
Scientific Programming 16 (2008) 287–296 287
DOI 10.3233/SPR-2008-0264
IOS Press

A component approach to collaborative
scientific software development:
Tools and techniques utilized
by the Quantum Chemistry Science
Application Partnership

Joseph P. Kenny a,∗, Curtis L. Janssen a, Mark S. Gordon b,c, Masha Sosonkina c

and Theresa L. Windus b

a Scalable Computing Research and Design, Sandia National Laboratories, Livermore, CA, USA
b Department of Chemistry, Iowa State University, Ames, IA, USA
c Scalable Computing Laboratory, Ames Laboratory/DOE, Iowa State University, Ames, IA, USA

Abstract. Cutting-edge scientific computing software is complex, increasingly involving the coupling of multiple packages to
combine advanced algorithms or simulations at multiple physical scales. Component-based software engineering (CBSE) has
been advanced as a technique for managing this complexity, and complex component applications have been created in the
quantum chemistry domain, as well as several other simulation areas, using the component model advocated by the Common
Component Architecture (CCA) Forum. While programming models do indeed enable sound software engineering practices, the
selection of programming model is just one building block in a comprehensive approach to large-scale collaborative development
which must also address interface and data standardization, and language and package interoperability. We provide an overview
of the development approach utilized within the Quantum Chemistry Science Application Partnership, identifying design chal-
lenges, describing the techniques which we have adopted to address these challenges and highlighting the advantages which the
CCA approach offers for collaborative development.

Keywords: Electronic structure, integral, component, software development

1. Introduction

Fueled by the progress of simulation in many sci-
entific domains and the ever increasing availability
of hardware resources, cutting edge scientific com-
puting increasingly involves the coupling of multiple
packages. Within a community or scientific domain,
this coupling is desirable to employ multiple advanced
techniques, while packages from multiple domains are
required to interact when simulations span multiple
physical scales. For instance, the development and ac-
quisition of petascale hardware is enabling and driving

*Corresponding author: Joseph P. Kenny, Scalable Comput-
ing Research and Design, Sandia National Laboratories, MS
9158, P.O. Box 969, Livermore, CA 94551-0969, USA. E-mail:
jpkenny@sandia.gov.

large-scale coupled-physics simulations in areas such
as fusion simulation [1]. The software required for
such studies is gaining complexity to the extent that
large amounts of effort are required just to interface
packages, requiring a team uniquely capable of un-
derstanding not only the multiple scientific domains
involved but also the technical issues arising in such
complicated software. A comprehensive approach to
software engineering provides a framework for inter-
action between multiple development groups and rein-
forces good programming practices.

Component-based software engineering has been
advanced as an important tool for managing the com-
plexity of software [2]. Components are reusable soft-
ware units that encapsulate useful functionality. As a
distinction between other software abstractions, com-

1058-9244/08/$17.00 © 2008 – IOS Press and the authors. All rights reserved



288 J.P. Kenny et al. / A component approach to collaborative scientific software development

ponents conform to a particular specification, allow-
ing components from diverse sources to coexist in a
common framework. Within high-performance scien-
tific computing, the Common Component Architecture
(CCA) Forum has advocated the adoption of compo-
nents and developed both specifications and middle-
ware tailored to the needs of scientific software [3].
CCA technology has made inroads into numerous sim-
ulation domains including optimization and linear al-
gebra, accelerator design, fire and explosives modeling
and climate simulation [4].

Within the chemistry domain, the authors are partic-
ipating in the Quantum Chemistry Scientific Applica-
tion Partnership (QCSAP) which is building out a CCA
component toolkit which enables the integration of
quantum chemistry software. This work has included
the development of uniform interfaces which allow
both the interchangeability of the high-level chem-
istry models supported by each package [5–7] and in-
teroperation through the sharing of low-level capabil-
ities [8–10]. While programming paradigms can go
a long way to encourage and enable good develop-
ment practices, we have found that complex software
projects require careful design and an engineering ap-
proach which addresses both technical issues and the
practicalities of human interaction, regardless of pro-
gramming paradigm. Approaches to interface and data
standards, and language and package interoperability
must be adopted. In this work we provide an overview
of our component development approach, identifying
the design patterns which have proved useful in both
our component and packaging architectures and high-
lighting the advantages which the CCA middleware
and engineering approach offer for large-scale collab-
orative software development.

2. Uniform interfaces

As in other software disciplines, it is common
for multiple scientific packages to exist which pro-
vide similar functionality but have various features,
strengths and weaknesses. Enabling interchangeabil-
ity and interoperability between various packages in-
creases code flexibility, allowing applications which
combine advanced capabilities or have optimum per-
formance [8,11]. Within the quantum chemistry do-
main, high-level drivers, such as optimization solvers
or dynamics packages, can utilize the broad range of
quantum chemistry algorithms [5–7], and these algo-
rithms themselves depend on a number of low-level ca-

pabilities that can be shared between packages [8–10].
An often-touted strength of component architectures is
the ability to construct applications in a plug-and-play
manner from a pool or toolkit of conforming compo-
nents contributed by many sources. While component
architectures do indeed enable this toolkit approach
to application construction, all component developers
must agree upon and implement uniform interfaces for
this ideal to be realized. The adoption of uniform in-
terfaces is the central challenge to large-scale collab-
oration in scientific software, and the approach used
within the QCSAP builds upon tools and techniques
developed by the CCA Forum to facilitate the transi-
tion from monolithic legacy codes to community-wide
toolkits.

In our efforts within the quantum chemistry do-
main, we have taken care to focus our development ef-
forts on the design of flexible uniform interfaces. Other
notable efforts to standardize component interfaces
include the Towards Optimal Petscale Simulations
(TOPS) project [12] for linear/nonlinear solvers and
the Interoperable Technologies for Advanced Petascale
Simulations (ITAPS) project [13–15] for unstructured
meshes. In order to provide uniform interfaces for a
set of components, implementation-neutral interfaces
must be formulated and agreed upon by participating
development groups. This interface standardization is
a challenging step, as it amounts to creating a reference
design for a particular functionality, and this design
must be sufficiently flexible to encompass existing im-
plementations with limited overhead while maintain-
ing simplicity and clarity as much as possible. Personal
and political concerns are just as likely as technical is-
sues to frustrate this process. It is essential that partic-
ipants embrace the community aspect of the compo-
nent development process and make compromises as
necessary.

A focus on interface design is encouraged by the
CCA middleware technology. While not required for
a compliant CCA component, the CCA community
has widely adopted the Babel [16,17] tool to handle
language interoperability. Babel generates implemen-
tation stubs and glue code for the languages it sup-
ports (Fortran 77, Fortran 90, C, C++, Python and Java)
based on interface definitions provided in a Scientific
Interface Definition Language (SIDL) file. Babel im-
plements a set of fundamental types and an object-
oriented programming model for all supported lan-
guages. The requirement of SIDL files focuses devel-
opers on the task of interface definition and provides
a language-neutral way to specify such interfaces. The



J.P. Kenny et al. / A component approach to collaborative scientific software development 289

first concrete step towards adding a new capability to
our chemistry toolkit is invariably the drafting of an in-
terface file through discussions among the participat-
ing developers. Though this initial draft often evolves
as implementation tasks reveal issues which were not
initially appreciated, the production of an initial SIDL
interface file gives a specification which can be dis-
cussed and modified as needed.

The inheritance feature provided by Babel’s object-
oriented model has proved essential in creating com-
ponents with uniform interfaces. While uniform in-
terfaces can typically encompass the standard rou-
tines required for computation, augmented interfaces
have frequently proved necessary for initialization and
configuration. In our chemistry architecture, the Ba-
bel classes which perform data storage and compu-
tation can have specialized interfaces which support
implementation-specific initialization and configura-
tion, but these interfaces all inherit from a common
uniform interface. Since the specialized interface is
only needed during initialization, the factory design
pattern [18] has proved effective in encapsulating the
implementation-specific code. Each class implemen-
tation has a corresponding factory component which
performs the implementation-specific start up tasks.
The factory interfaces are uniform interfaces that client
codes use to supply calculation parameters. Given
these parameters, each factory implementation per-
forms the specialized tasks necessary to create and ini-
tialize the desired class, then returns a reference to
the class to the requesting client. The client proceeds
to utilize the class through the uniform base inter-
face.

The Chemistry.QC.ModelInterface and its associ-
ated Chemistry.QC.ModelFactoryInterface, described
in detail by Kenny et al. [5], are examples of uni-
form interfaces used within the CCA chemistry project
that follow the factory design pattern. Figure 1 pro-
vides abbreviated listings of the SIDL files for these
interfaces, showing the methods that are used for
the most basic mode of operation. In our naming
convention, uniform interface types end in Interface;
further references to such types will exclude the
Chemistry.QC namespace. In the quantum chemistry
context, we define a model as a method which can as-
sign an energy value to a particular electronic state in
the presence of a rigid framework of nuclear centers.
Thus, ModelInterface provides the get_energy(),
get_gradient(), and get_hessian() members which
compute the value of the energy and its first and sec-
ond derivatives with respect to displacement of the

nuclear centers. While the full ModelFactoryInter-
face supports more detailed configuration, the most
basic usage requires only the location of the nu-
clear centers, name of the particular theory to be em-
ployed and a description of the basis functions used
to describe the electronic state. The client code pro-
vides this information to the model factory using the
set_molecule(), set_theory(), and set_basis() methods.
The client simply requests a component implement-
ing the ModelFactoryInterface from the framework,
sets the desired calculation parameters using that in-
terface and is returned a reference to a class im-
plementing ModelInterface upon calling get_model().
The model implementation which the client receives
is determined by the factory component configura-
tion, which is determined at runtime by input that the
user provides to the framework. The client code re-
quires no specific knowledge of implementation de-
tails which are hidden behind the uniform factory in-
terface.

Along with NWChem [19,20] and GAMESS-
US [21], the MPQC [22–24] quantum chemistry pack-
age implements a model class that provides access to
its available theoretical models through the
ModelInterface. Each package has a different under-
lying architecture, however, requiring that each pack-
age’s factory object perform different tasks to initial-
ize their model object implementation. The MPQC im-
plementation of ModelInterface exemplifies how such
tasks are handled through specialization of the uni-
form interface. Figure 2 provides an abbreviated SIDL
listing of the MPQC.Model and MPQC.ModelFactory
classes, which implement the ModelInterface and
ModelFactoryInterface uniform interfaces, respective-
ly. Further references within this section to types not
ending in Interface exist within the MPQC namespace.
As with factories for other implementations, the
ModelFactory component implements only the uni-
form interface, adding no additional methods. In con-
trast, the Model class requires MPQC-specific config-
uration information so that it can be initialized. Such
initialization is handled through the addition of spe-
cialized methods to the uniform interface. One such
method, initialize_pasedkeyval(), is shown in Fig. 2.
Based on input provided through its uniform inter-
face by client objects or the framework, ModelFactory
constructs a specialized MPQC input string. This in-
put string contains the necessary parameters (theory
name, basis set and molecular framework) required to
completely initialize the MPQC model implementa-
tion. When client code calls get_model() on the fac-



290 J.P. Kenny et al. / A component approach to collaborative scientific software development

package Chemistry version 0.4.0 {

package QC {

interface ModelInterface {

// Sets the molecule.
void set_molecule( in Chemistry.MoleculeInterface molecule );

// Returns the molecule.
Chemistry.MoleculeInterface get_molecule();

// Returns the energy.
double get_energy();

// Returns the Cartesian gradient.
array<double,1> get_gradient();

// Returns the Cartesian Hessian.
array<double,2> get_hessian();

}

interface ModelFactoryInterface {

// Set the theory name for Models created with get_model.
void set_theory(in string theory);

// Set the basis set name for Models created with get_model.
void set_basis(in string basis);

// Set the Molecule to use for Models created with get_model.
void set_molecule(in MoleculeInterface molecule);

// Returns a newly created Model. Before get_model can be called,
// set_theory, set_basis, and set_molecule must be called.
ModelInterface get_model();

}
}

}

Fig. 1. SIDL snippet defining Chemistry.QC.ModelInterface and Chemistry.QC.ModelFactoryInterface. The methods defined are used by client
code to request a chemistry model from a model factory and obtain molecular energies, gradients and Hessians from the model.

tory component, the factory instantiates a Model, uses
initialize_parsedkeyval() to initialize the model in-
stance using the MPQC-specific input string and re-
turns a model reference to the client which pro-
ceeds to perform computations using the uniform
ModelInterface.

3. Implementation-specific interfaces

The broad adoption of uniform interfaces is clearly
the preferred path to a capable and flexible scientific

toolkit, realizing the plug-and-play idea put forth by
component advocates. Due to a lack of funding, man-
power or agreement on development approaches, creat-
ing uniform interfaces is not always possible. In cases
where a proliferation of implementation-specific inter-
faces exists, the creation of adaptors is an effective ap-
proach to allow components to function in application
environments which do not support their native inter-
faces.

The first major effort within the chemistry compo-
nent project was to leverage the optimization solver
component provided by the Toolkit for Advanced Op-



J.P. Kenny et al. / A component approach to collaborative scientific software development 291

package MPQC version 0.2 {

class Model implements-all Chemistry.QC.ModelInterface
{

// Initialize using MPQC keyval input string.
void initialize_parsedkeyval(in string keyword, in string input);

}

class ModelFactory implements-all Chemistry.QC.ModelFactoryInterface,
gov.cca.Component, gov.cca.Port

{ }
}

Fig. 2. SIDL snippet defining the MPQC.Model and MPQC.ModelFactory classes. These classes provide implementations of Chemis-
try.QC.ModelInterface and Chemistry.QC.ModelFactoryInterface which are defined in Fig. 1. The MPQC.Model class extends the generic
Chemistry.QC.ModelInterface with the initialize_parsedkeyval() method which allows MPQC-specific configuration to occur.

timization (TAO) [25,26]. TAO offers a solver compo-
nent implementing quasi-Newton optimization meth-
ods which are the workhorses of molecular struc-
ture optimization. We found that the line search im-
plementation provided within the TAO solver did in
many cases reduce the time to solution when com-
pared with the existing capabilities within our quan-
tum chemistry packages [5]. However, practical con-
cerns about continued maintenance along with ease
of installation and use make the implementation of
additional solver components using the native capa-
bilities within the quantum chemistry packages pru-
dent.

While TAO does provide interfaces which could be
adopted as standard uniform interfaces for optimiza-
tion, these interfaces are not packaged separately. The
packaging of the TAO interfaces along with the TAO
code creates several disadvantages, discouraging us
from adopting these as our native optimization inter-
faces. In order to use the interfaces, TAO and its de-
pendencies, including PETSc [27], a major linear al-
gebra package, need to be installed. Thus, in the case
that only the solver components from the chemistry
packages were desired, the significant additional ef-
fort of installing TAO and its dependencies would still
be required. The continued functioning of our solver
components would also depend upon the continued
timely maintenance and support of TAO and PETSc,
which is not a comfortable position given the reali-
ties of funding and the support required to keep up
with software and hardware upgrades. Finally, there
is simply the fact that by placing TAO later in our
dependency chain we can expose fewer of our pack-
ages to any changes that might occur in the TAO
package. For these reasons, we chose to define our

own optimization interfaces within the ChemistryOpt
namespace.

For reasons such as those that led us to create
our own optimization interfaces within the chem-
istry project, some level of interface proliferation
is bound to occur within the scientific component
community. An approach to realizing polymorphism
under these circumstances is the creation of inter-
face adaptors. Interface adaptors are simple com-
ponents which take two different interfaces for the
same functionality and translate calls from one in-
terface to the other. Figure 3 illustrates how the
MPQC solver implementation can be combined with
chemistry interface adaptors to function in applica-
tion environments which expect a solver utilizing the
TAO interfaces. In TAO application environments,
the client uses the Solver.OptimizationSolver inter-
face to call into the solver and the solver uses the
Optimize.OptimizationModel interface to invoke the
model. Within chemistry application environments,
ChemistryOpt.SolverInterface and ChemistryOpt.Mod-
elInterface are the corresponding interfaces. By plac-
ing interface translation components before and after
the MPQC.OptimizationSolver component, the native
solver interfaces can be adapted for use within a TAO
application environment.

Using the adaptor approach, the number of adaptors
to maintain does grow with the square of the number of
communities for which interfaces need to be translated.
Thus, this approach does create an n-squared problem.
Nevertheless, in situations where the broad adoption
of a single uniform interface is not practical, the cre-
ation and maintenance of adaptor components is a vi-
able approach to realizing component polymorphism
and maintaining flexibility within component toolkits.



292 J.P. Kenny et al. / A component approach to collaborative scientific software development

Fig. 3. The TAO.Solver component provides solver capa-
bility for client and model components which utilize the
Solver.OptimizationSolver and Optimize.OptimizationModel inter-
faces defined by TAO (as depicted on the left). The TaoAdap-
tor.OptimizationSolver and TaoAdaptor.OptimizationModel adaptor
components allow solvers implementing the ChemistryOpt.Solv-
erInterface and ChemistryOpt.ModelInterface interfaces to function
in environments utilizing the TAO interfaces (as depicted on the
right).

4. Data layout standardization

In our experience, high-level interfaces, such as that
provided by the ModelInterface, require enough work
per method call through the interface that the overhead
associated with adapting to a standard data layout is not
significant. As toolkits gain functionality and low-level
capabilities are shared between packages, implemen-
tation details are more often exposed and the costs of
adapting to standard data layouts becomes more signif-
icant. Unfortunately, these increased costs are inherent
to low-level integration. Component models and devel-
opment techniques cannot eliminate the need to adapt

between various implementation details which are ex-
posed by low-level interfaces.

The evaluation of integrals over Gaussian basis
functions for physical quantities such as electron re-
pulsion and nuclear–electron attraction is a fundamen-
tal step for traditional quantum chemistry methods and
was chosen as the first low-level capability to be shared
within the QCSAP. For efficiency, integrals are typi-
cally evaluated in batches which include all possible
angular functions for a given choice of radial functions.
The number of batches which must be evaluated for
even moderate size problems ranges easily into the mil-
lions. The ordering of integrals within these buffers is
an arbitrary implementation detail for which codes de-
siring to share integral evaluators must adapt, and our
work did indeed encounter this. While we have chosen
to standardize on a convention which results in an or-
dering of xyz for p-type Cartesian angular functions,
we wished to provide integrals to CCA models from
the IntV3 integral package within MPQC which fol-
lows a convention resulting in p-type Cartesian func-
tions ordered yzx. Figure 4 illustrates the reorder that
the CCA interface layer must perform in a very sim-
ple case: two centers with p-shells on each center. With
four center integrals with angular functions numbering
greater than ten quite typical, the overhead involved in
this reorder can be substantial.

Our work has demonstrated that the overhead due
to integral reordering, as large as 12%, is comparable
to the overhead due to the component interface layer.
We expect that overheads of this magnitude are un-
avoidable with low-level integration. While a short-
term view could result in pessimism regarding the util-
ity of community-wide toolkits, the long-term view is
that progress in science requires larger collaborations
and the coupling of disparate packages, hence the de-
velopment and adoption of community wide standards
for data layouts is a critical step in the evolution of sim-
ulation capability. While there will be some large costs

Fig. 4. The QCSAP project has adopted a convention in which
p-type Cartesian angular functions are ordered xyz, while the IntV3
(MPQC) convention results in functions ordered yzx. The wrap-
per code which uses IntV3 to implement CCA integral evaluators is
required to reorder each buffer to comply with the standard order-
ing. The relocations required to reorder a simple two center integral
buffer with p-type shells on each center is illustrated.



J.P. Kenny et al. / A component approach to collaborative scientific software development 293

to pay in performance for early toolkit applications,
rapid development and adoption of standards will pay
off as new development efforts choose to implement
these standards natively.

5. Packaging

We have found the practical aspects of managing
software dependencies and build systems to be a sub-
stantial challenge when moving to large-scale compo-
nent efforts. The approach which we finally adopted
is to create a generic package for the chemistry do-
main. The primary roles of the generic package are to
hold the SIDL files which describe uniform interfaces
through which conforming chemistry packages are ex-
pected to interact and build a library which contains
the Babel glue code used to access those interfaces in
the supported programming languages. The SIDL files
in the generic package are thus the de facto standard
interfaces for quantum chemistry component efforts.
The glue code is required by all packages that wish
to use these uniform interfaces, so providing one li-
brary upon which all other implementations can de-
pend streamlines the build process. Finally, a range of
utility classes which are useful to all chemistry pack-
ages are implemented in the generic package, promot-
ing code reuse. These utility classes range from simple
data containers, including a standard data container for
the exchange of molecular data, to more complicated
components, such as a management layer simplify-
ing the use of multiple factory components that create
molecular integral evaluators [5,10]. Each chemistry
package which supports the component architecture
provides server implementations which are matched up
to the appropriate glue code by the framework and Ba-
bel runtime. These implementations leverage the exist-
ing utility classes provided by the generic package.

The generic package is a simple package with min-
imal dependencies and implementations for generally
useful basic utilities. Maintaining this generic mater-
ial within one of the chemistry packages would bring
along the overhead of a lengthy and complicated build
process, likely with numerous additional dependen-
cies, for any developer wishing to implement the uni-
form interfaces. Our experience has shown that break-
ing out the uniform interfaces into a generic package is
critical for broad adoption of standard interfaces. With
several teams contributing changes to a generic pack-
age, careful versioning and documentation of interface

changes is required, and we would like to adopt project
tracking tools for this purpose.

Once all the core chemistry packages are built with
component support, a final package which we term the
apps package is built. This package supports combin-
ing the available components into usable applications.
Sitting at the end of the toolchain, the apps package
finds the available component packages and runs a ver-
ification suite to test the functionality of the compo-
nents.

Figure 5 illustrates the dependency tree for the
chemistry project. Adaptors for components from ex-
ternal packages, such as the Toolkit for Advanced Op-
timization (TAO) [25,26], are maintained in the apps
package to keep the dependency tree manageable. It is
important to note that, while dependency trees become
quite large as the number of packages contributing to
a toolkit grows, the CCA approach and our packaging
approach do manage the complexity for both develop-
ers and users. The generic package provides not just
interfaces and glue code, but also all needed CCA tools
configuration information. Thus the generic package is
one dependency that satisfies CCA requirements both
from the chemistry and middleware perspective. From
the user’s perspective, there are many ways to access
the capabilities of the QCSAP toolkit. The most pow-
erful and advanced approach is to use CCA frame-
work commands to directly construct component ap-
plications. A second approach which allows the chem-
istry developers to shield users from a great deal of the
complexity of component application construction is
the embedding of a CCA framework within an existing
chemistry program. In this case the framework interac-
tion is handled by the programmer, allowing the user
to use the familiar input format native to the chemistry
program. User friendly front-ends are another example
of component applications that can be provided. As a
proof of concept, we implemented a GUI which allows
the user to select the QC package to optimize a given
molecule and provides a visualization of the molecule
throughout the optimization (see Fig. 6).

6. Conclusions

The efforts undertaken within the quantum chem-
istry domain have revealed several techniques to pro-
mote and manage uniform interfaces. Simple aspects
such as code organization have proved extremely im-
portant in enabling interface adoption. The creation
and maintenance of a simple generic package to pro-



294 J.P. Kenny et al. / A component approach to collaborative scientific software development

Fig. 5. Diagram of software package dependencies for the QCSAP project. Interface definitions, language interoperability glue code and widely
useful component/class implementations are provided by the cca-chem-generic and cca-chem-apps packages. While the definition of optimiza-
tion interfaces in both cca-chem-generic and the Toolkit for Advanced Optimization (TAO) does result in interface proliferation, this approach
insulates all but one of the chemistry packages from changes to the TAO package.

Fig. 6. Screenshot of a prototype graphical user interface developed by the QCSAP. The use of shared interfaces provides uniform access to the
capabilities of several quantum chemistry packages, facilitating the development of highly capable toolkit front-ends.



J.P. Kenny et al. / A component approach to collaborative scientific software development 295

vide interfaces and support code provides standard-
ized interfaces and facilitates the efficient installation
of a complex software environment. When the adop-
tion of uniform interfaces is not practical due to a lack
of funding, staffing or agreement in development ap-
proaches, the creation of interface adaptor components
is a viable approach to managing interface prolifera-
tion. Interface adaptors allow components to function
in application environments which do not support their
native interfaces. While component-based software en-
gineering does encourage and enable sound software
engineering practices, a comprehensive development
approach that addresses interface and data standardiza-
tion, and language and package interoperability must
be adopted to enable large-scale collaborative develop-
ment.

Acknowledgements

This work has been supported in part by the US De-
partment of Energy’s Scientific Discovery through Ad-
vanced Computing (SciDAC) initiative [28], through
the Chemistry Framework using Common Component
Architecture scientific application project, of which
Ames Laboratory and Sandia National Laboratories
are participants. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin
Company, for the US Department of Energy under con-
tract DE-AC04-94AL85000.

References

[1] W.R. Elwasif, D.E. Bernholdt, L.A. Berry and D.B. Batchelor,
Component framework for coupled integrated fusion plasma
simulation, in: CompFrame’07: Proceedings of the 2007 Sym-
posium on Component and Framework Technology in High-
Performance and Scientific Computing, ACM, New York, NY,
USA, 2007.

[2] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, Addison-Wesley, New York, NY, USA, 2002
(Chapter 4).

[3] D.E. Bernholdt, B.A. Allan, R. Armstrong, F. Bertrand,
K. Chiu, T.L. Dahlgren, K. Damevski, W.R. Elwasif, T.G.W.
Epperly, M. Govindaraju, D.S. Katz, J.A. Kohl, M. Krishnan,
G. Kumfert, J.W. Larson, S. Lefantzi, M.J. Lewis, A.D. Mal-
ony, L.C. McInnes, J. Nieplocha, B. Norris, S.G. Parker, J. Ray,
S. Shende, T.L. Windus and S. Zhou, A component architec-
ture for high-performance scientific computing, Intl. J. High-
Perform. Comput. Appl. 20 (2006), 163–202.

[4] L.C. McInnes, B.A. Allan, R. Armstrong, S.J. Benson, D.E.
Bernholdt, T.L. Dahlgren, L.F. Diachin, M. Krishnan, J.A.
Kohl, J.W. Larson, S. Lefantzi, J. Nieplocha, B. Norris, S.G.
Parker, J. Ray and S. Zhou, Parallel PDE-based simulations us-
ing the common component architecture, in: Solutions of PDEs
on Parallel Computers, Springer-Verlag, New York, 2005.

[5] J.P. Kenny, S.J. Benson, Y. Alexeev, J. Sarich, C.L.
Janssen, L.C. McInnes, M. Krishnan, J. Nieplocha, E. Jurrus,
C. Fahlstrom and T.L. Windus, Component-based integration
of chemistry and optimization software, J. Comput. Chem. 25
(2004), 1717–1725.

[6] M. Krishnan, Y. Alexeev, T.L. Windus and J. Nieplocha, Mul-
tilevel parallelism in computational chemistry using common
component archituecture and global arrays, in: Proceedings
of the 2005 ACM/IEEE Conference on Supercomputing, IEEE
Computer Society, Washington, DC, USA, 2005.

[7] F. Peng, M.-S. Wu, M. Sosonkina, R.A. Kendall, M.W. Schmidt
and M.S. Gordon, Coupling GAMESS via standardized inter-
faces, in: HPC-GECO/Compframe, Paris, France, 2006.

[8] C.L. Janssen, J.P. Kenny, I.M.B. Nielsen, M. Krishnan, V. Gu-
rumoorthi, E.F. Valeev and T.L. Windus, Enabling new capabil-
ities and insights from quantum chemistry by using component
architectures, J. Phys.: Conf. Ser. 46 (2006), 220–228.

[9] F. Peng, M.-S. Wu, M. Sosonkina, T. Windus, J. Bentz, M. Gor-
don, J. Kenny and C. Janssen, Tackling component interoper-
ability in quantum chemistry software, in: Proceedings of the
2007 Symposium on Component and Framework Technology in
High-Performance and Scientific Computing, ACM, New York,
NY, USA, 2007.

[10] J.P. Kenny, C.L. Janssen, T.L. Windus and E.F. Valeev, Compo-
nents for integral evaluation in quantum chemistry, J. Comput.
Chem. 29 (2008), 562–577.

[11] L. McInnes, J. Ray, R. Armstrong, T. Dahlgren, A. Mal-
ony, B. Norris, S. Shende, J. Kenny and J. Steensland,
Computational quality of service for scientific CCA applica-
tions: Composition, substitution, and reconfiguration, Preprint
ANL/MCS-P1326-0206, Argonne National Laboratory, 2006.

[12] Towards Optimal Petascale Simulations (TOPS) Center, TOPS
homepage: http://www.scidac.gov/math/TOPS.html.

[13] D. Brown, L. Freitag and J. Glimm, Creating interoperable
meshing and discretization software: The terascale simula-
tion tools and technology center, Preprint UCRL-JC-147812,
Lawrence Livermore National Laboratory, 2002.

[14] L. Diachin, A. Bauer, B. Fix, J. Kraftcheck, K. Jansen, X. Luo,
M. Miller, C. Ollivier-Gooch, M.S. Shephard, T. Tautges and
H. Trease, Interoperable mesh and geometry tools for advanced
petascale simulations, J. Phys.: Conf. Ser. 78 (2007), 012015.

[15] Interoperable Technologies for Advanced Petascale Simu-
lations (ITAPS) Center, ITAPS homepage: http://www.tstt-
scidac.org/.

[16] Lawrence Livermore National Laboratory, Babel homepage:
http://www.llnl.gov/CASC/components/babel.html.

[17] T. Dahlgren, T. Epperly and G. Kumfert, Babel User’s Guide,
version 0.9.0, 2004.

[18] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Creational
patterns, in: Design Patterns, Elements of Reusable Object-
Oriented Software, Addison-Wesley, New York, NY, USA,
1998.



296 J.P. Kenny et al. / A component approach to collaborative scientific software development

[19] R.A. Kendall, E. Apra, D.E. Bernholdt, E.J. Bylaska,
M. Dupuis, G.I. Fann, R.J. Harrison, J.L. Ju, J.A. Nichols,
J. Nieplocha, T.P. Straatsma, T.L. Windus and A.T. Wong,
High performance computational chemistry: An overview of
NWChem a distributed parallel application, Comput. Phys.
Commun. 128 (2000), 260–270.

[20] Pacific Northwest National Laboratory, NWChem homepage:
http://www.emsl.pnl.gov/docs/nwchem/.

[21] Gordon research group, Iowa State University, GAMESS
homepage: http://www.msg.ameslab.gov/GAMESS/.

[22] Sandia National Laboratories, MPQC homepage:
http://www.mpqc.org/.

[23] C.L. Janssen, I.M.B. Nielsen and M.E. Colvin, Parallel
processing for ab initio quantum mechanical methods, in: En-
cyclopedia of Computational Chemistry, John Wiley & Sons,
Chichester, UK, 1998.

[24] C. Janssen, E. Seidl and M. Colvin, Object-oriented implemen-
tation of parallel ab initio programs, in: ACS Symposium Series,

Parallel Computing in Computational Chemistry, Vol. 592,
American Chemical Society, Washington, DC, USA, 1995.

[25] S. Benson, L.C. McInnes, J. Moré and J. Sarich, TAO User’s
Manual, Technical Report ANL/MCS-TM-242, Mathematics
and Computer Science Division, Argonne National Laboratory,
2004; see: http://www.mcs.anl.gov/tao.

[26] S.J. Benson, L.C. McInnes and J.J. Moré, A case study in the
performance and scalability of optimization algorithms, ACM
Trans. Math. Software 27 (2001), 361–376.

[27] S. Balay, K. Buschelman, W. Gropp, D. Kaushik, M. Knepley,
L. McInnes, B.F. Smith and H. Zhang, PETSc User’s Manual,
Technical Report ANL-95/11, Revision 2.1.5, Argonne Na-
tional Laboratory, 2003; see: http://www.mcs.anl.gov/petsc.

[28] US Department of Energy, SciDAC Initiative homepage:
http://www.osti.gov/scidac/.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


