Scientific Programming 16 (2008) 277-285
DOI 10.3233/SPR-2008-0260
IOS Press

2717

Multicore challenges and benefits for high
performance scientific computing

Ida M.B. Nielsen? and Curtis L. Janssen **

4 Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551, USA

Abstract. Until recently, performance gains in processors were achieved largely by improvements in clock speeds and instruction
level parallelism. Thus, applications could obtain performance increases with relatively minor changes by upgrading to the latest
generation of computing hardware. Currently, however, processor performance improvements are realized by using multicore
technology and hardware support for multiple threads within each core, and taking full advantage of this technology to improve
the performance of applications requires exposure of extreme levels of software parallelism. We will here discuss the architecture
of parallel computers constructed from many multicore chips as well as techniques for managing the complexity of programming
such computers, including the hybrid message-passing/multi-threading programming model. We will illustrate these ideas with
a hybrid distributed memory matrix multiply and a quantum chemistry algorithm for energy computation using Mgller—Plesset

perturbation theory.

Keywords: Multicore technology, hybrid programming model, multi-threading, message-passing, matrix multiplay

1. Introduction

On-chip performance gains, which have previously
been realized by increases in instruction level paral-
lelism and clock speed, are now obtained by using mul-
ticore technology, that is, by placing multiple, logically
independent, processing cores on each chip. This is il-
lustrated in Fig. 1, which depicts the development over
the past couple of decades of the clock rate and rela-
tive floating point performance for the fastest available
single chips. The relative floating point performance
was computed by dividing the floating point perfor-
mance by the clock rate and normalizing to make the
relative performance equal to unity for the first data
point. It is apparent from the figure that the growth in
clock rates has leveled off (and even reversed); also,
the relative single-chip performance has increased dra-
matically over the past few years, and this sudden in-
crease in relative performance has been achieved by us-
ing multicore chips. Improvements in instruction level
parallelism will continue to be achieved by giving each
core the ability to execute several threads of execution,
a technique known as simultaneous multi-threading
(SMT). This allows a core to process one thread while
another thread is waiting, e.g., for data to be loaded
from memory. These trends indicate that to take full

* Corresponding author. E-mail: cljanss @sandia.gov.

advantage of even a single processing chip, it will be
necessary, in the near future, for programmers to ex-
pose a high level of parallelism within their applica-
tions.

The performance gains displayed for the fastest par-
allel computers in recent years are, in part, attribut-
able to the use of multicore chips. Figure 2 depicts
the development in the (absolute) single-chip floating
point performance and the performance of the fastest
parallel supercomputers, the latter of which is repre-
sented by the TOP500 HPLINPACK benchmark [1] for
the top machine. Supercomputer performance has in-
creased significantly faster than the single-chip perfor-
mance, and this faster growth rate has been achieved
by continually increasing the number of processing
chips employed. The combination of multicore tech-
nology and SMT dramatically increases the levels of
parallelism that must be exposed in applications to
achieve good performance on large-scale parallel com-
puters in the near future. Programs designed for today’s
parallel computers will be unlikely to obtain good
performance on machines available in a few years’
time.

In the following we will first briefly discuss the
salient features of the hybrid shared-distributed mem-
ory architectures provided by parallel computers that
are constructed from multicore chips. We will then
discuss strategies for efficiently utilizing such archi-

1058-9244/08/$17.00 © 2008 — IOS Press and the authors. All rights reserved

278 LM.B. Nielsen and C.L. Janssen / Multicore challenges and benefits for high performance scientific computing

104 —, ,

. 30
Clock Rate —8—
Relative Performance ---a--- :D

‘s 25
3
= 10° 20 5
= £
by <
§ 15 c(\]_)
E E
S 402 ©
5 10 10 &
o

5

101t ' ' 0

1990 1992 1994 1996 1998 2000 2002 2004 2006

Year of Chip Introduction

Fig. 1. Clock rate (MHz) and floating point performance (relative to the clock rate) trends for the fastest single chip, at time of introduction.
Floating point results were normalized to make the relative floating point performance in 1989 equal to unity.

10° . ‘ : .
HPLINPACK Performance e
Single Chip Performance m

108 |

107 |

108}

10° |

10t}

108 L

Operations per Second (MFLOPS)

10%L

1994 1996 1998 2000 2002 2004 2006
Year of Introduction

Fig. 2. Floating point performance of a single chip compared to the floating point performance of the fastest parallel machine, the latter represented
by the HPLINPACK result from the top machine in the TOP5S00 benchmark [1]. The single chip performance doubles roughly once every
1.5 years and the speed of the fastest parallel machine doubles approximately every year.

tectures using programming models that employ both 2. Hybrid shared-distributed memory architecture
multi-threading and message-passing. Specific exam-

ples of parallel hybrid algorithms will be given, in- The use of multicore technology in parallel comput-

cluding a matrix-matrix multiplication and a quan- ers creates systems with multi-layered memory hier-
tum chemistry method, namely second-order Mgller— archies that pose special challenges for development
Plesset perturbation theory [2]. of efficient parallel software. In Fig. 3 we show the

L.M.B. Nielsen and C.L. Janssen / Multicore challenges and benefits for high performance scientific computing 279

Floating
Point Unit

0.5ns

} Shared among floating
Level 1 Cache

point units on the same
core.

Shared among cores

+10ns on the same chip.

Level 3 Cache

+50ns

Level 2 Cache }

Shared among the processors
on the same node.

+1000ns

Shared among all nodes
in the machine.

Fig. 3. An illustration of the deep memory hierarchy in a parallel
computer. The top box represents the ultimate consumer and pro-
ducer of data (often a floating point unit), and the other boxes rep-
resent different stages in the memory hierarchy. The times listed be-
tween boxes are the incremental times needed to obtain data from
the next level in the hierarchy.

various stages in the memory hierarchy of a parallel
computer whose nodes consist of multiple chips that
each contain multiple cores. At the most basic level
in this hierarchy, data is stored in registers that are al-
located to application variables by the compiler. Sev-
eral layers of memory cache are typically provided
to hide the relatively slow access time to the sys-
tem’s main memory. Each layer within the memory
cache hierarchy becomes larger and slower as the data
moves further away from the core. The system mem-
ory typically employs Dynamic Random Access Mem-
ory (DRAM) technology, which is substantially slower
than the memory cache. Finally, if data is required that
is not stored on the local node, then a high speed net-
work must be utilized to access that data, at a yet higher
latency cost. Because multiple cores are involved in
simultaneous memory access throughout the memory
hierarchy, bottlenecks can arise. When multiple cores
temporarily require exclusive access to the same mem-
ory location, locking protocols must be employed that
introduce yet more latency into the system. An addi-
tional complication, not illustrated in Figure 3, is the
possible presence of non-identical processing cores in
the system, each with their own memory hierarchy.
The consequence of the complex structure of modern
computing systems is that programmers, and the tools
they use, must structure the program and the generated
object code to reuse local data to the greatest extent

possible, all while exposing extreme levels of paral-
lelism.

3. Managing the complexity of programming
hybrid memory architectures

The rapid increase in the number of cores employed
in large-scale parallel computers creates a need for
developing software capable of utilizing extreme lev-
els of parallelism. Reexamination of current program-
ming practices is required to expose additional levels
of parallelism and to provide a means for taking ad-
vantage of the hybrid shared-distributed memory ar-
chitectures provided by machines constructed from
multicore chips. A two-pronged approach will be re-
quired to take full advantage of future architectures:
Viable strategies are needed for retrofitting existing
parallel applications in which significant investments
have already been made, and new programming ap-
proaches must be developed to facilitate development
of new high-performance low-maintenance applica-
tions for future computers.

A commonly used strategy for programming appli-
cations to run on a hybrid shared-distributed mem-
ory architecture is a so-called hybrid parallelization
approach that employs both multi-threading and mes-
sage-passing. This approach is more complex than us-
ing either multi-threading or message-passing on its
own, but it offers the potential for improved perfor-
mance by employing multi-threading, rather than mul-
tiple processes, for parallelization within a node. Thus,
the memory accessed in a read-only mode by multi-
ple threads on a node can be shared, reducing the de-
mands for system memory, and synchronization and
communication between different threads in the same
process is very fast, allowing finer degrees of paral-
lelism to be exposed. Because of the accelerating rate
of increase in the total number of cores in parallel com-
puters, it will be vital to expose as much parallelism as
possible to utilize future machines. Although new pro-
gramming models are being developed to help manage
the complexity of programming large-scale machines,
hybrid message-passing and multi-threaded program-
ming techniques are currently the most viable parallel
programming model available.

While the sharing of memory between the threads
within a process is advantageous in some cases, it also
makes multi-threaded programming more difficult and
complex. Most programmers of high performance sci-
entific applications are accustomed to the complete and

280 LM.B. Nielsen and C.L. Janssen / Multicore challenges and benefits for high performance scientific computing

detailed control provided when data is shared by ex-
plicit communication as provided by message-passing
libraries, but the memory sharing between threads
makes it possible for one thread to inadvertently mod-
ify the memory that another thread is using. Care must
therefore be exercised to avoid this situation, and a
combination of mutual exclusion locks and the judi-
cious use of data replication can be used to success-
fully use a multi-threaded programming environment.

Below we will discuss a couple of examples of the
use of a hybrid multi-threaded/message-passing pro-
gramming model for scientific computing applications,
beginning with the simple parallel distributed mem-
ory hybrid matrix multiply algorithm covered in Sec-
tion 3.1. As mentioned above, retrofitting existing code
to take advantage of a hybrid memory architecture may
be necessary to improve its performance, and in Sec-
tion 3.2 we will discuss how an object-oriented pro-
gramming technique was used to manage the complex-
ity of retrofitting a parallel quantum chemistry algo-
rithm to use a hybrid programming model.

3.1. Hybrid parallel matrix—matrix multiplication

We will consider a parallel matrix—matrix multi-
plication algorithm based on an existing algorithm
[3] that employs message-passing for parallelization
across nodes and multi-threading for intra-node paral-
lelism. The algorithm computes the product C = AB,
and to simplify the discussion we will assume that all
matrices are of dimension n x n. Additionally, we will
require that the number of nodes, p, is a square number
and that ,/p is a divisor of n.

All matrices are distributed by blocks across nodes,
and there are p blocks, which are all of dimension
(n/\/P) < (n//p). The nodes are labeled as P;;, where
¢ and j both run from O through ,/p — 1, and node
P;; holds the block C;; of C throughout the compu-
tation. Additionally, at any given time, P;; will store
the blocks A;; and B;; of A and B for one value of
(0 < I < /p), which varies as the computation pro-
gresses. The computation of the C;; block can be writ-
ten as a sum over [of products of blocks A;; and By;

N
Ciyj= Y AyBy 1
1=0

and work is distributed across nodes by letting each
node P;; compute the corresponding block, C;;, of C.
The block C;; contains contributions from block pairs

A;; and By; for all [, and all of these block pairs must
therefore visit P;; during the computation. This is ac-
complished by means of a systolic loop communica-
tion pattern, which works as follows. The nodes are
positioned on a logical /p x ,/p grid with nodes P,
0<I< f,inrowiandnodesPlj,O <1< /b
in column j. During execution, the blocks A;; will be
sent around in a ring pattern within row i, and the B;;
blocks, analogously, will be sent around within col-
umn j; wraparound is used at the end of the rows and
columns to generate a closed ring. The communica-
tion is set up so that blocks A;; and B;; with a com-
mon value for [always visit a node simultaneously, as
required to compute a contribution to C;; (Eq. (1)).
To achieve this, we use the initial distribution of the
A and B matrices shown in Fig. 4; during execution,
blocks of A will be sent to the right within a row and
blocks of B will be sent down within a column, with
Pz’,\/ﬁ—l sending blocks of A to P; g and P\/}—j_ ,j send-
ing blocks of B to [; to close the loops.

The systolic loop employed in the algorithm is
shown in Fig. 5. The number of steps required to com-
plete the multiplication equals ,/p, where a step is de-
fined as the computation on a node of the contribu-
tion to the local block of C from the currently lo-
cal blocks of A and B followed by the transmission
of A and B blocks between neighboring nodes; note
that the last step does not require communication be-
cause the local A and B blocks are not needed after-
wards. The algorithm employs nonblocking sends and
receives (MPI_Isend and MPI_Irecv); the use of non-
blocking communication prevents deadlock in the sys-
tolic loop and also allows communication to be over-
lapped with computation for increased efficiency. The
degree to which computation is actually overlapped
with communication depends strongly on the MPI im-
plementation and the particular network employed. If
a rendezvous protocol is used, where the actual send
of the data does not begin until the receiving side
explicitly indicates that it is ready for the transfer,
then it is possible for the communication to not begin
until MPI_Waitall is called after the computation of
the local matrix multiply, thus preventing the overlap
of communication and computation. This can be pre-
vented by using an MPI implementation that can make
progress on communication even when the process is
otherwise engaged in computation. For the MPI imple-
mentation used in this example, such progress is not
made by default. To enable overlap, we create a sep-
arate thread that MPI can use to make progress, even
when all of the application’s other threads are engaged
exclusively in computation [4].

L.M.B. Nielsen and C.L. Janssen / Multicore challenges and benefits for high performance scientific computing 281

J=0 J=1 Jj=2 J=vp—1
i—0 Ao.o Ao Ao 2 Ao, 5-1
Boo Bia Bs o B p-1,5-1
P A A2 A Ao
Bi o Ba Bs 2 By, /51
P9 Az 2 Az 3 Az 4 2.1
Bs B3y By Bi, 51
i= p-1 Ap-1.5-1 | Ayp-10 | Ayp-1.1 A 51,52
5—1.0 By, Bi o B 52,51

Fig. 4. Initial distribution of the A and B matrices across a \/p X /p grid of nodes: the node P; ; holds the blocks A; ;| j)(mod /) and

B(i+j)mod /p).j-

/* Initialize matrices ... */

/* Begin systolic loop */

for (int index=0; index<sqgrt_nproc-1; index++) {

(2

/* Begin receiving the next A_local block into a temporary array. */

MPI_TIrecv(tmp_A_local[0], ndata, MPI_DOUBLE,
prev_proc_in_row, 0, comm, ®s[0]);

/* Begin receiving the next B_local block into a temporary array. */

MPI_TIrecv(tmp_B_local[0], ndata, MPI_DOUBLE,
prev_proc_in_col, 0, comm, ®s([1l]);

/* Begin sending the A_local block to the next proc in our row. */

MPI_TIsend(A_local[0], ndata, MPI_DOUBLE,
next_proc_in_row, 0, comm, ®s[2]);

/* Begin sending the B_local block to the next proc in our column. */

MPI_TIsend(B_local[0], ndata, MPI_DOUBLE,
next_proc_in_col, 0, comm, ®s[3]);

/* Compute contribution to C_local from A_local and B_local */

mxm (C_local, A_local, B_local, local_n);

/* Swap the local matrix pointers with those for the temporary

arrays used to receive the next local block.
swap_arrays (&A_local, &tmp_A_local) ;
swap_arrays (&B_local, &tmp_B_local) ;

/* Wait for data to finish being sent or received before proceeding */

MPI_Waitall (4, regs, stats);
}

/* Compute the final contribution to C_local from A_local and B_local */

mxm (C_local, A_local, B_local, local_n);

Fig. 5. The systolic loop employed in the hybrid parallel matrix—matrix multiplication algorithm.

Intra-node parallelization is achieved by using mul-
tiple threads for computation of the local C;; block as
shown in Fig. 6. Multi-threading is here implemented
via OpenMP [5] using the pragma directive “parallel
for”, which causes the following for loop to be per-
formed in parallel by starting up a number of threads
(determined at runtime) on each node. The computa-
tion of C;; is parallelized over ¢, each thread being re-
sponsible for its own subset of ¢ values, so that differ-
ent threads will not attempt to update the same block
C,; simultaneously.

The parallel performance of the hybrid matrix-
matrix multiplication algorithm was investigated using
a Linux cluster [6]. Four sets of runs were performed,
employing one or two computation threads per node,
and in each case running both with and without a com-
munication progress thread. All cases were performed
with a problem size of n = 5040 running on a num-
ber of nodes ranging from 1 to 36. We first note that,
running on a single node, the speedup when increas-
ing the number of threads from one to two is 1.7, cor-
responding to an efficiency of 86%. Because the two
processors must compete for shared system resources

282 LM.B. Nielsen and C.L. Janssen / Multicore challenges and benefits for high performance scientific computing

void mxm(double **C_local, double **A_local, double **B_local,

int local_n)
{
#pragma omp parallel for
for (int 1i=0; i<local_n; i++) {
for (int j=0; j<local_n; j++) {
C_local[il[j] += dot(&A_local[0][i*local_n],

&B_local([0] [j*local_n], local_n);

Fig. 6. Multi-threaded part of the hybrid matrix—-matrix multiplication, multiplying the local blocks of A and B and adding the result into the

local block of C.
35 | ; :
Speedup, 1 thread —=—
Speedup, 2 threads —=—
30 ¢ Speedup, 1 thread + progress —a—
Speedup, 2 threads + progress
25
S 20
°©
[0}
3
o 15
10

5 10 15

20 25 30 35

Number of nodes

Fig. 7. Parallel speedups for the hybrid matrix—matrix multiplication using one or two computation threads with and without a progress thread.

and implement cache coherency, perfect speedups are
typically not obtained when using multiple threads on
anode.

Figure 7 illustrates the speedups, computed relative
to the number of nodes (not threads), obtained for the
four sets of runs. When running without a progress
thread, the performance is somewhat less than ideal
with speedups of 32 and 29 obtained on 36 nodes us-
ing one and two computation threads per node, respec-
tively, corresponding to efficiencies of 89% and 80%.
The amount of computation performed per node is
omn3 /D), while the amount of communication per node
18 O(n2 / \/]5), and, hence, the communication to com-
putation ratio, O(\/g—)/ n), increases with the number of
nodes for a fixed problem size, and the algorithm is not
strongly scalable. As mentioned above, however, the
employed communication scheme in the systolic loop,
which uses nonblocking send and receive operations, is
designed to allow overlap of communication and com-

putation, prefetching new blocks of the A and B matri-
ces while computing the product of the current blocks.
When a progress thread is used to permit this overlap,
the communication overhead is hidden in the systolic
loop, and the measured communication time is negli-
gible in all cases. In this case, speedups on 36 nodes
are 35 and 32 when using one and two computation
threads per node, respectively, corresponding to effi-
ciencies of 96% and 89% — a substantial improvement
over the runs without a progress thread. Initially, how-
ever, blocks of A and B must be redistributed to create
the distribution shown in Fig. 4; this communication
step cannot be overlapped with computation, and it is
the cause for the slightly less than ideal performance
observed.

3.2. A parallel hybrid quantum chemistry algorithm

As an example of a hybrid programming approach
in a complex scientific application, we will discuss a

L.M.B. Nielsen and C.L. Janssen / Multicore challenges and benefits for high performance scientific computing 283

quantum chemistry algorithm, which computes ener-
gies with second-order Mgller—Plesset (MP2) pertur-
bation theory. Providing a good compromise between
high accuracy and low computational cost, the MP2
method is a widely used quantum chemical method
for computing molecular energies and properties when
higher accuracy is sought than offered by the basic
Hartree-Fock method.

The MP2 energy is given as the sum of the Hartree—
Fock energy and the MP2 correlation energy, and the
latter is computed from the two-electron integrals in
the molecular orbital basis, (ia|jb), as follows

B =% (ZG|J€b)[2(ia\jb) — (iblja)] @)

MP2'_
+€;—€q —€
ijab J a b

where ¢ and j represent occupied molecular orbitals,
a and b denote unoccupied molecular orbitals, and
em designates a molecular orbital energy. The two-
electron integrals in the molecular orbital basis are
generated from the atomic orbital integrals, (uv|po),
by a four-index transformation

(ialjb) = Y CpiCuaCpiCop(uv|po) 3)
nuvpo

where the transformation coefficients, Oml etc., are
the molecular orbital coefficients computed in the
Hartree—Fock procedure, and u, v, p, and o represent
atomic orbitals.

This integral transformation is the most time con-
suming part of the MP2 computation, and it is usually
performed as four separate quarter transformations. In
the computation of the atomic orbital integrals, related
atomic orbitals are grouped into so-called shells for
computational efficiency, and the four quarter transfor-
mations can be then be written as

(iN|RS) = Cprf(MN|RS), @)
M

(iN|jS) =" Cgj(iN|RS), ©)
R

(ialjS) = CnaliN|j$), (6)
N

(ialjb) = Csy(ialj$), @)
S

where M, N, R, and S are shells of atomic orbitals
with gy € M, v € N,p € R,and 0 € S, and the

quantities (M N|RS), iN|RS), (iN|jS), and (ia|jS)
each refer to a block of integrals.

Efficient parallelization of the integral transforma-
tion is the key to a high-performance parallel MP2
program. Because the number of two-electron inte-
grals can be very large (there can be many billions
of integrals for a medium-sized molecule), the two-
electron integrals must be distributed, and this neces-
sitates communication during the integral transforma-
tion. Moreover, because the computational tasks are of
very nonuniform size, one-sided communication must
be employed to minimize the time processes spend
waiting for required data to arrive.

In Fig. 8 we show a parallel algorithm [7] for
performing the integral transformation using a hy-
brid message-passing and multi-threading approach
[8], which is implemented in the Massively Parallel
Quantum Chemistry program [9]. In this algorithm,
every node runs both computation and communication
threads. The bulk of the floating point intensive work is
carried out by the computation threads, which compute
the atomic orbital integrals and transform them into the
molecular orbital basis. The communication (exchange
of integrals between processes) required during the in-
tegral transformation is handled transparently by the

While R, S pairs remain
Get next R, S pair
Loop over M, N

Compute (MN|RS)
(iN|RS) = ZiCMi(MN|RS)
End M, N p
Loop over i,
(iN]jS) = zNCR(INIRS)
Redistribute byl j:
Send (iN|jS)
End i,j loop

While contributions remain
End while Receive (iN|jS)
(ia[jS) = ZNCNa(iNjS) Accumulate(iN|jS)
(ialjb) = ZsCgp ?IaUS) End while
A * %
[| \

r
b4

Computation
Thread
Computation
Thread
Computation
Thread
Computation
Thread
Communication
Thread
Communication

Thread

Multi-threaded Process Running on a Node

Fig. 8. A schematic illustrating one node of a parallel computer run-
ning the hybrid MP2 algorithm. The code performing the bulk of the
computation runs in several threads, and the parts of the program
performing primarily communication run in one or more separate
communication threads.

284 LM.B. Nielsen and C.L. Janssen / Multicore challenges and benefits for high performance scientific computing

communication threads, with minimal interruption of
the computation on the computation threads. In the first
two quarter transformations, work and data are distrib-
uted by distribution of R, S shell pairs, and, hence,
each compute thread can compute only a partial con-
tribution to the half-transformed integrals (¢ N|5S). In
the third and fourth quarter transformations, a different
distribution of work and data, namely distribution over
ij pairs, is employed, however, so when a compute
thread has computed the contribution to a batch of half-
transformed integrals, it sends them to the node that is
to store and process these integrals for the remainder
of the integral transformation. On the receiving end,
a communication thread receives the contributions to
the half-transformed integrals and sums them into the
appropriate memory locations. Using dedicated com-
munication threads in the redistribution of the half-
transformed integrals ensures prompt processing of the
received integrals and eliminates the need to explic-
itly synchronize tasks running on different nodes. Af-
ter this redistribution of the half-transformed integrals,
each compute thread can finish the integral transforma-
tion for its own subset of integrals, using only locally
stored data.

Finally, let us briefly discuss how the code, which
was originally designed to use only message-passing,
was retrofitted by means of an object-oriented pro-
gramming technique to use a combination of multi-
threading and message-passing. The algorithm re-
quires the evaluation of two-electron integrals in mul-
tiple threads. Each two-electron integral depends on
data that is independent of the integral being evalu-
ated as well as intermediate data that is specific to the
desired integral. The integral package was originally
written in the C programming language, and, to avoid
the overhead of repeated allocation of scratch data
for each integral evaluation, some amount of scratch
data is kept in static variables (that would be shared
among all threads). The integral-independent data is
also computed and stored in these static variables. This
programming pattern is common for many computa-
tions in quantum chemistry applications. It was sur-
prisingly straightforward to migrate this pattern into a
factory pattern implemented in the C++ programming
language. This separates the integral package interface
into a portion that is thread-aware and a portion that is
not. The integral factory, when constructed, will gen-
erate the integral-independent data that can be shared
among all threads. It is then used to construct an inte-
gral evaluator for each thread, which will evaluate in-
tegrals (the computation threads in Fig. 8). The fac-

tory gives each evaluator a reference to the shared data,
and each evaluator initializes any scratch data that is
needed. Every thread can run its own evaluator com-
pletely independently of the others without synchro-
nization. This approach creates a clean design that al-
lows the application to reduce its memory footprint
without sacrificing performance.

4. Conclusion

A shift in computer architecture towards multicore
processing chips will fundamentally change how pro-
grammers utilize large-scale parallel machines. Un-
doubtedly, new programming models will be devel-
oped to make it easier for programmers to utilize ex-
treme levels of parallelism, but, in the interim, a hy-
brid message-passing/multi-threading approach pro-
vides an evolutionary method for efficiently utiliz-
ing distributed memory parallel machines comprising
shared-memory multicore processors. We have illus-
trated programming with this hybrid approach using
two very different cases. In the first case, a simple
distributed memory parallel matrix multiply was con-
verted to the hybrid approach by the addition of a sin-
gle compiler directive. To obtain the best performance
in this case it was necessary to provide one additional
thread that is used by the MPI library to overlap com-
munication with computation. In principle, it is not
necessary for the programmer to explicitly provide this
thread — it could be entirely hidden by the MPI library,
but, at present, not all MPI implementations support
this feature. In the second case, a parallel implemen-
tation of second order Mgller—Plesset perturbation the-
ory (MP2) was reformulated to more thoroughly use
multi-threading, with different threads specialized for
different tasks. In practice, effective use of future par-
allel machines will involve a combination of these ap-
proaches.

Acknowledgements

Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for
the United States Department of Energy’s National
Nuclear Security Administration under contract DE-
AC04-94A1.85000.

References

[1] H. Meuer, E. Strohmaier, J. Dongarra and H.D. Si-
mon, TOP500 Supercomputing Sites, June 1993-June 2007,
http://www.top500.org.

[2]

[3

=

[4]

[5]

[6]

L.M.B. Nielsen and C.L. Janssen / Multicore challenges and benefits for high performance scientific computing 285

C. Mgller and M.S. Plesset, Note on an approximation treat-
ment for many-electron systems, Phys. Rev. 46 (1934), 618-
622.

R.A. van de Geijn and J. Watts, SUMMA: Scalable univer-
sal matrix multiplication algorithm, Concurrency: Practice and
Experience 9 (1997), 255-274.

S. Sur, H.-W. Jin, L. Chai, and D.K. Panda, RDMA read based
rendezvous protocol for MPI over InfiniBand: Design alterna-
tives and benefits, in: Proceedings of the Eleventh ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Pro-
gramming, ACM Press, New York, 2006, pp. 32-39.

OpenMP Application Program Interface, Version 2.5 May
2005, available from http://www.openmp.org.

A Linux® cluster consisting of nodes with two single-core
3.06 GHz Intel® Xeon® processors (each with 512 KiB of L2

cache) connected via a 4X Single Data Rate InfiniBand net-
work with a full fat tree topology.

[7] I.M.B. Nielsen, A new direct MP2 gradient algorithm with im-

plementation on a massively parallel computer, Chem. Phys.
Lett. 255 (1996), 210-216.

[8] ILM.B. Nielsen and C.L. Janssen, Multi-threading: A new di-

mension to massively parallel scientific computation, Comp.
Phys. Comm. 128 (2000), 238-244.

[9] C.L. Janssen, I.B. Nielsen, M.L. Leininger, E.F. Valeev,

J.P. Kenny and E.T. Seidl, The Massively Parallel Quan-
tum Chemistry program (MPQC), version 3.0.0-alpha, San-
dia National Laboratories, Livermore, CA, USA, 2007,
http://www.mpqc.org.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

