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An efficient format for nearly constant-time
access to arbitrary time intervals in large
trace files
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Abstract. A powerful method to aid in understanding the performance of parallel applications uses log or trace files contain-
ing time-stamped events and states (pairs of events). These trace files can be very large, often hundreds or even thousands of
megabytes. Because of the cost of accessing and displaying such files, other methods are often used that reduce the size of the
tracefiles at the cost of sacrificing detail or other information.

This paper describes a hierarchical trace file format that provides for display of an arbitrary time window in a time independent
of the total size of the file and roughly proportional to the number of events within the time window. This format eliminates the
need to sacrifice data to achieve a smaller trace file size (since storage is inexpensive, it is necessary only to make efficient use
of bandwidth to that storage). The format can be used to organize a trace file or to create a separate file of annotations that may
be used with conventional trace files. We present an analysis of the time to access all of the events relevant to an interval of time
and we describe experiments demonstrating the performance of this file format.
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1. Introduction

A powerful technique for understanding the behav-
ior and performance of parallel programs is the visu-
alization of trace files (also called log files) collected
during execution of the program. A trace file contains
several basic elements. Typically, these are generated
during the execution of a program by short code se-
quences (so as to minimize the perturbation of the ex-
ecution caused by the tracing [16]) and are written ei-
ther to disk (buffered, of course) or to memory as they
are generated. Trace files typically contain sequences
of events; an event has a timestamp and some data.
Pairs of events may be used to define a state or dura-
tion; these often represent the entry to and exit from a
routine or a block of code. A collection of events for a
single process, thread, or processor is sometimes called
a timeline.
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Such post mortem analysis based on trace files has
been an important tool [2–4,8–11,13–15,18–20,22] for
performance analysis. Many of these tools display a
trace file as a GANTT chart, with the x-axis repre-
senting time and the y-axis process or thread number.
However, as parallel programs use increasing numbers
of processes or threads and run for longer times, the
amount of data collected into a trace file can become
extremely large, exceeding hundreds or even thousands
of megabytes.

One reaction to the problem of displaying this
amount of data has been to summarize the data, for ex-
ample, displaying total event counts and distributions
of times within each state. Unfortunately, sometimes
one must examine the detailed behavior of a program
to understand it. Indeed, over the years, we have con-
tinued to find most useful the ability to examine small
time intervals in considerable detail. One approach that
has proved effective is the GANNT chart, in which the
“state” of a process is represented by a colored bar ex-
tending over a time interval and can be compared visu-
ally with the states of other processes at the same time.
Many tools (see [22], for example) augment this view
with further detail, such as arrows to show messages
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and popup windows to display detail data on process
states or messages. Even when the simplest form of
GANNT chart is being displayed, however, the basic
problem of scalability arises, and the issues discussed
in this paper can be thought of in this context.

Therefore, we state the general problem as follows.
We assume that a parallel program produces as it runs
a large volume of data on program behavior, includ-
ing (possibly nested) states of processes varying over
time. We make no assumptions about the maximum
lengths (in time) of those states, though we do assume
that most states are short in time. We wish to design
a file format that will support the graphical display of
this data in a scalable way. Scalable display means that
the CPU time and memory requirements for display
of some time interval about a particular point in time
depend on the number of graphical objects to be dis-
played there and not on the total amount of program
data nor on the particular time chosen. A rough approx-
imation of its appearance (minus the colors) is shown
in Fig. 1.

Section 2 describes the software context of our
work, explains the problem in a little more detail, and
identifies some related research. Section 3 describes
the design of the SLOG2 file format, including a one-
pass algorithm for creating the SLOG2 file from data
presented in timestamp order. A one-pass algorithm is
essential because we assume that the size of the trace
files is extremely large. Section 4 shows the results of
some experiments with our implementation of SLOG2.
Section 5 analyzes the amount of data that must be read
to correctly render an arbitrary interval of time, under
reasonable assumptions about the distribution of data
in the trace file. Section 6 describes some enhance-
ments that further improve the SLOG2 file, along with
an analysis of the design choices. Section 7 gives a
summary of the paper.

2. Background

In this section we provide some context that moti-
vated this work, describe the nub of the problem, and
discuss related efforts in the area of scalable interpre-
tation of trace files.

2.1. Motivation

Our motivation comes from our attempts over the
years to improve the usability and scalability of our
trace file visualization tool called, in its current incar-
nation, Jumpshot [22]. Jumpshot is the display compo-
nent of a standard pipeline for trace file visualization
as shown in Fig. 2.

In the tools that accompany the MPICH2 implemen-
tation of MPI, the elements of this pipeline were origi-
nally as follows:

logging: The MPE library provides functions that al-
low the efficient buffering in memory (with spill
to disk if necessary) of timestamped events.
These typically record the beginning and end-
ing of program states. This library is accessi-
ble to both applications and an MPI profiling li-
brary for recording all MPI calls as states. Mes-
sage events record sizes and tags for messages
between processes or threads. Clock differences
are corrected, and the event streams from various
processes are merged into a single file.

Fig. 2. Standard pipeline for trace file generation and display.

Fig. 1. Example of a trace file display. Only the data within the dashed box is displayed; the visualization program must render all data as if the
entire data is displayed, clipped to the dashed box. This includes the rectangles that enter and exit the dashed box and the lines connecting the
rectangles. Note that in practice, the time interval shown by the visible window may be only 1% or less of the entire trace file.
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Fig. 3. On the left, Jumpshot summary view. Each line represents thousands of messages, and each block represents the states in that time interval,
proportionally represented. On the right, zoomed-in view of the same trace file, by a factor of roughly 1000.

Fig. 4. Longer pipeline with conversion of trace file to SLOG file.

tracefile: The file written by MPE logging is in a for-
mat we call CLOG. It is a more or less standard
file of timestamped events and message informa-
tion.

display: Jumpshot is a full-featured trace visualiza-
tion program. It can show a high-level, summary
view (see Section 3.4) of the entire trace and
zoom in by factors of thousands to scroll through
details of program behavior. Jumpshot screen-
shots are shown in Fig. 3. The one on the right is
the Jumpshot version of Fig. 1.

Our desire to have Jumpshot provide constant,
quick, interactive response has motivated the work re-
ported here. An important step was to realize that the
same file structure could not be optimal for both the
logging process and the display process, particularly
for large trace files. Hence we introduced a separate
file format (SLOG) to provide for scalable operation of
a display program, leading to a system like that shown
in Fig. 4.

The SLOG file contains drawable objects such as
rectangles representing states and arrows representing
messages as well as individual events, along with an
index to allow direct access to internal places in the

file. SLOG2 is the second generation of this approach.
While the MPE logging mechanism and the Jumpshot
display program are of some interest in their own right,
this paper is about the SLOG2 file format. SLOG2
files are accessed by a CLOG-to-SLOG2 convertor and
Jumpshot through a well-defined interface, so the for-
mat can be used in other contexts.

2.2. The tricky part of the problem

What makes zooming into files (either events or
states) challenging is that the obvious division of the
file into timestamp-delimited “frames” does not work,
even if an index is provided for direct access, since
an accurate representation of a time interval requires
knowledge of events that lie in other frames.

In this simple representation of Fig. 5, it is easy
to see that the accurate portrayal of the central frame
cannot be done without knowledge of the contents of
other frames. Given that states may be nested, the be-
ginning and end of a state that must be shown in a
given frame might be many frames away. The straight-
forward, nonscalable approach, used in our early visu-
alization systems [10,22], was to read the entire file,
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Fig. 5. Three adjacent frames, showing necessity of knowing content
of adjacent (and further away) frames.

so that all necessary information was available to the
display program. Such files took a long time to load,
strained memory limits, and made interactive zooming
and scrolling unacceptably sluggish. The key to any
scalable approach must be to allow display of a section
of the file without reading the whole file.

2.3. Related work

Our first approach (SLOG1 [21]) used frames cor-
responding to time intervals, with a frame index for
scalability. Included in each frame were events from
other frames that were “relevant” to the display of this
frame. This approach had two problems: first, the two
passes (forward and backward) through the CLOG file
needed to produce the SLOG1 file were suboptimal,
and second, the “shadow” events in a frame sometimes
crowded out the frame’s proper events. When over-
crowding happened, the trace file conversion process
took an unacceptably long time.

A recent Dagstuhl seminar provided several other
approaches to scalability. The Scalatrace project [17]
focuses on mechanisms for compressing the size of the
trace files so that assorted analysis tools (such as statis-
tical analysis and replay mechanisms) can still be ac-
curate. The Barcelona group [5] has demonstrated that
one apparently obvious scalability problem for large
numbers of processes – the limitation on the number
of horizontal lines on the display – can be partially
overcome for some traces by using a JPEG-like graph-
ical compression on the (virtual) large display needed.
Most similar in motivation to our own approach is the
Open Trace File format OTF [12], which approaches
the “tricky” problem by periodically writing “snap-
shot” records into the trace file so that the trace can
be examined starting at any one of these points. This
approach is similar to the one we originally took in
SLOG1.

3. The SLOG2 file structure

In this section we describe the SLOG2 file format,
how it is created and how it is used.

3.1. The main idea

The goal in SLOG2 is to enable the display of graph-
ical objects described by one or more trace files. One
way to look at this is that we wish to display a small
region of a much larger picture, as shown in Fig. 1.

A common way to organize data of this kind for
graphical display is to define bounding boxes. This ap-
proach provides a simple and efficient way to access
only the data necessary to draw the region that overlaps
the bounding boxes. This approach is shown schemat-
ically in Fig. 6. It is related to the R-tree approach de-
scribed in [1,6].

Perhaps the best way to describe the SLOG2 for-
mat for the trace data is to describe the algorithm for
computing the tree shown in Fig. 6. For simplicity, we
will assume that the trace records cover a time interval
[0, T ] and that the data in the original trace file con-
sists of states (represented as rectangles in the display)
sorted by end time. That is, each rectangle is described
by a thread number (y coordinate in the visualization)
and a time interval [ts, te) (x coordinate in the visual-
ization). Here we use the half-open interval. The rec-
tangles are sorted by end time, te. All events (points in
time) are simply placed in the containing leaf node in
the tree.

The SLOG file format describes a binary tree, de-
fined recursively as follows. The root node represents
the time interval [0, T ]. For any node, representing the
time interval [t1, t2), there are two children represent-
ing the time intervals [t1, 1

2 (t1+t2)) and [ 1
2 (t1+t2), t2).

A node is a leaf of the tree if the length of the time in-
terval is less than or equal to ΔTmin. This value is cho-
sen to work well with the tools that will make use of the
SLOG file. Below we describe one way in which ΔTmin
can be computed. In Section 6, we describe a number
of generalizations to this definition. States (rectangles)
are placed into the smallest (in time interval) contain-
ing node.

In order to display any graphical objects around any
chosen time, only a subset of the nodes of the tree must
be read. Specifically, in order to display a time t, only
the nodes of the tree whose time intervals intersect with
this time must be read and displayed. To further reduce
the response time seen by users when scrolling forward
or backward in time, if t is near either end of an in-
terval, we may choose to read the adjacent interval. In
this case, “near in time” could be defined in terms of
the expected scrolling behavior.

In this simplest form, the tree is completely bal-
anced. To determine the size of the tree, we need to
know the minimum length of time for a leaf node in the
tree, ΔTmin. Under the assumption that records are uni-
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Fig. 6. Bounding boxes for the trace file in Fig. 1. The figure shows the intervals defined as bounding boxes as horizontal brackets, along with
the hierarchy of bounding boxes. Colors indicate the assignment of graphical objects to bounding box levels.

formly distributed throughout the trace file, the value
of ΔTmin can be computed as follows. Assume that,
for efficient display, the data read should be limited to
nmax. Further, assume that the size of the file is nf and
that the display will show only a single time interval at
any time. Then

ΔTmin =
1
2
T2−�log2

nf
nmax

� � 1
2
T

nmax

nf
.

(The extra factor of two allows the display program to
read two leaf nodes, since any time interval of duration
ΔTmin will intersect with at most two leaf nodes.)

If the tree is not perfectly balanced, then ΔTmin can
be computed in terms of the depth L of the unbalanced
tree, as

ΔTmin =
1
2
T2−L.

Note that in the pathological case of all events within
an infinitesimal interval of time, our approach provides
no benefit. However, in our experience, events in trace
files, while not uniformly distributed, are usually dis-
tributed smoothly throughout most of the trace file.

3.2. SLOG2 file format

The bounding-box idea for a trace file and the algo-
rithm to compute the bounding boxes can be applied

to many trace file formats. In this section, we briefly
describe the SLOG2 file format. This file exploits the
post mortem nature of trace files. This allows us to col-
lect data into logical groups, rather than forming it as
a stream of records. It also briefly mentions additional
data that may be included within the SLOG2 file to aid
in analysis or display of performance data. The file for-
mat is summarized in Fig. 7.

In the following, we assume that the tree has levels 0
through L. For reference to the algorithm presented in
Fig. 8, we provide a correspondence with the notation
used in that algorithm, specifically we use R� as the
objects within the relevant time range that are placed
at level � in the tree.

header: The file header, containing information on the
version of SLOG2, name of the program and the
user, and other data about the file.

leaf: Block of data corresponding to the lists of objects
RL, that is, the leaves of the tree.

nonleaf: Block of data corresponding to R� for � < L,
that is, the interior nodes in the tree.

tree directory: Block of offsets to the beginning of
each treenode (both leaf and nonleaf nodes),
along with the start and end times of each tree
node. The offsets are 8-byte integers, in bytes,
relative to the beginning of the file.

postamble: Contains a 4-byte integer indicating the
location, relative to the end of the file, of the be-
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Fig. 7. A simplified block diagram of a complete SLOG2 file. Note that SLOG2 does not define a file format; this block diagram shows one
possible organization to illustrate both the contents of the file and a structure that allows the creation of an SLOG2 file in a single pass.

for � = 0, 1, . . . , L do {
Set R� to empty
Set ΔT� to [0, 2−�T )

}
Open trace file
while not done {

read the next state r.
accumulate any statistics or coordinate mapping data on r

for � = L, L − 1, . . . , 0 do {
if the end time of r exceeds the end time of ΔT�, then {

Write R� out. Record the location of R� in the file in directory D. Set R� to empty.
Set ΔT� to the next time interval (add 2−�T to the interval).

}
if the time extent of r is contained within ΔT�, then {

Add r to R�

break from for loop
}

}
}
for � = L, L − 1, . . . , 0 do {

Write out list R�. Record the location of R� in the file in directory D.
}
Write out the directory D.
Write 2L − 1 (the number of directory entries) as an integer

Fig. 8. One-pass algorithm to create an SLOG2 file from a trace file.

ginning of the tree directory. Also contains addi-
tional offsets to other data blocks that are part of
SLOG2 but are not described in this paper.

The ordering of the blocks is chosen to make it easy
to write an SLOG2 file with a single pass. With the ex-
ception of the tree nodes, each of these blocks is rela-
tively small.

3.3. Single-pass creation of SLOG2 file

Assume that we have a trace file containing states,
sorted by endtime. The trace file may also contain
events; these are easily handled, and thus we do not in-
clude them in the description of this algorithm. In this

section we show how to create the SLOG2 file in a sin-
gle pass.

Recall that a state represents a single drawable ob-
ject with a known start and end time and is often drawn
as a rectangle. We wish to create an SLOG2 file from
the original trace file in a single pass. We assume that
most states will fit in the leaves (i.e., their duration
is less than ΔTmin). Our algorithm creates a postorder
representation of the tree; that is, when moving sequen-
tially through the SLOG2 annotation, the tree nodes
are visited in postorder (children before parents).

Let the root of the tree have level 0 and define the
level of the children of a node a one greater than the
level of that node. The tree has levels 0 through L. For
each level �, let there be a list of states R�, initially
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empty. In addition, for each level �, there is a time in-
terval ΔT� that specifies the time interval for the cur-
rent tree node on level �. We keep track of the loca-
tion of the data in each node of the tree within the file
in a directory; this directory has 2L − 1 entries and is
relatively small. The directory should be in preorder to
simplify searches. In order to simplify the description,
each node on level � covers a time interval of length
2−�T .

The algorithm to write an SLOG2 file is shown in
Fig. 8.

We could also write the directory at the beginning of
the file, since we know how long it is, but for reasons
discussed below, we put it at the end. Normally, the
lists R� can be maintained in memory, with the excep-
tion of RL. Note, however, that elements added to RL
can instead be written directly to the output file. Since
the number of elements added to the other lists is likely
to be small, those lists can be maintained in memory.
If for some reason the lists R� cannot be maintained
in memory, separate temporary files may be used for
them. In this case, some elements may need to be writ-
ten to disk twice.

The description of the algorithm considers time in-
tervals and calls them states. In fact, a display program
may need to draw a number of different objects, in-
cluding states (such as the duration of a routine along a
timeline), messages (arrows from an event in one time-
line to an event in a different timeline), and even poly-
gons (e.g., containing all of the states in a collection of
timelines associated with a collective communication
operation). All of these can be handled by the SLOG2
file format; to emphasize this, some of the text refers
to “drawables” rather than the simpler case of “states”.

3.4. Using the SLOG2 file for timeline display

Reading all of the tree nodes for a given interval in
an SLOG2 file consists of these steps:

1. Position at the end of the file.
2. Read the value of L.
3. Move backwards 2L − 1 (fixed-sized) records,

and read the directory.
4. For each node whose time interval intersects with

the desired time interval, read the corresponding
node.

Here we finally see how the SLOG2 format supports
responsive interactive zooming and scrolling, while
solving the “tricky” part of the problem. The direc-
tory at the end of the file allows the display program
to seek to and read a set of nodes, containing all the

intervals relevant to a time interval about a given point
in time selected with the mouse. As one scrolls for-
ward or backward at a given zoom level, many – if not
most – of the events needed for the display will already
be in memory, and only new leaf nodes will need to be
read. A limited amount of speculative read-ahead (in
both directions) makes scrolling smooth.

After implementing the basic approach described
here, we found an additional use for the hierarchical
structure of the SLOG2 file. By storing summary data
accumulated during the CLOG-to-SLOG2 conversion
process in the lower (closer to the root) nodes of the
tree, we could present an initial view of this summary
data by reading only these nodes and none of the leaf
nodes at all. Thus, this view comes up quickly when
Jumpshot is started, and presents a summary view of
the entire run. It shows “message arrows” represent-
ing perhaps thousands of individual messages each and
colored blocks representing proportional amounts of
time spent in each state (see the left side of Fig. 3).
Such a summary view, while lacking in detail, does
show overall time distribution to various dominant
states as well as the overall communication pattern as
it varies over the course of the run. Its primary purpose
is to guide the user to where to zoom in. When the user
zooms in, which is done by sweeping out an arbitrary
extent of time with the mouse), he may encounter a
number of levels of summary view before getting down
to the individual states and messages in the leaf nodes.
Because of the SLOG2 file structure, each zoom oper-
ation needs to read only a limited number of nodes of
the tree.

The above algorithm subdivides the data along the
single dimension of time. Subdivisions in more di-
mensions are possible. For example, a 2-D (quad tree)
decomposition that uses the vertical axis (process or
thread) as the second dimension simplifies vertical
scrolling and scalability in the number of separate
threads. A 3-D (oct-tree) decomposition could use
thread in process as the third coordinate (with process
the second), or it could use state category as the third
coordinate.

The preceding discussion has assumed that the trace
file already contains the necessary states describing
rectangles and other graphical objects. In practice, a
trace file contains only events, along with enough in-
formation to generate the states, periods, and asso-
ciations that we wish to display. We note that the
process to convert events into displayable objects can
be merged with the code to access the next state (ex-
ploiting the sequential access to the trace file needed by
the algorithm in Fig. 8), preserving the one-pass nature
of this algorithm.
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4. Experiments

Performance of an interactive program like Jump-
shot is primarily a subjective issue. Versions of Jump-
shot that read CLOG files were unacceptably slow; the
current version, which exploits the features of SLOG2
files, is satisfyingly responsive. Nonetheless, we de-
cided to carry out some experiments in order to quan-
tify the benefits of the file format. We focus on just the
time it takes to read those sections of the file requested
by a user zoom or scroll operation. This includes, for
the SLOG2 case, the time to read the directory and the
various nodes of the SLOG2 tree necessary for display-
ing the relevant time interval.

We compare the time to read a section of trace file
stored in the conventional way (ordered strictly by
event time), CLOG2 format, with one stored in the
SLOG2 format. We profiled FLASH2’s sedov3d prob-
lem on 16 processes and 700 timesteps to generate a
19 GB CLOG2 trace file, which is then converted to
generate a 10 GB SLOG2 file.

In traditional trace display program, the trace events
are first assembled into drawable objects that are
then fed into the display program in increasing end-
time order. The increasing end-time ordering of draw-
ables forces the visualization program to parse the
whole trace file whenever the viewport’s time range is
changed. For example, a long running state starting at
the very beginning and ending at the very end of the
program will not be seen by the visualization program
till the whole trace file is completely parsed. Essen-
tially the response time of the traditional display pro-
gram is characterized by the time necessary to parse all
the trace events into drawable objects. For our 19 GB

CLOG2 trace file, the time is 314.5 s, which is too slow
for any real-time visualization program.

For the 10 GB SLOG2 file, the first experiment is
performed by first zooming to the center of the file (in
time) till we see all the real drawables with a viewport
size typical of Jumpshot operations. Then we scroll
forward in time with the same viewport size till we
reach the end of the trace file. The second experiment
is similar to the first except we scroll backward in time
after the zoom. Plots of the time taken for each zoom
or scroll operation vs the start time of the viewport for
these experiments are shown in Fig. 9. The most ex-
pensive operation in these two experiments is the initial
zoom step which takes 140–180 ms. The majority of
scroll operations take less than 100 milliseconds. This
is over 3000 times faster than with the older CLOG
format.

The last experiment we performed aims to show the
zooming performance of the SLOG2 format. We first
zoom to the center of the trace file as in the previous ex-
periment. Then we jump to the left and then to the right
of the center of the trace file with nonoverlapping view-
ports. The range of jumps increases till it reaches the
total duration of the trace file; that is, the last jump of
the experiment is from the beginning to the end of the
trace file, hence the most expensive operation, about
150 ms. The data is shown in Fig. 10. Most operations
take less than 100 ms. The data shows the time that
it took to move to the time location indicated on the
x-axis from the previous location in time.

Figures 9 and 10 show that the SLOG2 file format
allows almost constant access time of drawables of in-
terest by the visualization program, about 100 ms for
our 10 GB SLOG2 file. The fast accessing time allows

Fig. 9. Plots of time taken for zoom and scroll operations: (left) zoom to the center of the trace file, and then scroll forward till the end of the
trace file; (right) zoom to the center of the trace file, and then scroll backward till the end of the trace file.
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Fig. 10. Zoom to the center of the trace file, and then jump to the
left and then right of the center of the trace file with nonoverlap-
ping viewports of same size. The range of the jumps increases till it
reaches the total duration of the trace file.

the display program to be responsive in a typical desk-
top environment.

5. Quantifying data motion

One feature of the simple approach described in Sec-
tion 3.1 is that some objects, even though they have
very short duration, will be forced into lower (closer
to the root) levels of the tree because they have the
bad luck to cross the joint between two leaf boxes.
For example, any drawable object that starts before
T/2 and ends after T/2 will be forced into the root
node, no matter how short its duration. In principle,
this situation could create problems for the SLOG2 for-
mat by moving too many drawable objects out of the
leaf nodes of the tree. Fortunately, we can show that
in many cases this is not a problem; further, a small
change to the format allows SLOG2 to handle all but
very pathological cases.

Note that if there is a limit on the number of objects
(boxes, arrows, etc.) that can cross any point in time,
then the number of objects in the lower-level (nonleaf)
bounding boxes can be bounded. If only states are in-
cluded, the number of objects can often be effectively
bounded. However, if drawable objects include con-
nections between send and receive events or nonblock-
ing I/O operations, the number of objects that can cross
a particular timeline can be very large.

We can estimate the number of records in each node
for some simple situations. Consider the case where all
records have the same duration δt and are uniformly
distributed throughout the trace file. Consider first the

Fig. 11. Any record whose time center falls within the grey area is
assigned to the corresponding node. Note that most of the records
are assigned to leaf nodes.

algorithm in Fig. 8, where the time intervals for each
node on a level are disjoint (nonoverlapping). Let the
levels be 0, . . . , L, so that there are 2L leaves. For each
leaf interval of width ΔTmin, any record whose center
starts 1

2δt past the beginning of the leaf’s time interval
and before 1

2δt before the end of the leaf’s time interval
will be placed within that interval. Thus, if there are N
records, all but Nδt/ΔTmin will be placed in the leaf
nodes. Of the remaining records, Nδt/(2ΔTmin) will
be placed in the nodes at the next level, Nδt/(4ΔTmin)
in the next, down to level 0. This approach is illustrated
in Fig. 11, where level 0 is at the top of the figure (to
maintain the usual convention of trees growing down
in computer science).

The number of records read to display any time in-
terval can be calculated as follows, under the assump-
tion that the intervals are all of the same length in time
δt. Since the display of any time interval requires read-
ing all time intervals that intersect that time interval,
one interval on each level is read. The amount of data
(not counting the leaf node) is simply

L−1∑

k=0

Nδt

2LΔTmin
= L

Nδt

2LΔTmin
= L

N

T
δt.

However, many of these records are unneeded. Con-
sider the time t = 0. Only the first leaf must be read
to provide all of the necessary data; these additional
records are required only because they crossed the ar-
tificial boundaries that were defined between leaves. In
the worst case, only

2
Nδt

2LΔTmin
= 2

N

T
δt

records must be read; these correspond to the intervals
at the left and right end of a leaf node. Thus, the num-
ber of unnecessary records that must be read is

(L − 2)
N

T
δt.
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In many cases, this will be a small number. For ex-
ample, consider the case where the drawable objects
do not overlap. Then Nδt � T , and this expression
is bounded by L − 2. Since L = log2(T/ΔTmin), this
number will rarely be large. If the degree of overlap
is p, for example, there are p processes or threads;
the number scales linearly with the degree of overlap.
Further, the number of drawable objects at any time
must be smaller than the number of available pixels
(in the vertical dimension) for the graphical representa-
tion to be meaningful. This requirement also provides a
bound on the number of overlapping objects in a useful
SLOG2 file.

If too many drawable objects of short duration
cross the boundaries between tree nodes, however, the
amount of unnecessary data that must be read could be-
come large. To handle this case, we can generalize the
bounding box notion to include overlapping bounding
boxes. For example, if the bounding boxes at the leaves
of the tree overlap by δt, then any drawable object of
duration no more than δt can be placed in some leaf
node. More complex distributions of duration can be
analyzed and used to guide the amount of overlap at
each level. This strategy handles the pathological case
mentioned above.

6. Extensions and refinements

Here we describe some more detailed variations and
alternative uses of the main SLOG2 idea.

6.1. Real-time file generation

Instead of creating an SLOG2 file from an existing
trace file (as in Fig. 4), we can create the SLOG2 file
directly from the program that is creating the logfile. If
the trace file is created at one time when the program
is exiting, then there is no problem. However, trace file
tools commonly bound the amount of memory used to
store trace file data; the trace file is appended to as the
internal buffer fills up. Hence, the total time interval
T for the entire run is not known in advance. In this
case, the algorithm in Fig. 8 can still be used with a
few changes. Specifically, the total number of levels is
not set in advance; instead, as a “leaf” node list RL
fills up (reaches a maximum memory limit), a new time
interval is created, possibly incrementing the number
of levels. In other words, one starts with a single level
(L = 0) and adds levels as needed. The resulting tree
will not necessarily be full. This is the reason for plac-
ing the directory at the end of the file, since in this case
the number of levels is not known a priori.

6.2. Variable leaf sizes

We can accumulate records until we reach a limit
based on memory size. We then end that leaf and begin
a new leaf. Note that the duration of a leaf in this model
is not constant. In this case, instead of preselecting a
value of ΔTmin, the length of time for each leaf interval
is determined as the records are read.

6.3. File compression

Trace file formats, particularly for large amounts of
data, often choose to define each data field with as few
bits as possible in order to reduce file size. Because
the SLOG2 file is (often) generated after the run of a
program, we can use a different approach based on ap-
plying data compression to each tree node as a block.
The tree node header indicates which type of compres-
sion has been used on the rest of the tree node. Among
the possibilities are no compression, predefined static
compression (in other words, the conventional trace-
file approach based on defining the number of bits for
each field), and dynamic compression using, for exam-
ple, the algorithms used in the gzip program (see, for
example, [7, Section 9.1.2] for a description of the gzip
algorithm). Dynamic compression allows us to elimi-
nate the compromises of field lengths that static com-
pression schemes must make. An additional advantage
of dynamic compression, particularly when the file is
accessed over a slow network, is that it can reduce the
time to read the data, even when the time to decom-
press the file is included.

6.4. Annotating existing files

An alternative to writing an SLOG2 file from trace
data is to simply annotate an existing trace file with the
additional information required to define the nonleaf
nodes in the tree of bounding boxes. The same one-
pass algorithm can be used to create this annotation
file, with the difference that instead of writing out the
leaf nodes of the tree, a record is written that points to
the range of bytes in the original trace file containing
the events for that leaf node. A display or analysis pro-
gram that is using an annotation file must then filter the
data from the original trace file, since that block of data
will contain events that may belong to other (nonleaf)
nodes in the tree. In this way, an SLOG2 annotation
may be combined with any other trace file.
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7. Summary

We have described a hierarchical file format,
SLOG2, that enables a full-featured trace file display
program to remain interactively responsive in the face
of large trace files. We have provided the algorithm for
creating the file and presented some analysis to support
the decisions that we made. Our measurements show
that interactive visualization of a multigigabyte trace
file is possible with the SLOG2 format. We have also
described a number of options and extensions to the
implementation described here.
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