find performance bottlenecks.

e A scientist is searching for past experiments ex-
ecuted as workflows which satisfy specific char-
acteristics in order to compare his/her results to
those obtained by other scientists.

e A scientist is searching for a provenance informa-
tion concerning a data item in order to learn what
process (workflow) was used to produce this data.

e A scientist is using a recorded execution of
a workflow in order to repeat an experiment, per-
haps slightly changing its conditions.

e A scheduler is looking for information concern-
ing invocations of specific services, gathered from
multiple workflow runs, in order to optimize

*Corresponding author: E-mail: balis@agh.edu.pl.

the usage of computational resources for a next
run.

Until recently, scientific computations were per-
formed mainly via tightly coupled, homogeneous,
parallel applications running on clusters. However, sci-
entific workflows are better characterized as loosely-
coupled, heterogeneous distributed applications, of-
ten running on Grids. Consequently, existing tools for
monitoring of applications are not suitable for scien-
tific workflows which pose new challenges for moni-
toring.

In this paper, key challenges related to monitoring
of Grid scientific workflows are presented. We specif-
ically focus on the design of a Grid workflow mon-
itoring architecture, and the problems of distributed
on-line collection and correlation of workflow moni-
toring data in a Grid. Section 2 presents the related
work. Section 3 describes the key challenges in moni-
toring of Grid scientific workflows. Section 4 presents
the design of a Grid workflow monitoring infrastruc-
ture, and its prototype implementation, the GEMINI
monitoring system. Section 5 focuses on the support
for on-line collection of workflow monitoring events.
Section 6 describes the problem of workflow monitor-
ing data correlation. A monitoring example of a Coor-
dinated Traffic Management (CTM) workflow is pre-
sented in Section 7.
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2. Related work

There are few systems that address monitoring of
Grid scientific workflows. PPerfGrid [14] deals with
collection and storage of large amounts of heteroge-
neous performance data of scientific parallel applica-
tions. Mercury [17] supports semi-online monitoring
of parallel MPI applications in the Grid. The J-OCM
monitoring system and the JMT performance measure-
ment tool [11] support on-line performance measure-
ment of Java applications using custom user-defined
metrics.

However, none of the mentioned tools address the
instrumentation and monitoring of Grid scientific
workflows. None of those tools features a runtime
instrumentation service supporting heterogeneous ap-
plications, developed in multiple programming lan-
guages.

Based on the analysis of the requirements posed
by Grid scientific workflows and a review of existing
work, some aspects of our solution have been adopted
from existing ones, others have been genuinely solved
within this work. The monitoring and instrumentation
protocols used in our work have been conceived in
SCALEA-G [22] and later developed in the collabora-
tion of the authors of this work and the authors of the
SCALEA-G. The results of the collaboration have been
published in a number of papers [2,6,20,21]. The goal
of the collaboration was to create a performance mon-
itoring and analysis infrastructure for Grid scientific
workflows. SCALEA-G focuses mainly on the perfor-
mance analysis of workflows, and, compared to our ap-
proach, it lacks, among others, the support for moni-
toring of legacy codes in a unified framework, a sys-
tematic approach to the correlation of the monitoring
data, and a support for scalable on-line collection of
monitoring events.

The concept of a Standardized Intermediate Repre-
sentation (SIR) [18] was also adopted from a previous
work within the APART working group' and devel-
oped into SIRWF (Standard Intermediate Representa-
tion for WorkFlows) within the mentioned collabora-
tion.

For monitoring of Grid legacy applications running
within scientific workflows, our previous work on the
OCM-G monitoring system for parallel Grid applica-
tions was used [5]. However, the OCM-G alone was
not fully sufficient, lacking, among others, mecha-
nisms for fine-grained runtime instrumentation. It was
therefore extended in order to support adequate func-
tionality [3,6].

L APART, http://www.fz-juelich.de/zam/RD/coop/apart/.

3. Key challenges in Grid workflow monitoring

Scientific workflows running on a Grid have a few
important characteristics which make the monitoring
of such workflows a challenging task. The Grid scien-
tific workflows can be characterized as follows:

e Dynamic, distributed, and decentralized.

e Loosely coupled in space and time.

e Composed of multiple runtime layers, e.g. ser-
vices and legacy applications.

e Heterogeneous with respect to their implemen-
tation language, infrastructure technologies, and
platforms.

Considering those characteristics, we have found the
following problems as key challenges in monitoring of
Grid scientific workflows (1) handling the inherent and
multi-aspect heterogeneity of workflows within a sin-
gle monitoring infrastructure; (2) supporting on-line
collection of workflow monitoring events; (3) monitor-
ing of workflow legacy backends; (4) recording work-
flow executions, including workflow provenance in-
formation. Monitoring of legacy applications within
workflows is described in [3] and [6]. The problem of
recording of workflow executions has been presented
in [4]. This paper focuses on the first two challenges.
They are summarized below along with the proposed
solutions, which are described in more detail in the fol-
lowing sections.

1. Addressing workflow heterogeneity. Multi-aspect
heterogeneity of workflows implies that multiple
underlying monitoring and instrumentation tech-
nologies and concepts may be involved in moni-
toring of a single workflow. To handle this diver-
sity, the Grid workflow monitoring infrastructure
should be designed as a monitoring framework.
The following design decisions were taken in or-
der to fulfill this goal:

e Adoption of technology- and platform-neutral
interfaces for monitoring and instrumentation.

o Adoption of Standard Intermediate Represen-
tation and a standardized instrumentation ser-
vice in order to support language- and plat-
form-independent instrumentation of work-
flows.

e Design of an open architecture which features
standard interfaces to support pluggable data
sources and instrumentation tools.

e Design of a standardized type hierarchy and
XML representation of workflow monitor-
ing events.
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2. On-line monitoring support for workflows. In
a Grid environment where the state of resources
is ever changing and the applications are often
long-running, it is desirable to support on-line
collection of monitoring data to enable timely
reaction to performance degradation or failures.
However, to this end, a fast discovery of work-
flow activities is required, which is made diffi-
cult by the workflow dynamicity, loose-coupling
and large scale. In order to address this challenge,
automatic resource discovery handled by the
monitoring infrastructure is proposed, which en-
ables fast discovery of new workflow activities.
A distributed data collection algorithm based on
a Subscription Coordinator has been conceived
for this purpose.

__________ 3 <<external>>
Directory Service

Instrument

]
]
]
I
I
I
I
1
Consumer Interface Evems'\—
]
]
I
Query & ]
Subscribe :
I
I
. ]
Producer Interface Ingsnmentation 1
Interface ]
Inst tati i
T . nstrumentation !
Monitoring Service h I
Events— Service
Subscription Monitor Resource
table registry

Consumer Interface

Query &
Subscribe Events

Instrument
Events

Producer Interface Instrumentation Interface

' Mutator

Consumer Interface

Enable/disable
Events instrumentation

Instrumentation

Application

()

4. Grid workflow monitoring infrastructure
4.1. Architecture

Figure 1 presents the proposed monitoring archi-
tecture for Grid workflows and a sample deployment
of the monitoring infrastructure. We assume a decen-
tralized architecture where a Monitor is deployed at
each Grid site, whose responsibilities include expos-
ing monitoring system functionality to end users. This
is done via two services — one for monitoring requests
(queries and subscriptions), the other for instrumenta-
tion requests.

A Monitor manages underlying Sensors and Muta-
tors which are responsible for actual collection of mon-
itoring events and manipulations of the monitored en-
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Fig. 1. Monitoring system: (a) architecture, (b) sample deployment.
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tities, respectively. Monitoring events are generated by
the instrumentation placed in the code of applications.
The Monitor maintains a resource registry in which un-
derlying monitored resources and their corresponding
sensors and mutators are registered. The information
about monitored resources (and supported metrics) is
published by the Monitors in a Directory Service which
is used by the consumers to discover appropriate Mon-
itors. The Monitor also maintains a table of active sub-
scriptions in order to forward events from sensors to
consumers. Alternatively, the subscription table can be
embedded in sensors to enable direct data transfer be-
tween producers and consumers.

Sensors and Mutators are collectively referred to as
Local Monitors, as they usually reside locally with re-
spect to the monitored resources. Their presence is jus-
tified by both functional and non-functional reasons.
First, some operations might not be possible remotely,
e.g., process manipulations or access to some process-
related information may require monitoring agents
with access rights equal to the monitored process. Sec-
ond, the performance concern is related to the monitor-
ing perturbation caused by additional consumption of
resources due to monitoring. The division into (global)
Monitors and Local Monitors enables the latter to be as
lightweight as possible, in order to minimize the mon-
itoring perturbation. In general, there are several per-
formance trade-offs to consider:

e Handling subscriptions can be computationally
intensive (e.g. matching monitoring events with
requests may involve event filtering, aggrega-
tion, transformation or correlation). With sepa-
rate Monitors (deployed on dedicated machines)
to serve this purpose we reduce monitoring over-
head but increase monitoring latency due to one
additional hop between event sources and sinks.

e Monitoring events generated in the instrumented
application could be sent to local or remote mon-
itors (over local or remote communication chan-
nels, respectively). In the first case, we reduce the
local network traffic but increase CPU consump-
tion due to context switches between the applica-
tion and the local monitor processes. In the sec-
ond case, we avoid the context switches, but in-
crease the network traffic and perhaps the latency
to send out the events from the application, thus
increasing monitoring perturbation.

e Buffering monitoring events in local monitors
can reduce local network traffic. Furthermore,
buffering the events in the context of the in-
strumented application can even compensate for
the CPU overhead due to context switches, men-

tioned above. On the other hand, buffering in-
creases memory consumption due to monitoring.

e Processing the monitoring events, such as count-
ing or timing, in local monitors can reduce the
network traffic and the utilization of the Moni-
tors, because, instead of full event traces, only ag-
gregated information would be sent. However, it
increases CPU consumption due to monitoring.
(Though, on the other hand, some other process-
ing, e.g. that related to the execution of network
protocol stacks, is reduced.)

On the sample deployment diagram (Fig. 1(b), sen-
sors and mutators are omitted for clarity), a Subscrip-
tion Coordinator is also depicted. This component sup-
ports on-line collection of workflow monitoring data
which is described in Section 5.

4.2. Interfaces

There are three interfaces involved in the monitoring
system: (1) the producer interface, (2) the consumer in-
terface, and (3) the mutator interface. The producer in-
terface is used to request the monitoring data. This data
can be pushed to consumers via the consumer inter-
face. The mutator interface can perform various types
of manipulations. A unique feature of our architecture
is a dedicated instrumentation interface (a kind of mu-
tator interface). A Monitor exposes two services — the
Monitoring Service and the Instrumentation Service —
which implement the producer and the instrumentation
interface, respectively.

The producer interface is based on a producer pro-
tocol defined by PDQS (Performance Data Query Sub-
scribe), an XML-based language for specification of
monitoring data requests [21]. A monitoring request
typically contains the following elements:

type of request (query or subscribe),
identification of the resource to monitor,
monitoring data type,

subscription period (only for the subscribe re-
quest).

PDQS allows to express two types of requests: query
and subscribe. A query for monitoring data synchro-
nously returns the requested data. A subscription re-
quest, in contrast, allows to specify a subscription pe-
riod in which the monitoring data will be asynchro-
nously delivered whenever it occurs, via the consumer
interface.

The instrumentation interface realizes the instru-
mentation protocol defined by the WIRL language
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(Workflow Instrumentation Request Language) [21].
WIRL, as PDQS, is an XML-based language which
can be used to specify instrumentation requests. An
instrumentation request consists of the following ele-
ments:

e type of request (get standard intermediate repre-
sentation, enable/disable instrumentation),

e gspecification of application’s processing unit to
which the request should be applied,

e instrumentation specification (for enable/disable
instrumentation): which code regions should be
affected and the position where the instrumenta-
tion should be applied (before or after a code re-
gion).

The instrumentation is dynamic and selective, i.e.
we can dynamically request to enable or disable the in-
strumentation for selected parts of the application. In
order to enable this, the instrumentation interface al-
lows to obtain an abstract specification of the applica-
tion’s structure expressed as a list of code regions in an
XML-based language SIRWF (Standard Intermediate
Representation for WorkFlows), an extension of SIR
[18]. More information about the instrumentation in-
frastructure can be found in [6].

4.3. Representation of monitoring data

Low-level application monitoring data is conceptu-
alized in Fig. 2. It is composed of a set of monitoring
events, each of which is a representation of a system
event, i.e. an event that actually took place in the ap-
plication. A monitoring event should contain at least
three pieces of information: (1) event type, (2) time

represents

Monitoring

Fig. 2. Conceptualization of application monitoring data.

stamp, and (3) event location, which describe what
happened, when and where, respectively. Event type
is an arbitrary description whose meaning is shared
between parties involved in monitoring, e.g. a ‘func-
tion call’. Usually, additional event data is needed
which is specific for a given event type. It may, for
example, specify exactly what happened (e.g. function
name: MPI_Send, parameters: P, result: R). Location
usually describes the application’s execution unit (e.g.
Process P, Thread T, Object O, Function F, Code Re-
gion C).

The following design decisions concerning monitor-
ing data representation have been adopted:

e Event types for workflows have been specified
along with the corresponding structures of event
data.

e The location information is specified in a portable
way by an Experiment Correlation Identifier (see
Section 6).

e The events are represented in XML to support
loose coupling and interoperability between par-
ties that exchange monitoring data.

4.4. GEMINI: prototype monitoring system
implementation

We have developed Generic Monitoring Infrastruc-
ture (GEMINI), an implementation of the Grid work-
flow monitoring architecture. In fact, GEMINI was re-
alized as a framework supporting monitoring of arbi-
trary entities, in which data sources can be dynamically
added as plugins, while the GEMINI infrastructure is
responsible for dissemination of resources as well as
the collection and transfer of the monitoring data.

Monitoring and instrumentation services in GEM-
INI are implemented as Globus Toolkit 4 WSRF ser-
vices.”> The producer and instrumentation interfaces
are also implemented by Sensors and Mutators, respec-
tively. However, they are exposed in a more tightly
coupled technology, ICE (Internet Communication En-
gine)? in order to improve performance of data trans-
fers. Also for performance reasons, the consumer in-
terface is implemented in ICE. The monitoring data in
the subscription mode is exchanged between Sensors
and consumers through a mediating publish/subscribe
channel realized as an ICE Storm service which en-
ables event subscription and notification based on top-
ics. The role of the mediator is twofold:

2WS-Resource Framework, http://www.globus.org/wsrf/.
3 http://www.zeroc.com.
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1. As with all publish/subscribe channels, to decou-
ple data producers from data consumers.

2. As a data-transfer relay component. Since the
monitored data is, due to performance reasons,
transfered by means of low-level, tightly-coupled
communication channels, communication
between producers and consumers across fire-
walls or private networks may pose a problem.
In such cases, the mediator channels could be
deployed at a neutral, public location to make
the communication possible, at some latency
penalty.

The mutators for Java have been developed using
the BCEL library which enables to manipulate Java
classes.* For legacy (parallel) applications, both sensor
and mutators have been based on adapting the exist-
ing OCM-G monitoring system to the GEMINI frame-
work.

5. On-line collection of monitoring data

In some cases, on-line monitoring is desirable in
order to quickly respond to problems. For exam-
ple, on-line performance monitoring might enable dy-
namic rescheduling (re-allocation of computational re-
sources) in the case of performance degradation of
some computational resources. However, the distrib-
uted and dynamic nature of workflows combined with
the fully decentralized architecture of the monitoring
infrastructure, required in the Grid, makes this task dif-
ficult to achieve.

As workflow’s activities dynamically emerge at un-
predictable time and location, a mechanism of fast
and automatic resource discovery wherein new pro-
ducers of workflow monitoring data are automatically
discovered and transparently receive subscription re-
quests on behalf of active subscribers, seems to be the
key issue to enable on-line monitoring of Grid work-
flows.

In a Grid environment we cannot assume a fully cen-
tralized monitoring architecture (i.e. one wherein all
monitoring events would go through a central location)
due to scalability problems. On the other hand, the tra-
ditional Grid Monitoring Architecture [19] in which all
resources are discovered through a global information
system, will not be sufficient. The reason for this is that
existing Grid information systems are oriented towards
query performance, not update performance, and can-

4http://jakarta.apache.org/bcel.

not ensure fast notification about new resources. For
example, the Berkeley Database Information Index, the
information system deployed at over 250 sites in the
EGEE project, features a hierarchical architecture in
which low-level Grid Resource Information Services
(GRIS) provide information to site BDII which is in
turn combined and exposed by top-level BDIIs. The in-
formation is refreshed in a top-down manner, i.e. a top-
level BDII scans site BDIIs which obtain information
from GRISes. The refresh is done by reloading the en-
tire database and rebuilding indices every 2—3 minutes
[1]. Clearly, with such a high refresh rate, this sys-
tem would not support well online monitoring of work-
flows.

We therefore argue that the monitoring infrastruc-
ture must itself, in part, support automatic resource dis-
covery. Below a solution based on a subscription co-
ordinator is proposed (Fig. 1(b)). The coordinator me-
diates in electing a main monitoring data producer for
a given workflow. To this end, all producers should first
register in the Coordinator. The main producer takes
care of subsequent discovery of producers, also using
the Coordinator for this purpose. The proposed algo-
rithm is presented in Fig. 3. In this example of monitor-
ing a workflow w f1, we have two producers of moni-
toring data — Monitors M 1 and M 2. The scenario also
features a Data Production Coordinator (Coordinator,
B0), a Directory Service DO, and a Client C0O. The
scenario proceeds as follows:

1. First, Monitor M1 registers as producer for w f1
in the Coordinator.

2. As M1 is the first w f 1 producer to come, the co-
ordinator elects it as the main producer for work-
flow wf1 and registers M 1 in a directory service
DO.

3. A client C0 which needs to monitoring workflow
w f1, sends a request to the directory service, and
obtains the address of M1 as the producer for
wfl.

4. CO0 subscribes in M1 after which an asynchro-
nous transfer of monitoring events is started, per-
haps including some archive events collected be-
fore subscription.

5. After a while, a new producer for workflow
wfl — M2 — occurs. It attempts to register as
a producer in the coordinator but it gets a re-
sponse that M 1 is already the one.

6. M?2 thus registers in M 1 as a producer for wf1.

7. Since M1 has a registered subscription from C0
it sends a subscription request to A/2 on C0’s be-
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Fig. 3. Data collection algorithm for distributed monitoring.

half. Consequently, M2 starts pushing monitor-
ing events to CO.

The described algorithm can be characterized as fol-
lows. First, the client needs to discover data produc-
ers only once, and needs to connect to only one pro-
ducer. Second, though the Coordinator is centralized,
it is very lightweight due to its simple functionality,
and it has to handle only arrivals of new producers,
not the entire monitoring traffic. Indeed, we have de-
veloped a prototype implementation of the Coordina-
tor and performed a model-based performance evalu-
ation which revealed that the proposed monitoring in-
frastructure can handle workloads as high as around
10 job arrivals per second (this depends on the machine
where the Coordinator is deployed). For comparison,
the current peak workload in the EGEE project Grid in-
frastructure reaches 100,000 jobs per day, i.e. not much
above 1 job per second.

6. Correlation of monitoring data

The term correlation in the context of distributed
systems has at least two important meanings:

1. In distributed systems that use asynchronous
messaging the problem of matching a request
with a response is called the correlation problem.
The solution is to use a unique correlation iden-
tifier, which should be the same in the request
and in the matching response. This solution is
known as the Correlation Identifier Pattern ([15],
pp. 163-170).

2. In event notification or monitoring systems, the
term event correlation denotes the process of de-
tecting event patterns (aka global events, com-
posite events) in a number of seemingly unrelated
events. For example, a detected event pattern may
reveal a possibility of a security attack.
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In the context of workflows, correlation is men-
tioned in [7]. In general, a process P (i.e. a workflow)
may be orchestrated by multiple orchestration engines
Py. The correlation problem is thus, according to the
authors, fo associate different parts of process P exe-
cuting in different Pj,. However, distributed orchestra-
tion engines are not of our concern. We focus on a dif-
ferent problem. For monitoring of workflows we shall
define the correlation problem as follows:

Workflow monitoring data correlation problem is to
associate different pieces of monitoring data as parts
of data related to the same experiment.

This problem has been, of course, partially recog-
nized. In [13], Grid Workflow Identifiers (GID) are
proposed. The GIDs should be created in a “work-
flow originator” and “propagated to all workflow com-
ponents”. While this is the right way to go, it does
not go far enough. The reason for this is that “work-
flows” described in this work are not scientific work-
flows composed of services and executed by a generic
orchestration engine. Rather, a “workflow” is meant as
a sequence of different Grid “services” (such as portal,
broker, replica manager) whose coordinated coopera-
tion results in execution of a job, which in turn does
the actual work, and later the results are retrieved.

This model of a ‘flat’ grid identifier is not sufficient
for monitoring of scientific workflows, whose execu-
tion needs the cooperation of many Grid services as
well, but which are themselves composed of many dis-
tinct parts, namely activities, and invoked applications,
the last often being separate legacy jobs, which may
well be parallel jobs, again composed of multiple dis-
tinct processes.

The correlation of workflow monitoring data must
enable association of different pieces of monitoring
data at their different levels in the workflow hierarchy,
for example events from “workflow WO, activity A1”,
or “workflow W1, activity Al, legacy job L2”. Con-
sequently, for the purpose of monitoring we introduce
an Experiment correlation identifier which is charac-
terized as follows:

1. Experiment Correlation IDentifier (ECID) is
an extendable XML document which is passed
between different parts of executing scientific
workflow, as well as Grid middleware services
involved.

2. ECID should be included in each event produced
by monitoring and it should reflect the exact
space location of the event in the executing work-
flow.

3. ECID is extended on a handover of workflow’s
execution control from P; to Py, P; and Py, being
different, physically distinct, parts of the execut-
ing workflow.

4. Actor responsible for the extension of ECID on
handing over the workflow execution to task P
is the initiator I}, of Py; Iy, is normally either the
orchestration engine or another workflow task P;
which invokes a subtask P.

An example of an ECID for an experiment task’s sub-
task is shown below:

<ecid>
<experiment id="el">
<task id="tl">
<subtask id="sl"></subtask>
</task>
</experiment>
</ecid>

Experiment correlation identifier is also important
for request-reply correlation. A client could request
a subset of monitoring events that belong only to a cer-
tain part of the workflow (e.g. MPI job L; invoked
from activity A3). The hierarchical ECID enables the
monitoring system to deliver only this subset of events
to the client, instead of making the client responsible
for filtering.

The technical problem how to pass the Experiment
Correlation Identifier to workflow parts remains. Un-
fortunately, this problem is technology-dependent. In
the case of workflow activities implemented as web
services this is actually a specific case of a more gen-
eral problem of passing context to web services. Cur-
rent web service implementations do not support con-
text information in a standard way. For pure, stateless
web services, the only information passed to an in-
voked service is via operation’s parameters. There are
a few possibilities to pass context information, as dis-
cussed in [8], for example:

e by extending service’s interface with additional
parameter for context information,

e by extending the data model of the data passed to
a service,

e by inserting additional information in the SOAP
header, and reading it from within the service.

None of those methods is nice and clean. The first
one forces to extend the interface of the service which
is the least transparent option. The second one is not
transparent for the end user, either, and additionally is
service-specific. The third one is only possible if ac-
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cess to SOAP header is feasible, and it depends on the
implementation of the web service container. An addi-
tional option is to use the state provided by a service,
but this only works for services that support state, e.g.
WSREF-based ones.

However, the problem of context-aware web ser-
vices has been recognized. A Web Service Context
Specification has been proposed [23] whose aim is to
deal with Web Service context in a standardized way.
This specification supports passing the WS context in
the SOAP header and defines standardized XML struc-
tures to do it.

Therefore, it is natural for us to also follow the
SOAP header approach. The workflow enactment en-
gine used in our case — GWES (Grid Workflow Exe-
cution Service) [16] inserts additional information to
SOAP headers which is accessed in the services (from
instrumentation code) to obtain workflow and activity
identifiers.

For the legacy jobs, ECID is passed as command-
line parameters. However, in the case of MPI applica-
tions command line parameters might be passed only
to the master process. There are a few possibilities to
deal with this. For example, the master process can be
instrumented to broadcast the correlation identifier as
the first operation after MPTI_Init. This is the solu-
tion we employ.

7. Monitoring example — Coordinated Traffic
Management workflow

To demonstrate workflow monitoring, we have cho-
sen the Coordinated Traffic Management (CTM) work-
flow constructed from application services provided by
Softeco Sismat within the K-Wf Grid Project [9]. This
application targets the computation of the emission of
traffic air pollutants in an urban area and has been de-
veloped in tight collaboration with the Urban Mobil-

ity Department of the Municipality of Genoa, which
provided a monolithic implementation of the model for
the pollutant emission calculations, the urban topology
network and real urban traffic data. The CTM applica-
tion workflow has been divided into several different
steps in order to allow the semi-automatic composi-
tion of services and the definition of a set of ontologies
which describe the CTM domain and feed the system
with the information needed for the proper selection
and execution of services [12].

The main CTM application functionalities are best
route, traffic flow and air pollutant emissions calcu-
lations. Data graphical representation in SVG format
is also supported. For monitoring, a complex use case
was used. It consisted of several executable transitions
and three control transitions (Fig. 4).

The first activity in the workflow is the generation
of a session ID. Next, there are two activities done in
parallel — the computation of start and end zone district
polygons. Subsequently, node coordinates for start and
end are computed, also in parallel. After that, a set of
calculations is done for nodes computed in earlier ac-
tivities. Finally, computations responsible for calculat-
ing path length, traffic flow and air pollutants emission
follow. Results are also written to the SVG format file,
which is done in one of the activities.

During the running of the above scenario monitoring
data were acquired by instrumentation of the workflow
enactment engine and workflow activities. For each ac-
tivity, several events were produced: when it was ini-
tialized, created, went to the active state, at start and
end of the actual running phase, and when it has com-
pleted. Each of these events has a precise time of oc-
currence. Activities such as initialization, creation, ac-
tivation and completion should be treated as a point
in time. The running state is treated as a period of
time.
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Fig. 4. CTM workflow.
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Fig. 6. Monitoring results — detailed local view.

For visualization of the monitoring results, we have when it was invoked. Figure 5 presents a global view
used the Jumpshot tool.” To this end, events collected showing all activities. However, due to the time scale,
from GEMINI were translated to Jumpshot’s SLOG-2 only the running periods can be seen. Figure 6 presents

format. We can observe how the workflow was ex-
ecuted, how much time each activity has taken, and

SSee http://www-unix.mcs.anl.gov/perfvis/software/viewers/
index.htm. events and periods) are shown.

a zoom of a particular diagram section to show more
details — individual events can be seen now. Addition-
ally, windows describing individual bars (representing
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8. Summary

We have presented a Grid monitoring architecture
for scientific workflows. Specific requirements result-
ing from the characteristics of Grid scientific work-
flows were analyzed and an appropriate solutions to
deal with workflows’ distribution, dynamics and het-
erogeneity, were proposed. A Grid workflow moni-
toring architecture has been introduced. It has been
pointed out that the traditional Grid Monitoring Archi-
tecture needs to be extended in order to support on-line
collection of workflow monitoring data. The GEMINI
monitoring infrastructure has been presented, and an
example of monitoring of a real-life workflow from the
K-Wf Grid Project has been shown.

Currently we are working on an ontology-based
monitoring data model which can be used to repre-
sent a meaningful information about previously run-
ning workflows (experiments), and the usage of this in-
formation to extract knowledge about the experiments
and the computing infrastructure.
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