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Abstract. Micro- and nanofluidics pose a series of significant challenges for science-based modeling. Key among those are the
wide separation of length- and timescales between interface phenomena and bulk flow and the spatially heterogeneous solution
properties near solid-liquid interfaces. It is not uncommon for characteristic scales in these systems to span nine orders of
magnitude from the atomic motions in particle dynamics up to evolution of mass transport at the macroscale level, making explicit
particle models intractable for all but the simplest systems.

Recently, atomistic-to-continuum (A2C) multiscale simulations have gained a lot of interest as an approach to rigorously
handle particle-level dynamics while also tracking evolution of large-scale macroscale behavior. While these methods are clearly
not applicable to all classes of simulations, they are finding traction in systems in which tight-binding, and physically important,
dynamics at system interfaces have complex effects on the slower-evolving large-scale evolution of the surrounding medium.
These conditions allow decomposition of the simulation into discrete domains, either spatially or temporally. In this paper, we
describe how features of domain decomposed simulation systems can be harnessed to yield flexible and efficient software for
multiscale simulations of electric field-driven micro- and nanofluidics.
Keywords: Multiscale, multiphysics, electrodynamic transport, microfluidics, desalination, puppeteer

1. Introduction

The term multiscale simulations is commonly used
to describe model systems whose characteristic scales
(typically spatial or temporal) permit the system sim-
ulation to be divided into two or more separate sim-
ulation models linked through a handshake bridge.
Multiscale simulations are finding increasing use for
modeling systems where the actions of small-scale,
tight-binding events have looser coupling to larger-
scale system evolution. Multiscale multiphysics sim-
ulations (sometimes referred to as “hybrid methods”)
apply disparate physics models for fine-grained and
coarse-grained regions of the multiscale simulation.
Since these types of simulations are the focus of this
paper, we will from here on use the term “multiscale”
to mean “multiscale multiphysics”.

Multiscale simulations can be coarsely divided into
two main categories. In concerted multiscale simula-
tions, the differently represented sections of the sim-
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ulation system are evolved together, with informa-
tion transfer performed between the models at every
step. In stepwise multiscale simulations, the mod-
els progress independently, and the simulation results
from each stage are used as initial parameters or
boundary conditions for subsequent stages. Each of
these approaches is appropriate for different simulation
types; concerted multiscale simulations permit very
tight integration of coarse-grained models into fine-
grained simulations while stepwise multiscale simula-
tions are better suited for providing fine-grained foun-
dations for long-timescale coarse-grained simulations.

Multiscale simulations have gained significant trac-
tion in select simulation fields such as coupled quan-
tum-mechanical/molecular mechanics (QM/MM)
systems [1]. Domain decomposition for multiscale
simulations of fluidic systems was explored by Had-
jiconstantinou [2], who showed that high efficiencies
can be achieved when a multiscale system is appropri-
ate for the Schwarz alternating method [3], in which
the problem is divided into subdomains that are solved
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in an alternating fashion until convergence is reached.
Later research applied similar methods to various mi-
crofluidic and nanofluidic simulation systems [4,5].
For a thorough review of multiscale phenomena in
micro- and nanofluidics, the reader is directed to a re-
cent review by Hu and Li [6].

This paper describes a design strategy for com-
posing multiscale simulations out of existing single-
physics simulation components. The goal is to make
use of current, fully validated simulation codes for
multiscale simulations and to restrict modifications to
these packages such that their numerical behavior and
performance are not adversely affected. Two examples
are shown using Schwarz decomposition for multiscale
simulations involving solid-liquid boundaries, demon-
strating how the multiscale coupling between the sys-
tems can be handled in a way that is minimally invasive
on the domain solutions using a combination of sys-
tem setup, simulation boundary conditions, and simple
callbacks managed by a “mediator” component to han-
dle data translation and convergence management. It is
further shown how this design matches well with the
design decisions made in the Sundance [7] and PST
[8] component toolkits, allowing construction of mul-
tiscale multiphysics simulations software without re-
quiring significant changes to existing simulation com-
ponents.

2. Multiscale approach

Consider a multiscale simulation system consisting
of a large continuum simulation with one or more
nested atomistic simulation regions. We can now clas-
sify physics modeled in the system into three cate-
gories:

1.1 Interactions completely contained within a sin-
gle simulation region.

1.2 Interactions crossing simulation regions that
can be confined to a handshake region shared by
two simulation regions (e.g. boundary concen-
trations and mass transport).

1.3 Interactions that cross simulation regions but
cannot be confined to a handshake region (e.g.
electric fields).

The systems considered in this paper pose a set of
challenges for the multiscale simulation:

2.1 The system timescale is orders of magnitude
greater than the durations of individual atom-
istic simulations. Time integration, thus, re-

quires non-uniform progression of simulation
time.

2.2 Each nested atomistic simulation is orders of
magnitude more expensive than the continuum
evaluation. To complete the simulation in a rea-
sonable amount of time, atomistic results need
to be reused or interpolated whenever possible.

2.3 If the atomistic simulations have to share elec-
tric field information with the continuum do-
main, there may be limits to the total per-
turbation the atomistic system is permitted to
undergo between updates to the continuum sys-
tem.

2.4 For efficient sampling, atomistic simulations
commonly need to be run in replicate. This
poses constraints on when and how the contin-
uum model can be updated with particle infor-
mation.

It is easy to envision a high-level algorithm for run-
ning these multiscale simulations (Algorithm 1).

The challenge, however, is to implement the algo-
rithm in an efficient manner on parallel platforms with
minimal requirements for reinventing or rewriting ex-
isting simulation software. This challenge is addressed
here in a component-driven manner as shown in the
control flow diagram in Fig. 1.

This paper will demonstrate how the introduction of
a select few design constraints and a high-level “pup-
peteer” component that handles interfacing and data
translation can greatly facilitate the design and imple-
mentation of simulation software from existing single-
physics simulation software.

The design constraints imposed on the system can
be enumerated as follows:

for each outer (controller) iteration do
Identify nested simulations
if simulation can be interpolated then

yield interpolated value
else

for each nested simulation do
Run nested simulation
Store value in interpolation table
yield simulation results

end for
end if
Gather and process nested simulation results
Update controller simulation

end for
Algorithm 1. Pseudocode overview of a multiscale simulation.
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Figure 1. Algorithm 1 represented with a component diagram. Labels inside dotted regions identify functionality managed by the puppeteer
component.

3.1 The puppeteer simulation component has a view
of all simulation input data, takes care of trans-
fer of information between components, trans-
lation between data layouts, scales, or represen-
tations, and testing for termination criteria such
as convergence or error conditions.

3.2 The low-level simulation components interact
only with the puppeteer and not directly with
“peers” within the simulation.

3.3 Overall time progression is handled by the pup-
peteer; low-level simulations get notified of ini-
tial simulation time (if needed) at the start of
each iteration.

3.4 When a low-level simulation component pro-
vides callbacks to extract shared information,
the order in which these callbacks is made must
not affect the results of the simulations.

Although it should, in principle, be easy to have re-
cursively nested puppeteer simulation component, the
designs explored in this study had a single puppeteer
communicating with continuum and atomistic simu-
lations. The puppeteer simulation components were
written in Python, while the continuum and atomistic
simulation components used C++, C and Fortran77.
Bindings between the puppeteer and the lower-level
components were generated using SWIG [9], using
directors1 to permit cross-language polymorphism
for callback interfaces.

This software design enabled us to set up the sim-
ulation system using a Schwarz decomposition, with
the added wrinkle that the low-level simulation com-
ponents may, through callbacks, require intermediate
evaluations from the controller simulation. Further,
this design aided in the efficient utilization of parallel
computer platforms by easing the task of subdividing

1Added in SWIG-1.3.20.

a system of distributed-memory nodes into subgroups
for individually parallel replicate simulations (Fig. 2).

In the following sections, this general design is ap-
plied to two important model systems involving elec-
trophoretic transport. Section 3.2, uses simulations of
electrodynamics in microfluidic channels to highlight
features of multiscale models with very-large separa-
tion of scales, while Section 3.3 addresses a system
with relatively significant overlap of scales to highlight
handling of callbacks for field evaluations and conver-
gence testing.

3. Application to electrodynamic transport

3.1. Multiscale challenges

This work addresses the use of multiscale multi-
physics simulations for two types of electrodynamic
flow; microfluidics and electrodesalination. Both sys-
tems have substantial features in common, making
them suitable candidates for the development of multi-
scale simulation components.

• Tight-binding atomistic regions are located at
solid-liquid interfaces, providing guidance for
spatial decomposition of the simulation systems.

• Driving force for the systems comes from applied
electric fields originating at discrete locations and
affecting all locations of the simulation systems.

• The desirable macroscale behaviors in the system
arises from the interactions of charged particles in
electric bilayers at the solid-liquid interfaces with
the applied electric fields.

• Related systems have been well studied using
computational fluid dynamics methods.
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Figure 2. Schematic management of a multiscale simulation on 32 nodes with MPI-unaware continuum simulations and four replicate BD
simulations (from Section 3.3).

• Both continuum and atomistic methods have been
applied to a range of related systems, including
small-scale models of microfluidic systems and
biological ion channels.

At the heart of these systems is the electric dou-
ble layer formed in an polarizable medium exposed to
an electrostatic field. The characteristic width of this
double layer is commonly described using the Debye
length as a measure of the decay length for screening
out of electric fields by mobile charges. In a solution
containing mobile ions, the Debye length κ−1 is:

κ−1 =

√
εε0kBT

2NAe2I
, (1)

where ε is the dielectric constant, ε0 is the electric per-
mittivity in vacuum, kB is Boltzmann’s constant, T is
the solution temperature, NA is Avogadro’s number,
e is the electron charge and I is the ionic strength of
the electrolyte given by

I =
1
2

A∑
i=1

ciqi (2)

in which A is the number of ionic species in solution,
ci is the solution concentration of species i and qi is its
charge number.

As the electrolytes in this double layer become more
concentrated and less like the bulk aqueous environ-
ment, e.g. in tightly confined spaces, high charge on
the solid surface, or high salt concentrations, core ap-
proximations behind the continuum model become less

appropriate (for a debate on when and how this break-
down occurs, see [10–12]). To address this, succes-
sor models must account for finite particle sizes, non-
uniform viscosity of water under these conditions, and
increasingly ordered structure arising in both water
and electrolyte [13] While some of these can be sim-
ulated using Lattice Boltzmann methods [14] or clas-
sical density functional theory [15], atomistic methods
are still the most common way of addressing the in-
creased system complexity using system-agnostic pa-
rameters [16,17].

The following sections illustrate how atomistic mod-
eling can be coupled with continuum model to selec-
tively model the physics at charged solid-liquid inter-
faces while giving insight into behavior and evolution
at system-scale.

3.2. Electroosmotic flow

Electroosmotic flow is the transport of a solu-
tion (generally water) containing an excess charge
(matched by a countercharge in its surrounding solid
environment) is subjected to an electric potential. As
ions in the solution migrate due to the applied field,
the bulk solution gets pulled along due to viscous
drag. Electroosmotic flow is a foundation for microflu-
idics, which have become a cornerstone in systems to
efficiently manipulate small amounts of fluids, such
as chemical analysis, detection systems, inkjet print-
ers, and biomedical assay systems. Microfluidic sys-
tems have been the subject of extensive modeling us-
ing continuum methods [5,18,19] and particle simula-
tions [20].
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Electrokinetic microfluidic systems are conceptually
quite simple. One or more narrow channels (�1 mm)
are patterned into a solid material (e.g. glass, silicon,
or polycarbonate) and connected to at least one fluid-
filled reservoir. As the fluid fills the channel, proton ex-
change between the fluid and chemical groups on the
channel walls results in a charge separation between
the fluid and solid, which resides in an ionic double
layer in the solution closest to the wall. When an elec-
tric potential is applied along the fluid-filled channel,
the net charge of this double layer gets “dragged” along
the electric field (electroosmotics flow), and the rest of
the solution in the channel gets pulled along due to sol-
vent viscosity. This implies that in order to predict flow
characteristics in microfluidic systems, a model system
must tie together atomistic-level insight into the forma-
tion and behavior of the electric double layer near the
channel wall and the long-timescale behavior dictated
by the geometry and design of the microfluidic system
[21,22].

The Helmholtz–Smoluchowshi relationship [23] re-
lates the slip velocity uslip for bulk electroosmosis to
the electric potential E at the slip-plane between the
double layer at the interface and the shielded electro-
static potential ζ at the solution slip plane near the
wall.

uslip = − εζ

μ
E (3)

so that if the ζ-potential is uniformly constant, the elec-
troomostic veolocity will be proportional to the electric
field everywhere [24]. In general, though, microchan-
nels may well have non-uniform charge characteris-
tics, whether non-deliberate or as a design feature
used for micromixers [25] or superfast electrophoresis
[26].

The detailed characteristics of the electric double
layer arise from an interplay between wall charges and
the ionic solution [21]. The Gouy–Chapman model
(expressed through the Grahame equation) does a
reasonable job predicting electrostatic potential at a
charged membrane in solution when the charge on the
membrane is sufficiently low:

σ2 = 2εε0RT
N∑

i=1

(
Ci∞ e

−ZiE0F

RT − 1
)
, (4)

where σ is the charge density of the membrane sur-
face, ε is the dielectric constant of the medium, ε0 is
the dielectric permittivity in vacuum, N is the number

of ionic species in solution, Ci∞ is the concentration
of ionic species i at inifinite distance from the wall, E0
is the electrical potential at the membrane surface, F
is Faraday’s constant, R is the gas constant, and T is
the temperature. The Stern modification to the Gouy–
Chapman model takes the finite sizes of solute ions
into account, creating a region containing no coun-
tercharges (the Stern layer) adjacent to the charged
surface. While the Grahame equation and the Gouy–
Chapman–Stern formulation can give reasonable es-
timates of electrostatic potential in an electrolyte so-
lution near a charged membrane, although it cannot
account for the effects of localized variances in wall
charge or chemical composition as first-principles pa-
rameters for continuum simulations of electroosmotic
flow in microchannels with non-uniform wall charac-
teristics [21], the inverse has traditionally not been
true, and it is only very recently that quantitative mea-
sures of membrane charge in solution became possi-
ble [27].

3.2.1. Formulation
Continuum model: If the microchannel is sufficiently
wide (100 nm–100 µm) [6], electroosmotic flow in mi-
crofluidics can be described using the Navier–Stokes
equations for incompressible fluids [28]:

∇ · u = 0, (5)

∂u
∂t

+ u · ∇u = −∇p + ν∇2u, (6)

where u is the flow velocity vector, p is the pressure
normalized by density and ν is the kinematic viscosity.

We have previously investigated continuum simula-
tions of microfluidics simulations with chemically re-
acting species [29]. In this study, we neglect chemical
reactions and focus on water containing non-reactive
electrolytes. In this case, the transport of solute species
is governed by [28]:

∂ci

∂t
+ ∇ · [ci(u + ue

i)] = ∇ · (Di∇ci), (7)

where ci is the concentration of species i and Di is
the corresponding diffusivity. The electromigration ve-
locity ue

i accounts for the electrophoretic movement of
electrically charged species relative to the bulk flow.
This velocity is given by [28]

ue
i = −βiziF ∇φ (8)

where βi is the electrophoretic mobility for species i,
zi is the charge number, F is the Faraday constant
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(9.648 × 104 C/mol) and φ is the electrostatic field po-
tential.

Allowing for concentration field gradients, the elec-
trostatic field potential, φ can be obtained from the cur-
rent continuity constraint [28],

∇ · (σ∇φ) = −F
∑

i

zi∇ · (Di∇ci) (9)

as addressed in [29]. For simplicity, this study uses a
constant electrostatic field throughout the simulation
system, but the multiscale setup would be identical for
a simulation with spatially dependent field strengths.

The diffusivity Di and the mobility βi are coupled
through the Nernst–Einstein equation [28]

Di = RTβi, (10)

where R is the universal gas constant and T the tem-
perature.

Since the double layer is delegated to the atomistic
model, the continuum system is assumed to satisfy the
electroneutrality condition

∑
i

zici = 0 (11)

everywhere in its domain.

Atomistic simulation: The molecular dynamics sim-
ulations solve Newton’s equations of motion for N in-
teracting particles:

mi
∂2ri

∂t2 = Fi,t, i = 1, . . . , N , (12)

where Fi,t is the force acting on particle i with coordi-
nate ri and mass mi at time t. For this study we chose
the Gromos96 force field, which has been fully doc-
umented elsewhere [30]. Time integration of the MD
system was performed using the Leapfrog algorithm
and heat gained through viscous friction was removed
using a Berendsen thermostat [31]:

∂v
∂t

=
F
m

+
1

2τ

(
T

T0
− 1

)
v, (13)

where T0 is the target temperature (300 K) and τ is the
time coupling constant for the velocity rescaling (set to
0.1 ps).

As mentioned previously, the entire effect of the
electric double layer is handled by the MD simulations,

which also has to satisfy the electroneutrality condi-
tion (11). Thus, the net charge on the segment of the
channel wall in the MD simulation system is countered
by an equal and opposite solution charge from the elec-
trolyte. To ensure that the atomistic simulation system
was sufficiently large to contain the double layer, MD
simulations were performed on model systems of vary-
ing size and the population densities of electrolyte ions
relative to the wall were computed using the radial dis-
tribution function

gAB(r) =
〈ρB(r)〉

〈ρB 〉local
(14)

=
1

〈ρB 〉local

1
NA

×
NA∑
i∈A

NB∑
j∈B

δ(rij − r)

4πr2 , (15)

where 〈ρB(r)〉 is the particle density of particles in B
at distance r from particles in A and 〈ρB 〉local is a nor-
malization factor (the average density of particles in B
around particles in A).

These radial distribution functions provide a mea-
sure of the net charge distribution in the simulation
system. To force the net overcharge to zero at a spe-
cific distance d, the simulation system is made sym-
metric across a plane parallel to the wall section. In
practice, this means that each MD simulation contains
two walls, spaced 2d apart, as illustrated in Fig. 3.

Each MD simulation was constructed as a slab re-
gion, periodic along x and y. The z-edges of the sim-
ulation box were capped with a silicon lattices cut
along the (001) vector. Unfilled valences facing to-
ward the interior of the channel were capped with hy-
droxyl groups and unfilled valences facing away from
the channel were capped with hydrogen atoms. Partial
charges were assigned to the first few layers of atoms
based on ab initio Hartree–Fock electronic structure
calculations with the 6-31G(d,p) basis set and nat-
ural population analysis [32] performed using the Mas-
sively Parallel Quantum Chemistry Program MPQC
[33]. Atomic partial charges and bonded force field pa-
rameters for the walls are given in Tables 1 and 2 re-
spectively.

For systems with charged walls, excess negative
charge was assigned equally to all hydroxyl oxygens
along the walls. This charge assignment strategy was
previously used by Qiao and Aluru [20] for modeling
electroosmotic flow. During dynamics simulations, the
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Figure 3. The radial distribution function for potassium in a 10 nm wide model channel with a charge of −0.1 C/m2 on the walls.

Table 1

Atom types and partial atomic charges for Silicon walls. Atom labels
are defined in Fig. 4

Label Gromacs type Charge

H(1) HO 0.4312

O(2) OA −0.7340

Si(3) SI 0.5664

Si(4) SI −0.2636

Si(5) SI 0.0000

Si(6) SI 0.0000

H(7) H 0.0000

silane hydrogen atoms were held fixed in space but all
other wall atoms were allowed to move. The interior of
the slab was filled with SPC/E waters [34], Na+ and
Cl− ions were added to obtain the desired salt con-
centration, and excess Na+ or Cl− ions were added to
counter the net charge on the walls.

Each MD evaluation was run with five to ten repli-
cate simulations for improved sampling. An electric
potential was applied along the x-axis and flow rates
were calculated by counting fluxes across planes par-
allel to each of the principal coordinate axes. Each MD
simulation was allowed to equilibrate for 30 ps before
the external electric field was turned on, followed by a

Figure 4. Labels used for the silicon walls.

Table 2

Bonded parameters used for Silicon walls. Atom type assignments
are given in Table 1

Bond b0 kb

Si–Si 0.23500 251040.

Si–H 0.10900 374468.

Si–OA 0.16300 251040.

Angle th0 cth

Si–Si–Si 109.500 397.480

Si–Si–H 109.500 397.480

Si–Si–OA 109.500 397.480

Si–OA–HO 109.500 397.480

Dihedral q0 cq

Si–Si 0.000 167.36

Si–OA 0.000 3.766
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1 ns equilibration run and a 4 ns production run with
an external field.

The simulation system was extended by 2 nm along
the z-axis and long-range electrostatics were evaluated
using Particle-Mesh Ewald summation [35] with a 1
nm explicit cutoff, fourth-order grid interpolation and
0.12 nm grid spacing.

3.2.2. Multiscale implementation
The multiscale simulation setup is depicted sche-

matically in Fig. 5. The overall simulation is driven by
the continuum model, which at each timestep identi-
fies discrete locations along the channel wall at which
to request electroosmotic flow rates. The simulation
framework allows for table lookups or interpolation
of these values, although the interpolation component
was not implemented for this study. When the wall
conditions differ sufficiently from earlier evaluations,
a model builder component gets called to construct an
MD system corresponding to the solution conditions
requested by the continuum model, MD simulations
get run for the system (as described above), and a post-
processing component computes flow rates, averages
them over the replica simulations and reports the net
velocities back to the wall handler.

The implementation of this multiscale scheme re-
quires very little invasion into the individual simulation
components:

• The individual MD simulations can be carried out
using an unmodified version of the Gromacs sim-
ulation program.

• The component for interpolation and tabulation
of MD results consisted of several subcompo-
nents to generate input files for the MD sim-
ulations, gather simulation results, etc. Most of
these required only a few hundred lines of python
scripting code and assistance from a few general-
purpose particle modeling components.

• The continuum simulation code was unchanged
from earlier all-continuum work, except for the
introduction of logic to identify and request MD
simulations at specific points. All told, these
amounted to only a small fraction of the overall
simulation program.

If the characteristic timescales for the particle and
continuum methods were of a compatible magnitude,
the multiscale simulations of these systems could
be directly implemented according to the schematic
shown in Fig. 6. While this type of multiscale de-
composition has been used successfully for dense fluid
flows [2] and materials simulations [36], the charac-
teristic timescales for our simulations differ by far too
much to permit this direct coupling. To permit coupling
between the systems, the simulation takes advantage of
the relatively smooth variation of chemical properties
and slow time variance of the continuum solution con-
ditions (in time-dependent problems) to perform in-
terpolation both through space (i.e. along the channel
wall) and in time.

To perform the interpolation in space, and to pick
the locations in space where MD evaluations are re-
quested, the implementation relies on spline interpo-
lations. A key assumption to accomplish this is that
smoothly varying input conditions for the MD model
will result in smoothly varying MD predictions (an as-
sumption that should hold for most physical systems,
unless there are bifurcations in the underlying physics).
For situations where this holds, the locations to per-
form MD evaluations at can be selected as the spline
point locations of a spline interpolant that represents
the MD input conditions well. Starting with the end
points of the interval on which an interpolant is needed,
a next spline point is successively chosen as the point
where the spline interpolant of the MD input condition
profile, based on the previously selected spline points,
deviates the most from the true input profile. Once the

Figure 5. Flow chart for multiscale microfluidic flow simulations.
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Figure 6. A schematic overview of the division between particle- and continuum models in electrokinetic microfluidics.

spline interpolant approximates the true input condi-
tion profiles to within a desired tolerance, MD evalua-
tions are requested, conceptually with the input condi-
tions corresponding to the spline points.

In practice, this scenario needs to be amended
slightly, however, to account for the fact that the MD
system can only accommodate a finite number of dis-
crete input states, as it has a finite, countable number
of particles. For example, the need to balance any wall
charge with a discrete, integer number of ions in solu-
tion means that only a limited number of charge densi-
ties can be realized, with a granularity that depends on
the number of particles in the MD system. To account
for this, the spline points are restricted to conditions
that can be realized with the MD system, and the toler-
ance on the accuracy of the spline interpolant needs to
be consistent with the granularity of the MD systems.

Further, given the high cost of the MD simulations,
all MD results are stored in a table, which can be
queried for matches between current input conditions
and those of previously evaluated systems. This way,
only newly encountered situations need to be evalu-
ated, resulting in significant time savings. The exten-
sion of this scheme to a full-blown tabulation proce-
dure with interpolation between input conditions is the
subject of future work.

The final set of new input conditions is forwarded
on to an MD model builder, where simulation systems
similar to the one shown in Fig. 3 are constructed to
match the desired conditions in the solution and on
the wall. Each MD evaluation is performed as a set

of replicate simulations that are run in parallel, post-
processed to extract flow rate information, and finally
gathered and reported back to the interpolator compo-
nent.

Upon return from all MD solvers, the desired macro-
scale observable (in this case the electroosmotic wall
velocity) is reconstructed over the full interval using
a spline interpolant through the earlier selected spline
points.

3.2.3. Results
For a proof of concept, multiscale simulations were

performed of the 2D steady-state flow-field through a
straight microchannel, 1 cm long in the streamwise,
x-direction and 100 µm deep in the y-dimension. The
wall charge along both channel walls was set to a uni-
form −0.1 C/m2 with a local increase in magnitude to
−0.14 C/m2 near the middle of the channel as shown
in Fig. 7. For simplicity, the electric field strength was
assumed to be a constant 0.35 V/nm in the streamwise
direction.

In order to perform the multiscale coupling, the
wall charge profile was approximated with a cubic
spline profile. Using the procedure outlined in Sec-
tion 3.2.2, this charge profile was approximated to
within the resolution of the MD solver with spline
points at just 4 unique charge values. For each of
these 4 charge values, the corresponding electroos-
motic velocity was computed on the microscale with
the MD solver component. The wall velocity bound-
ary condition on the continuum level was then recon-
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Figure 7. The wall charge density as a function of position along the channel wall.

Figure 8. Streamwise velocity profile in bottom half of the domain resulting from the wall charge densities in Fig. 7.

structed with a cubic spline through those velocity
data.

Figure 8 shows the resulting 2D streamwise veloc-
ity field. Note that since the flow field is symmetric
along the centerline, only the bottom half of the do-
main is shown. Upon inflow to the domain at x = 0,
the velocity field is uniform. Further downstream,
however, the increase in the wall charge magnitude
accelerates the electroosmotic flow at the boundary.
For continuity reasons, this generates a secondary re-
circulating flow field, superimposed on the uniform
flow field, resulting in a lower velocity near the cen-
ter of the channel. After some distance, viscosity
smoothens the velocity field again, resulting in a near-
uniform flow field by the time the channel exit is
reached.

The effects of local changes in the electroosmotic
flow velocity are important as the secondary flow fields
caused by them increase mixing in the microfluidic
channel. In some cases, increased mixing is a de-
sired property, and channel designers deliberately ad-
just wall properties in order to create these recircula-
tion zones. In other cases, increased mixing is to be
avoided as it dramatically reduces the separation effi-
ciency of the channel. For either situation, the multi-
scale coupling scheme developed here allows predic-
tion of the outcome of variations in wall properties,
which is essential for design purposes.

3.3. Nanoporous electrodialysis membranes

Water purification is a large and growing issue
across the world. Shortages of water suitable for hu-
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man consumption affect a significant percentage of the
world’s population [37], contributing to rising energy
costs [38,39], global instability, and increased rates of
death and disease [37].

Water purification reverse osmosis or thermal means
are mature technologies with proven scalabilities.
However, they require large amounts of energy and
may, in many cases, be needlessly exhaustive in the re-
moval of ionic species.

Electrodialysis is the third most common method for
large-scale desalination of water [37]. The method re-
lies on electrophoretic transport of solute ions from
a diluate (source) stream through ion exchange mem-
branes and into a concentrate (sink) stream. This ap-
proach, thus, differs from reverse osmosis and thermal
desalination methods in that solute ions are removed
from a water stream, rather than the other way around,
and that only ionic solutes are removed from the source
stream. These characteristics facilitate the design of
flow-through electrodialysis systems (shown schemat-
ically in Fig. 9), can help reduce the effects of fouling
and clogging of desalination membranes, but have also
largely limited the methods to water sources with low
salinity.

Selective electrodialysis is a relatively recent ap-
proach to treatment of marginally impaired water. In
selective electrodialysis, the ion exchange membranes
are chosen such that they facilitate transport of specific
target ions more than those of common, non-toxic ionic
solutes. Since the amount of salt transported across the
ion exchange membrane is now only a fraction of the
overall salt concentration in the source stream, these

systems are expected to achieve substantially higher
energy efficiency than reducing the concentrations of
all ionic solutes to levels dictated by the least desirable
species [40].

A core requirement for the design of selective elec-
trodialysis systems is availability or design of selective
ion exchange membranes. In this section, we address
simulation methods to study selective ion transport
through nanoporous membranes, using atomistic simu-
lation methods to account for the interactions of solute
ions with the membrane material and continuum meth-
ods to address the effects of applied potential, concen-
tration polarization, and other system-scale effects.

3.3.1. Formulation
Continuum model: The Poisson–Nernst–Planck
(PNP) model [41] has become a key simulation method
for ion channels. It consists of a transport equation for
the species concentrations ci:

∂ci

∂t
+ ∇ · [ci(u + ue

i)] = ∇ · (Di∇ci) (16)

coupled with the Maxwell equation for the electric po-
tential φ:

∇ · (ε∇φ) = −ρe − ρp, (17)

where Di is the diffusion coefficient, u is the bulk con-
vective velocity field, ρe is the ionic charge density in
the solution, computed as ρe = F

∑
i zici, ρp is the

density of fixed charges (e.g., on the membrane), ε is

Figure 9. A schematic of an electrodialysis stack. Negatively charged (cation exchange) membranes are open to positive ions, positively charged
(anion exchange) membranes are open to negative ions.
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Figure 10. Schematic drawing of the BD simulation geometry for a nanopore.

the electrical permittivity of the medium and ue
i is the

electrophoretic velocity of species i, obtained from

ue
i = −βiziF ∇φ, (18)

where zi is the valence, F is the Faraday constant, and
βi is the electrophoretic mobility, related to the diffu-
sion coefficient through the Nernst–Einstein equation:
Di = RTβi, with R the universal gas constant and
T the absolute temperature.

Atomistic model: Due to the characteristic size- and
time scales of ion transport through nanopores of rel-
evant size, the particle simulations cannot be car-
ried out using all-atom molecular dynamics. Instead,
the atomistic system is represented as an overdamp-
ened Brownian dynamics simulation, a stochastic par-
ticle dynamics system based on the Langevin equa-
tion:

mi
d2xi(t)

dt2

= Fi(xi(t)) − miγi
dxi(t)

dt
+ Ri(t), (19)

where i is a particle index (i = 1, 2, . . . , N ), mi and xi

are the mass and position, γi is the (possibly position-
dependent) friction coefficient, Fi is the systematic
force and Ri(t) is the random force acting on the ith
particle at time t.

Overdampened Brownian dynamics are the special
case of equation 19 in which the time step dt is suf-
ficiently long that any particle momentum at time t is
fully dissipated at time t+Δt (equivalent to γΔt � 1).
In this case, the Langevin equation can be integrated
using a simple explicit scheme [42]

xi(t + Δt) = xi(t) + Fi(t)
Δt

γimi
+ xi(Δt), (20)

where xi(Δt) is a Gaussian distributed noise with zero
mean and a standard deviation 2kBTΔt(miγi)−1.

The systemic force contribution, Fi(t) to particle i in
solution consists of contributions from an applied elec-
tric field (Ffield), interactions with charges on the mem-
brane wall (Fmembrane), and a reaction field describing
interaction between particle i and all other particles in
solution (Freaction):

Fi(t)

= Fi,field + Fi,membrane

+ Fi,particle−particle + Fi,particle−mesh. (21)

The BD simulation geometry is shown schemati-
cally in Fig. 10. The system is run as a non-equilibrium
simulation, with the absolute number of particles con-
strained within each domain (inlet and outlet) of the
simulation system. The nanopore is aligned with the
z-axis of the simulation system, and flux is monitored
through the xy-plane at the center of the nanopore. At
each simulation step, concentration is maintained in
the inlet and outlet domains by moving particles be-
tween the handshake regions at the edges of the simu-
lation system.

Due to the non-uniform dielectric environment,
commonly used accurate ways of accelerating long-
range electrostatic calculations for multi-particle sys-
tems, such as Particle Mesh Ewald summation and Fast
Multipole methods, are not appropriate for particle-
particle evaluations. Long-range forces are obtained
through direct Coulomb summation, computing forces
along the shortest path through the solution phase.

3.3.2. Multiscale implementation
While the solution for this force is simple in a pure

atomistic system, the solution here is complicated by
the fact that the force contributions are strongly cou-
pled between the atomistic and continuum regions. For
a sufficiently small number of particles, the force con-
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Figure 11. Flow chart for multiscale electrodesalination simulations.

tribution can be obtained by solving all electrostatic in-
teractions at the continuum level, with explicit charges
placed at the particle positions in the atomic simu-
lation. This becomes computationally intractable for
large numbers of particles or long simulation dura-
tions.

In order to reduce the overall computational cost of
force evaluations for the particle domain, some core
assumptions are made:

• The electric field resulting from the applied
(driving) electric potential is computed from an
all-continuum solution of the simulation domain,
permitting Fi,field to be obtained through O(N )
evaluations at the continuum level.

• Membrane charges are restricted to the atomistic
domain and assumed to be invariant. This permits
Fi,membrane to be pre-computed onto a grid and ob-
tained through Hermite interpolations.

Timescales between the continuum and atomistic
models overlap notably more in this simulation than
in the preceding simulations of electroosmotic flow. In
a fully time integrated scheme, this could be accom-
modated through projective integration [43], but in the
current study the focus was on steady-state transport
through the nanopore. The simulation deviates from a
traditional Schwarz-decomposition scheme due to the
field evaluation callbacks between the BD and con-
tinuum components. Since destructive updates to the
continuum simulation are not permitted during the BD
simulations, these callbacks can be performed in paral-
lel environments where the communication group size
for the BD simulation differs from that of the contin-
uum simulation. The added cost in replicating contin-
uum data between nodes is negligible (at most a few
megabytes) and eliminates any MPI communication
associated with the 106 evaluations of external field ef-
fects on the BD particles.

As is indicated in Fig. 11, the high-level (python)
puppeteer component mediates both the transfer of
boundary conditions and field-evaluation callbacks be-
tween the continuum and BD components. The per-
formance cost associated with transferring boundary
conditions is near-zero (sub-milliseconds for multiple
hours of BD simulations), and the total cost imposed
for field evaluation callbacks is close to 1% of total
simulation time. For this reason, we feel that the im-
proved flexibility and loose coupling obtained by rout-
ing the field callbacks through the high-level puppeteer
component is well justified.

3.3.3. Results
The multiscale coupling scheme outlined above has

been applied to the simulation of ionic fluxes through
a nanopore, with a diameter of 5 nm and a length
of 50 nm. In the simulations, the three-dimensional
Brownian Dynamics (BD) domain covered the full
nanopore as well as two hemispheric regions with
a 10 nm radius at the entrance and the exit of the
pore. The continuum species transport equations were
solved on a 2D axisymmetric domain extending from
the edge of the BD domain up to 50 nm away from the
pore in the streamwise direction, and 25 nm in the ra-
dial direction, both upstream and downstream from the
pore (see Fig. 12). The Poisson equation for the electric
potential was solved on a 2D axisymmetric domain,
150 nm long and 25 nm in the radial direction, contain-
ing an axial slice of the pore, the membrane (not shown
in Fig. 12) as well as the continuum species transport
zones upstream and downstream from the pore. In the
fluid, the relative dielectric permittivity was set to 78,
while in the membrane, it was set to 2.

Starting from an analytical guess for the species
fluxes, the simulations iterate between the continuum
and the BD modules until the species flux through the
nanopore converges to a steady value. For the compu-
tation of the ionic fluxes through the nanopore region
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with BD, 10 replica simulations were used, which were
run for 10 µs each. Generally, after 2–3 iterations, the
changes in the flux values between successive itera-
tions were smaller than the standard deviation of the
fluxes across the 10 replicas.

Figure 12 shows the steady state concentration fields
for the sodium and chloride ions for the case with
a 150 mM NaCl concentration at the domain inlet
and 50 mM at the outlet. A 200 mV potential dif-
ference was applied across the membrane. The pore
surface inside the membrane had a surface charge of
−0.01 C/m2. The values of the concentration fields in
the continuum zone were extracted directly from the
Sundance solver. To get the concentration fields in-
side the nanopore, sampled particle fields from the BD
solver were binned and projected onto a mesh on the
continuum level. Despite the noise in the sampled con-

centration fields, it is clear that the concentration fields
match up well at the interfaces between the continuum
and particle models. As can be expected, the bulk of
the concentration drop occurs across the nanopore re-
gion, with only about 1 mM concentration drop across
the continuum entrance and exit regions.

Given the negative charge on the pore surface in-
side the membrane, the positive ions preferentially mi-
grate towards the pore surface to shield the negative
wall charge. As a result, the sodium ion concentra-
tion shows a maximum near the pore wall and the
chloride ion concentration a minimum. The net re-
sult is a positive bulk charge in the fluid near the
pore wall, as indicated by Fig. 13, which shows the
sum of the concentration fields in Fig. 12. The pre-
dicted ionic fluxes through the pore for this case were
8.0 ± 0.1 × 10−16 mol/s for the sodium ion and −5.7 ±

Figure 12. Sodium (top) and chloride (bottom) concentration fields in electrodialysis through a negatively charged pore through a membrane. An
axial cross section of the pore is shown in the center, in between a continuum species transport zone upstream and downstream. The membrane
material surrounding the pore is not shown. Black dotted lines indicate the location of the handshake region between the continuum and BD
models.

Figure 13. Solution charge density (represented as signed electrolyte concentration) in electrodialysis through a negatively charged nanoporous
desalination membrane.



H. Adalsteinsson et al. / Components for atomistic-to-continuum multiscale modeling 311

1.6 × 10−17 mol/s for the chloride ion (where a nega-
tive flux indicates an upstream flux from right to left).

The particle representation inside the nanopore is es-
sential in these simulations, as the continuum PNP for-
mulation ignores particle diameters, and would there-
fore pack too many ions too close to the surface in
order to shield the negative wall charge. The contin-
uum formulation, on the other hand, is well suited to
compute the effect of the externally applied potential
difference across the membrane, taking into account
the different dielectric permittivities between the mem-
brane and the fluid. The two formulations therefore
complement each other well.

The multiscale simulation system described above
has further been applied to a parametric study of the ef-
fects of membrane surface charge on electrodialysis in
nanopores; the results of which will be reported else-
where.

4. Discussion

The advantages of component-driven design with
flexible high-level runtime logic has been demon-
strated on two multiscale multiphysics simulations of
interface effects in electrokinetic electrolyte transport.
For each simulation, the implementation of the cou-
pled multiscale simulation was constructed out of tra-
ditional single-physics simulation components bridged
with minimal invasion to introduce external interfaces
for management of boundary conditions, and modest
amounts of high-level Python scripts to handle simu-
lation control and data translation. Even more impor-
tantly, the interfaces into the separate simulation com-
ponents did not need to comply to a common simula-
tion framework, thanks to the dynamic nature of the
scripting interface and flexibility afforded by the cross-
language polymorphism in the SWIG interface bind-
ings. Given reasonably coarse granularity of data trans-
mission during cross-component callback routines, the
performance penalty associated with the introduction
of the puppeteer component was far less than one per-
cent of the overall runtime.

These studies have also helped identify areas that
hamper the design and implementation of reliable, ro-
bust multiscale simulations on parallel simulation plat-
forms. Chief among those are:

• The MPI standard, long the workhorse of parallel
computing, is not sufficient to provide the facili-
ties desirable for these simulations. In particular:

– Fault tolerance and error recovery are not man-
dated by the standard, and are woefully inade-
quate in its major implementations.

– Support for multithreaded programs is not re-
quired by the standard; while the major imple-
mentations offer some thread support these fea-
tures are unreliable and often not supported by
administrators of large compute systems.

• Differences in discretization and representation
accuracy between atomistic and continuum sim-
ulations can cause hard-to-identify convergence
problems when iterating between component
models. While these problems can be reduced
through (vastly) increased sampling, more work
is needed on detecting and quantifying the source
and magnitude of these errors.

The best features of the component-based simu-
lation design are apparent in the ease of adapting
the simulation methods to system configurations and
conditions outside of the original design concepts of
the initial work. A significant portion of this flexibility
originates from the use of the Sundance and PST com-
ponent toolkits, both of which have fine-grained SWIG
bindings, but a large portion also comes from adher-
ence to the design constraints laid out in Section 2.
By shifting shared operations such as data transfer and
convergence management out to the puppeteer com-
ponent, behavior of the multiscale coupling could be
modified and tested without impinging on the numeri-
cally intensive simulation components, and changes in
component interfaces could be accommodated through
dynamic typing and higher-order functions rather than
cascading across program boundaries.

In summary, mixed programming models, in which
simulation parameters, simulation control, and high-
level runtime logic are unified in a dynamically typed
interface (e.g. a scripting language) provide an efficient
and highly flexible solution for construction of multi-
scale multiphysics simulations out of existing simula-
tion programs. By imposing a few modest constraints
on the execution order and data sharing, modeling
components can be cleanly mapped onto simulation
boundaries, providing improved ease and a high de-
gree of flexibility in configuring and adapting the mul-
tiscale model for different simulation types. By dele-
gating operations related to the cross-model commu-
nications and overall program flow to a dynamically
typed, high level programming language, the resulting
multiscale simulation system can take advantage of ex-
isting and highly optimized simulation software while
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providing very loose coupling between the different
components and with, in our cases, negligible added
computational cost.
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