Scientific Programming 16 (2008) 315-327 315
DOI 10.3233/SPR-2008-0270
I0S Press

Managing scientific software complexity
with Bocca and CCA

Benjamin A. Allan®*, Boyana Norris ®, Wael R. Elwasif ¢ and Robert C. Armstrong ®

4 Sandia National Laboratories, Livermore, CA, USA
bArgonne National Laboratory, Argonne, IL, USA
¢ Oak Ridge National Laboratories, Oak Ridge, TN, USA

Abstract. In high-performance scientific software development, the emphasis is often on short time to first solution. Even when
the development of new components mostly reuses existing components or libraries and only small amounts of new code must be
created, dealing with the component glue code and software build processes to obtain complete applications is still tedious and
error-prone. Component-based software meant to reduce complexity at the application level increases complexity to the extent
that the user must learn and remember the interfaces and conventions of the component model itself. To address these needs,
we introduce Bocca, the first tool to enable application developers to perform rapid component prototyping while maintaining
robust software-engineering practices suitable to HPC environments. Bocca provides project management and a comprehensive
build environment for creating and managing applications composed of Common Component Architecture components. Of
critical importance for high-performance computing (HPC) applications, Bocca is designed to operate in a language-agnostic
way, simultaneously handling components written in any of the languages commonly used in scientific applications: C, C++,
Fortran, Python and Java. Bocca automates the tasks related to the component glue code, freeing the user to focus on the scientific
aspects of the application. Bocca embraces the philosophy pioneered by Ruby on Rails for web applications: start with something

that works, and evolve it to the user’s purpose.

Keywords: Code generation, software development environment, interface definition language, SIDL

1. Introduction

Software complexity has many measures. It can be
naively quantified in terms of code measurements (e.g.,
lines of code) or in the number of instructions needed
to perform a defined task. Programmers today, how-
ever, rarely create monolithic stand-alone programs;
more often they find themselves contributing to a larger
framework or runtime system. A better complexity
measure in this case is the learning curve before the
programmer can use the framework and contribute to
it. Though hard to quantify, the intellectual cost of
learning a new framework can be greater than the value
of a programmer’s contributed code. Here we describe
a tool called Bocca whose main goal is to ease the com-
plexity of developing high-performance software using
the Common Component Architecture and automating
many difficult and error-prone development tasks.

*Corresponding author: B.A. Allan, Sandia National Laborato-
ries, 7011 East Ave., MS 9158, Livermore, CA 94551, USA. E-mail:
baallan @sandia.gov.

1.1. The common component architecture

The Common Component Architecture (CCA) is a
component model that admits and supports a model
for parallel computing [2,3,14]. As a component model
CCA must mechanize linking together components at
runtime without sacrificing performance. Among other
things, this means that CCA must allow languages that
are associated more with performance than with ease
of use — C, C++ and Fortran — and yet admit lan-
guages more familiar to component computing, such
as Java and Python. Indeed, unlike most other com-
ponent models, CCA eschews language details in its
component model, furnishing a connection mechanism
based on providing and using language-independent
interfaces (see Section 1.2). Two components can be
linked when one component advertises that it can pro-
vide an interface of a particular type for which another
component advertises a need. Interfaces that are do-
nated or imported in this way are called ports. A CCA-
compliant framework keeps track of uses and pro-
vides ports and takes care of transferring the port from
providers to users (for more details see [2,7,10]).

1058-9244/08/$17.00 © 2008 — IOS Press and the authors. All rights reserved

316 B.A. Allan et al. / Managing scientific software complexity with Bocca and CCA

1.2. Scientific interface definition language and Babel

In addition to defining a design pattern for compo-
sition, pragmatically a component model must be con-
cerned about the mechanics of connecting the soft-
ware together. Where performance is not an issue, con-
nections can be made through a network line protocol
(e.g., CORBA Component Model [16]). Another ap-
proach is to require that the components be written in
a particular language (e.g., Enterprise JavaBeans [8]).
Neither of these options is open to the scientific com-
puting developers of the Common Component Archi-
tecture, requiring that it provide a language interoper-
ability layer. This layer, called the Scientific Interface
Definition Language (SIDL) [15], is a specification for
defining interfaces that can be used to generate inter-
operable code in a variety of languages. Babel [4] is
the SIDL interpreter that the CCA uses currently sup-
porting Fortran 9X, Fortran 77, C, C++, Python and
Java. Given a valid SIDL interface definition, Babel
will generate the skeletons (implementation side bind-
ings) and stubs (calling side bindings) for any of the
supported languages invoking any other. An important
difference between Babel and other language interop-
erability tools (e.g. Simplified Wrapper and Interface
Generator, or SWIG [5]) is that Babel provides two-
way invocation: each supported language can call or
be called by every other. Special care has been taken
by the developers of Babel to reduce the performance
overhead of using Babel to the level of a few function
calls. Developers are thus free to create their compo-
nents in the language with which they are most com-
fortable and be certain that their work will be usable
by other developers working in any of these supported
languages.

1.3. Bocca: A CCA component generator

The best description of Bocca is that it is an appli-
cation generator or as described in this paper, a CCA
component generator. Armed with only the names of
component and port types, users can create a complete
skeleton application out of components in minutes.
What Bocca does for the Common Component Archi-
tecture is similar to what Rails does for Ruby-enabled
web applications (for more on this see Section 6).
Bocca creates an entire application shell that runs out
of the box and is ready for the programmer to insert
implementation code. It adopts the philosophy of ex-
treme programming [6] that all working code comes
from other working code. Bocca gives the program-

mer an entire application that is “close” to what is
wanted. From there the code can evolve to what the
programmer has in mind. Because Bocca provides the
component-oriented glue code and attendant build sys-
tem, the programmer needs to learn only that which
directly impacts the application, and nothing else. The
value of Bocca is measured in the lines of code that the
programmer did not have to write and, more important,
understand. As we shall see in the following example,
the savings, even for the simplest componentized ap-
plications, are considerable.

The utility of Bocca can be illustrated by using
a simple example that generates the basic skeleton
of a functioning application composed of two CCA-
compliant components.

Figure 1 gives a quick demonstration of the power
and simplicity of Bocca. Line 4 creates a new project
called myProject by constructing a new directory by
the same name and importing the build system into it.
Every command related to this project must take place
inside this project directory or one of its antecedents.
In line 8 we create a CCA port type called myPort,
which at present has no methods but is nonetheless a
valid port. In lines 10 and 12 we create two compo-
nents: Worker, which provides a myPort, and Driver,
which uses it. The Driver component also provides a
GoPort that provides a standard GoPort, which is the
application entry point (similar to a traditional main
program). In addition to the port type myPort each
component needs an instance name for the port to dis-
ambiguate multiple ports of the same type on the same
component. Here Worker names its myPort “xport”
because it is providing a myPort and Driver names
the port it will use “wport”. We configure, build,
and test the project with the configure, make, and
make test commands. At this point we have an
empty “shell” components and ports that have no meth-
ods or corresponding implementations but nevertheless
can be linked together and “run” as a complete appli-
cation (see Fig. 2).

Componentizing applications is a way, possibly the
best way, to manage complexity and allows a large
project to scale both in size and number of devel-
opers. The component model itself, however, intro-
duces a different type of complexity that does not ex-
ist in noncomponent software. Part of the motivation
for Bocca was to overcome this learning curve by cre-
ating a runnable template for a componentized appli-
cation into which users can easily insert code. In this
way users can learn the component model incremen-
tally and in steps that are most relevant to their imme-
diate goals.

B.A. Allan et al. / Managing scientific software complexity with Bocca and CCA 317

1 #!/bin/sh

2 # Project Creation

3

4 bocca create project myProject

5

6 c¢d myProject

7

8 bocca create port myPort

9

10 bocca create component Worker —provides=myPort: xport
11

12 bocca create component Driver —uses=myPort: wport —go=GO

14 ./configure
16 make

18 # Test new project skeleton
19 make check

Fig. 1. Simple Bocca project creation script.

"neo £} Common Component Architecture: Untitled_0.bld (changed)

Filg View CCA In_fo
CEL EERIEE

Palette Arena

myPort

Driver

Worker

Fig. 2. An empty “shell” application resulting from the commands given in Fig. 1 shown in the CCA GUIL

2. Attacking complexity

Scientific software development and maintenance
processes have several kinds of superlinear social and
technical complexities that make them generally un-
scalable in costs for very large projects. We aim, by
providing Bocca and CCA, to directly reduce several
complexities of software development processes by en-
abling the following approaches:

scientific language interoperability,
software componentization,
configuration management by default,
source code layout by default,
portability by default.

The complexity reductions our approach affords
are easily expressed with the following numbers:

NL (number of programming languages), Nt oc (to-
tal lines of code), Nsg (source file count), Ny, (in-
terface lines of code), Npgy (number of develop-
ers), NpL, (number of platforms), Nap (number of ap-
plications), N¢ (number of existing code libraries),
Nsy (number of shells) and N¢y (number of configu-
ration management tools).

Combining codes from among the languages fre-
quently encountered in scientific computing toolkits
(C, C++, Fortran 77, Fortran 90, Fortran 2003, Python
and Java) is an arduous task if done manually. Many
(more than Nf) incompatible, point-to-point tools ex-
ist to handle particular pairs of languages. Our use of
SIDL and Babel reduces interoperability complexity
from N2 to 1: The owner of a code writes the multilan-
guage wrapper for that code in the same language after
specifying the wrapper with SIDL.

318 B.A. Allan et al. / Managing scientific software complexity with Bocca and CCA

Software componentization reduces requirements
on mental information processing in three areas by
strictly enforcing conventions for public interfaces and
private implementations of all functionality. We ob-
tain this often promised but seldom delivered result be-
cause a runtime framework is responsible for all inter-
actions across component boundaries and it is difficult
for a component developer to understand private im-
plementation of another component which is not in the
same language.

The first area of complexity reduced by Bocca
is manual code inspection. The quadratic potentially
buggy (or low performance) interactions that must be
managed decrease from N o to N} when interface
discipline is enforced.

The second area reduced is design time spent nego-
tiating interactions between existing codes when be-
ing integrated into larger projects. The specification of
smaller, language-neutral interfaces in SIDL focuses
discussions away from Npgy * N * Nc shortcuts and
toward Ny, lines of SIDL representing a maintainable,
portable solution.

The third area reduced is coding custom initial-
ization and launch processes on parallel platforms.
NpL, * Nap such efforts are simply eliminated once
each code is built of components and the problem of
launching a generic component framework has been
solved for a given platform.

Configuration management is a necessary part of
scientific computing; since no operating system or
compiler vendor meets the evolving needs of all li-
braries used in a portable application code. Manu-
ally managing Npp, * Nsy * Ncym compilation scripts
with source code variations is too much for scientists
and developers, who often do not even have access to
one or more of the platform and compiler combina-
tions on which the libraries they contribute must run.
Through Bocca we reduce the build clutter by auto-
matically providing autoconf and gnu make scripts for
these tasks, reducing Npp, * Ngy * Ncy complexity
to O(1) complexity. A key part of the provided build
support is that Bocca-built software can be automati-
cally installed for production use following common
standards. These standards make detecting the installed
packages much easier for downstream software builds.

Creating and editing files require social effort on
large projects. Development effort can be lost if con-
flicting changes are made in the same files. In the gen-
eral case, there may be Npgy * Ngp interactions. Bocca
prescribes that separate components are kept in sep-
arate directories. This approach provides strong hints

about intellectual file ownership and editing responsi-
bility, reducing the likelihood of accidental losses from
conflicting edits of the same file. Also, this directory
layout allows those who wish to exchange code via tar
files instead of the formality of version control to easily
export just that piece.

3. Enabling rapid development

Our aim is to decrease to near-zero the time re-
quired to define, build, and maintain the component
glue aspects of CCA applications. We designed Bocca
to capture knowledge about component enabled high-
performance computing (HPC) applications and to use
that knowledge to automate as much as possible the
process of application construction and maintenance.
The information to be captured and managed falls
broadly into three categories:

1. An application: a list of component instances,
port connections, runtime input parameters, and
component installations.

2. The SIDL entities and the uses/provides design
pattern that defines a given component. This in-
cludes any external dependencies (typically li-
braries) required to build the implementation.

3. The choice of build tools.

Our software design reflects the different types of
data that must be managed (see Fig. 3). Developers can
leverage their favorite existing tools to perform all the
functions that are generic to component software de-

SIDL item
U database
s E
¢ X Builder
" uil . r
e [P AP build plug-ins
S c
u
b t
1 = i Generated SIDL,
1 v Components, Build
e
T
<
Application
Ccafe description
GUI
—P{ Ccaffeine ‘

Fig. 3. Bocca design overview.

B.A. Allan et al. / Managing scientific software complexity with Bocca and CCA 319

velopment: compilation, source code editing and ver-
sion management, and execution of the completed ap-
plications in some framework. Packagers and users of
the resulting software package need have no knowl-
edge nor installation of Bocca at all.

Bocca is constrained by the unique key requirements
of HPC software development, specifically, Bocca
must do the following:

1. Function well in ill-defined development proces-
ses where the project requirements rarely stabi-
lize and where the participants are scientific ap-
plications programmers rather than experienced
software engineers. Iteration and evolution of ap-
plication, interface, and component design must
be supported.

2. Be inexpensive. Complex, unusual, or propri-
etary software and expensive training prerequi-
sites are not allowable.

3. Have low abandonment costs. The user must be
able to trivially export individual components or
entire applications as packages that may be con-
figured, built, used and maintained as part of
larger, Bocca-free projects.

4. Remain fully functional in the spartan develop-
ment environments typical for high-performance
architectures. Production HPC environments fre-
quently lack particular graphical tools, access to
remote desktops, and the very latest versions of
common open-source tools.

5. Be queryable for syntax help and examples as
well as the current project state.

Our approach is to design a command-line tool, sim-
ilar in look and feel to many version control systems.
The tool performs various actions (e.g., create, re-
move, rename) on a set of SIDL and CCA subjects
(e.g., component, port, class, interface). All the SIDL
definitions are generated by the tool once the user spec-
ifies the desired type names, leaving the user to fill
in domain-specific method names and implementation
code. Graphs (or trees) are a natural choice for orga-
nizing SIDL entities and representing their relation-

ships. Specifics of these data structures are discussed
in Section 5. A small language for describing applica-
tion [1,3] construction from Bocca-generated compo-
nents is discussed in Section 4.3.

For both maintenance and rapid prototyping, Bocca
has sufficient project data to handle renaming or re-
moving any SIDL entity and then automatically update
both the user-customized sources within the project
and the noneditable Bocca-generated sources (see Sec-
tion 5).

4. Code lifecycle management

The simple example presented in Section 1.3 illus-
trates how Bocca can be used to rapidly build a func-
tioning prototype of a component-based application.
The true utility of Bocca lies in the ability to manage
the complete life cycle of complex component-based
applications. Such applications comprise the full range
of SIDL entities interconnected by nontrivial inheri-
tance and dependency relationships. Figure 4 shows
the different Bocca commands used to manage differ-
ent phases in the lifecycle of managed code.

Bocca uses the project abstraction as the con-
tainer for all code artifacts. As can be seen in Fig. 4,
upon creation of an initial set of artifacts that reflect
the intended structure of the target application, the user
then goes into an update-query-refine cycle to fine tune
the application and add implementation details to the
various code skeletons generated by Bocca.

4.1. Code creation

While the full description of Bocca command syn-
tax and various options is beyond the scope of this pa-
per, we nonetheless outline some major themes that
underline Bocca’s utility as a rapid development envi-
ronment and code maintenance and management tool.
Details can be found in the CCA Tutorial Hands-On
Guide [9].

Artifact Creation Code Update Query & Configure
Project Creation . X
= bocca create {interface | b iocca edit — - :occa dlsl;],'ay
beoceca create project port | class | ocea rename oSea coniig
bocca change boceca whereis
component | enum}

A bocca remove bocca update

Code Creation : Code Maintenance

Fig. 4. Code life cycle management using Bocca.

320 B.A. Allan et al. / Managing scientific software complexity with Bocca and CCA

Extensive use of defaults: Bocca uses default values
for many aspects that define created code arti-
facts. For example, the programming language
specified at project creation time becomes the
default language for classes and components be-
longing to this project. If a default language
is never specified, then the default language
is C++. The use of defaults, especially for
component-related aspects of the code, expe-
dites the process of creating a working applica-
tion skeleton, while maintaining the user’s abil-
ity to refine the design afterwards.

Dependency management: Bocca uses dependency
information explicitly provided by the user, as
well as those implicit in the created artifacts,
to automatically generate code that reflects this
dependency in all supported languages. For in-
stance, when a port is used by a component,
Bocca automatically generates a SIDL method
that incorporates the used port symbol as an
argument. This in turn causes the Babel com-
piler to generate the correct code that refers to
any header files or modules needed to access
code for the used port. This dependency man-
agement is particularly important as it is used in
the Bocca-generated build system to streamline
the build process.

Interaction with external code: Bocca supports the
use of code that is external to the current project
using one of two approaches. The first approach
incorporates such code into newly developed
project artifacts (e.g. the --import-sidl and
--import-impl command line option). This
approach is particularly useful to migrate legacy
code into Bocca-managed projects. The alter-
native uses external SIDL symbols in-place,
caching their definition in a local directory for
use by the build system. This latter approach al-
lows for parallel development of inter-dependent
projects, without the need to totally subsume one
project into the other.

4.2. Code maintenance

Bocca also plays an essential part in evolving and
fine tuning an initial application prototype as the de-
veloper gains a better understanding of the devel-
oped code. At the core of Bocca’s ability to carry out
application maintenance lies the detailed SIDL and
CCA component dependency information maintained
by Bocca, which covers all managed code artifacts.

Commands that can be used to evolve a component-
based application include bocca rename, which
changes the name of a code artifact; bocca edit,
which streamlines the editing process of Bocca-gener-
ated code; and bocca display, which queries the
Bocca-maintained project database for information re-
lated to project entities. Such commands also include
bocca change, which captures changes applied to
the structure of the code entities themselves and their
inter-dependencies. Such a change may include adding
(or removing) a port used (or provided) by a com-
ponent, changing the inheritance attributes of an in-
terface or a class, or capturing the dependency on a
symbol in a method argument to properly structure the
build system. Code maintenance commands also in-
clude bocca remove, to delete a code entity from
the managed project.

4.3. Application generator

Appgen is an application generator that interprets
directives for manipulating components and creates a
main () program in a language of the user’s choice.
While not strictly part of Bocca, it works with Bocca-
generated components. The generated code can be
used as is or incorporated as part of a larger appli-
cation. Appgen takes advantage of the fact that the
CCA specification requires that compliant frameworks
may also be used passively like a library, instantiating
components and linking them together on behalf of an
driving application. This embedding of CCA compo-
nent networks allows even main () programs to ap-
pear in a CCA framework as a component itself [3].

Figure 5 is an example of Appgen input source that
creates a standalone application that runs the exam-
ple from Section 1.3. The path command in line 2
tells the framework where to find components in the
filesystem. Lines 5 and 6 define how the symbols for
the particular component class are to be loaded in the
case of a shared object library. If the components are
statically linked in, such as might be the case in a
high-performance setting, then these statements have
no effect. get —~-global means load all of the symbols
globally so they are resolved at the top level for the en-
tire application. Lines 10 and 11 instantiate the compo-
nents by their classname (first argument) giving each a
unique instance name (second argument). The instance
name will be used to refer to these components for
configuration and invocation. Next, in line 14, we con-
nect the myPort uses port on the Driver to the pro-
vides port of the same type on the Worker compo-

B.A. Allan et al. / Managing scientific software complexity with Bocca and CCA 321

identify where the appgen tool can find the components:

path set /usr/share/cca

retrieve and load the component symbols:

repository get—global myproject. Worker

instantiate the components and give them

)

1
2
3
4
5 repository get—global myproject.Driver
6
7
8
9

the names ‘‘driver and

13 # connect the components:

“‘worker
10 create myProject.Driver driver
11 create myProject. Worker worker

>y,

14 connect driver myportname worker myportname

16 # run the driver component by

17 go driver

‘ >

invoking its ‘‘go’’ port:

Fig. 5. Input for the Appgen tool which will create a main () program in the language of the user’s choice, assembling and running the

components as an application.

nent. Finally, on line 17, we invoke the GoPort on the
Driver. This yields the same application shown from
the GUI view (see Fig. 2) but as an executable gener-
ated in any of the supported programming languages.

5. Implementation

Bocca is implemented in Python by using an ex-
tensible architecture of interfaces and modules corre-
sponding to the different parts of the system.

5.1. Project graph representation

Unlike graphical IDEs, Bocca cannot maintain elab-
orate project state in memory and must thus rely on
an efficient persistent representation of all project in-
formation. We have chosen a graph representation for
expressing the relationships between project entities,
based on a Python graph package developed by Dick
and Gaitanis [12]. The vertices of the graph generally
correspond to SIDL entities, such as package, inter-
face, port, class, component and enum. Dependencies
between entities are represented by edges between the
corresponding vertices. There are several types of de-
pendencies between vertices:

e “extends” dependence between an interface that
extends another interface, or a class that extends
another class;

e “implements” dependence between a class that
implements an interface;

e “uses” and “provides” dependencies between
ports and components;

e “contains” dependence, which is used to express
the relationships between packages and the SIDL
entities they contain, as well as noninheritance-
related dependencies between any two SIDL en-
tities, for example, a SIDL interface used as an
argument type in a class method.

The project graph representation is serialized and
stored in ASCII form. Initially Bocca used Python’s
cPickle serialization, but it proved more cumbersome
to implement and maintain the special handling of
graph entities (due to potential circular references)
than to implement a slightly less general custom se-
rialization for the graph. Storing the graph in a bi-
nary format is possible, as well, but does not offer
significant performance advantages. In addition, the
persistent project state file is human-readable, aiding
in debugging. A high-level visual representation of
the project is also available via a Graphviz [13] dot
file, which is automatically generated by the bocca
display command.

Figure 6 shows a visualization of the graph rep-
resentation of the simple Bocca project presented
in Section 1.3, which consists of a package con-
taining a port (myProject.myPort) and two compo-
nents: myProject. Componentl, which uses the port,
and myProject. Component2, which provides the port.

5.2. Command dispatching

Each Bocca action (e.g., create, change, dis-
play) corresponds to a method in the interface that all

322

project: myProject 0.0.0
| y contains
i contains . —

containg

A

Textends_— contains

interface: gov.cca.Port 0.0

Created with GraphViz by Bocca

> port: myProject.myPort 0.0 _ provides -

B.A. Allan et al. / Managing scientific software complexity with Bocca and CCA

uses _—

Fig. 6. Graph project representation illustration for a simple Bocca project.

pertinent SIDL entities implement. Each Bocca com-
mand also has a subject (e.g., project, port, compo-
nent), which is the entity to which the action applies.
Sometimes the subject is implicit, as in bocca dis-
play, where the subjectis project, or when a SIDL
name for an entity that exists in the project is used,
as in bocca display MyPort, where the subject
is port. In the graph project representation described
in Section 5.1, the BVertex interface contains methods
corresponding to all command-line actions. Each sub-
Jject is a class descended from BVertex.

A dispatcher module is responsible for deter-
mining what the action and subject are on the com-
mand line. The only option the dispatcher recognizes
is -—help/-h. All other options are parsed and han-
dled by the class corresponding to each subject. For
each Bocca command, the dispatcher performs the fol-
lowing steps:

1. Determine and validate the action and subject.

2. Load the project graph and attempt to determine
the subject if it was not given on the command
line.

3. Load the Python module containing the class
implementing the subject (e.g., Interface, Port,
Class, Component).

4. When the create action is present, create a new
instance of the subject class.

5. For refactoring actions (e.g., change, rename),
retrieve the vertex from the project graph corre-
sponding to the specified subject.

6. Invoke the method corresponding to the action on
the instance corresponding to the subject.

7. After completion of the method, perform cleanup
and, if necessary, save the project state.

The dispatcher also performs some special help ac-
tion handling (to support the help command outside
of a Bocca project) and allows some flexibility in the
command line syntax, such as not specifying the sub-
ject explicitly.

5.3. Code generators

Bocca automatically generates SIDL definitions and
boilerplate component code in the implementation for
all Babel-supported languages. Babel parses SIDL and
generates code in C, C++, Fortran, Java or Python,
using splicers, or special structured comments,
to designate portions of the code, referred to as
splicer blocks, that can be edited by the user. The
first concern of both Bocca and Babel code genera-
tors is never to lose anything a user writes by hand.
A splicer block is a set of lines that begins with a
line key . begin (symbol), where the key is a splicer
type and symbol is the SIDL symbol associated with
the particular splice. Each splicer block ends with a
line key . end (symbo1l) . Any text contained between
the begin/end splicer comments is not modified by
Babel, while any code outside of a splicer block is
regenerated when Babel is applied to the SIDL file.
Bocca generates SIDL files containing splicer blocks
for user comments, methods (in interfaces and classes),
and enumerators (in enums).

After Babel generates the implementation code in
the target language, Bocca inserts component and other
boilerplate code within the Babel splicers. Two types
of code are generated by Bocca:

e Bocca default code: boilerplate code for getting
ports, handling exceptions and other common
operations associated with CCA components or
SIDL interfaces. This code is generated once and
can be modified or removed entirely by the devel-
oper.

e Protected code: the contents of protected blocks
are essential for compilation and correctness and
should not be modified or removed by the user.

For example, Fig. 7 contains a code excerpt from
the implementation of the “Driver” component gener-
ated from the example in Section 1.3 and illustrated

0 N U W —

T R I N N N N N T RV B T O S B U O T N N R R R R R R R i el Tl
RS0 JdLELRESOXIRREORN-STS ORI REAIN S0 0A0 A D0 — O 0

53
54
55
56
57
58
59
60

62

B.A. Allan et al. / Managing scientific software complexity with Bocca and CCA 323

/**

3k

* Execute some encapsulated functionality on the component.

* Return 0 if ok, —1 if internal error but component may be

* used further, and —2 if error so severe that component cannot
* be further used safely.

*/

int32_t myProject:: Driver_impl:: go_impl ()

// DO-NOT-DELETE splicer.begin(myProject.Driver.go)
// User editable portion is in the middle at the next Insert—UserCode—Here line.

// Bocca generated code. bocca.protected.begin(myProject.Driver.go:boccaGoProlog)
int bocca_status = 0;
// The user’s code should set bocca_status O if computation proceeded ok.
// The user’s code should set bocca_status —1 if computation failed but might
/! succeed on another call to go(), e.g. when a required port is not yet
/! connected.

gov::cca:: Port port;

// nil if not fetched and cast successfully:

myProject :: myPort myPort;

// True when releasePort is needed (even if cast fails):

bool myPort_fetched = false;

// Use a myProject.myPort port with port name myPort

try {
port = this —>d_services.getPort("myPort");

} catch (::gov::cca::CCAException ex) {
// we will continue with port nil (never successfully assigned) and
/l set a flag.

}

if (port._not_nil()) {
// even if the next cast fails , must release.
myPort_fetched = true;
myPort = ::babel_cast< myProject:: myPort >(port);
if (myPort. _is_nil()) {

#ifdef _BOCCA_STDERR
std::cerr << "myProject.Driver:_Error_casting_gov::cca::Port_ "
<< "myPort_to_type_ "
<< "myProject:: myPort" << std::endl;
#endif //_BOCCA_STDERR

goto BOCCAEXIT; // we cannot correctly continue. clean up and leave.
}
}

// Bocca generated code. bocca.protected.end(myProject.Driver.go:boccaGoProlog)

// When this try/catch block is rewritten by the user, we will not change it.
try {

/!l All port instances should be rechecked for ._not_nil before calling

// in user code. Not all ports need be connected in arbitrary use.

/!l The uses ports appear as local variables here named exactly as on the

// bocca commandline.

/!l Insert—UserCode—Here {myProject.Driver.go}
// DO-NOT-DELETE splicer.end(myProject.Driver.go)
}

Fig. 7. Excerpt of the Bocca-generated code for Driver.GoPort from the example in Fig. 1, line 12.

324 B.A. Allan et al. / Managing scientific software complexity with Bocca and CCA

by Fig. 1. Specifically, this code is generated for the
“GO” method on the Driver component in C++. Re-
call that this method is called by a CCA-compliant
framework to start execution. Line 10 in Fig. 7 is the
start of the splicer block that has been generated by
Babel to protect user code from changes by Babel.
Within this block are special “protected” blocks gen-
erated by Bocca of the form bocca.protected.
begin (symbol) closed by bocca.protected.
end (symbol) (line 13 closed by line 50 in Fig. 7; note
that this is only a partial listing because of space con-
siderations). This block will be parsed and changed by
Bocca and serves as a warning to developers that al-
terations may break the code or will be lost. All user
modifications outside of bocca.protected blocks
and inside splicer blocks will be preserved.

5.4. Project refactoring

In addition to project creation, Bocca automates
many project refactoring and maintenance tasks. Be-
fore Bocca, some common operations, such as remov-
ing or renaming an interface or a class, were time-
consuming and error prone, requiring manual updates
to SIDL files, header and implementation files in var-
ious languages and makefiles. Bocca relies on the de-
pendence information in the project graph representa-
tion to propagate all changes correctly and automati-
cally updates affected files, as well as the project graph.

5.4.1. Importing existing code

In many cases, the developer is not starting from a
blank slate and may wish to leverage existing SIDL and
implementation code when creating or modifying a
Bocca project. To serve this common need, Bocca pro-
vides import functionality, both for SIDL and for im-
plementation code in the languages supported by Ba-
bel. To support SIDL imports, Bocca contains a SIDL
parser, implemented using Ply [11], which is a pure-
Python implementation of the popular compiler con-
struction tools lex and yacc. As with other Bocca com-
mands, the —--import-sidl option can be applied
to different SIDL entities. An entire SIDL package can
be imported into a Bocca project or package, or indi-
vidual interfaces, ports, classes, components, or enums
can be imported into an existing Bocca package.

In addition to importing SIDL, Bocca can import
implementation code from existing Babel-based soft-
ware. The import implementation relies on the Babel
splicers in the code and thus does not need to parse
each of the supported languages. Usually a few manual
changes are necessary after importing implementation
source code.

5.4.2. Managing the project state

As described in Section 5.2, the persistent graph
project representation is loaded and stored before and
after each Bocca command. When a Bocca command
fails, the persistent state is not modified.

Many Bocca commands result in the creation of new
files or modifications to existing files. If a command
fails halfway through its execution, after modifying
certain files, simply exiting with an error code would
leave the project in an inconsistent state. To provide
graceful recovery from errors, Bocca uses a “smart”
file manager that is able to undo any operation on a file
performed during the execution of a command. Addi-
tionally, the file manager automatically makes backups
for all destructive actions, e.g., rename and remove.

Users can control many aspects of Bocca through
the use of a projectwide configuration file. For exam-
ple, one can specify different levels of validation af-
ter user input into SIDL files: from no validation, to
running a syntax check, up through regeneration of all
affected implementation code.

5.4.3. Help system

The help action and —--help/-h options are an
important source of documentation for Bocca and are
implemented using the Python docstrings embedded in
the method implementations. Since help information
is dynamically obtained from the modules correspond-
ing to each command, Bocca ensures that help will be
available for any new modules that simply document
their implementations and will not be out of sync with
the implementation.

5.5. Build system

Bocca does not incorporate a specific build para-
digm. The definition of multiple different build sys-
tems is made possible through a pair of abstract inter-
faces, LocationManager and Builder. These interfaces
allow different build systems to be plugged into Bocca-
managed projects using an option in the project config-
uration file. As part of the Bocca distribution, a GNU
Make [17] plugin is provided. This plugin generates
makefile segments that automate the build of all Bocca-
managed entities. Users can extend and override make
variables and rules using special user-controlled make-
file segments that are then included in the automati-
cally generated build files. Users can define rules that
are executed before and after each stage of the build:
code generation, compilation, linking and installation.
In addition to the predefined makefile variables pro-

B.A. Allan et al. / Managing scientific software complexity with Bocca and CCA 325

vided by the builder plugin (e.g., installation locations,
compilers, compiler and other flags), developers can
define new makefile variables that are used in prede-
fined and/or user-defined rules.

6. Related work

It is tempting to consider Bocca, albeit command-
line driven, just another IDE. Although Boccafulfills
many functions traditionally associated with IDEs, it
does not provide the language-syntax-enabled editors,
visual programming interfaces, and so on that are in-
separable from traditional IDEs. It is difficult to draw
distinctions between the typical IDE and Bocca, but
certainly the IDE is more comprehensive. By taking
advantage of language and application domain partic-
ulars, the intention of an IDE is to speed the devel-
opment process generically. Traditional IDEs are in-
volved in every aspect of the development. Hence,
special-purpose IDE application is necessary for all as-
pects of code creation, testing and deployment. Unique
peculiarities in these languages and bindings are ex-
ploited to flatten the learning curve and otherwise
speed code construction. Bocca, on the other hand, is
meant to create a CCA shell application or import ex-
isting code into a componentized application and is
limited to that purpose. The CCA application devel-
oper relies on Bocca only to define and maintain CCA
components and SIDL interfaces; the rest of the de-
velopment process is left to other tools. Pragmatically,
a typical IDE takes many more man-years of effort in
order to be viable, an effort that is beyond the resources
of the Bocca team.

Bocca borrows from the extreme programming phi-
losophy that all working code comes from other work-
ing code, and it is easier to evolve a working appli-
cation than to start out with a blank slate. There is
no requirement for Bocca itself to build or edit the
application after it has been invoked except to aug-
ment or change aspects of its componentization. While
typical IDEs are concerned with every aspect of soft-
ware development, Bocca is concerned only with the
CCA componentization. Possibly the closest analogue
in commercial software is Ruby on Rails [18]. Given
a database schema and a few names, Rails creates a
database-backed web application shell that users can
modify to suit their needs. Similar to Bocca, does not
seek to speed the traditional process of development
but to change the process itself by giving the user a
working web application. Also similarly, Rails’ scope

is limited to the web application domain and is not in-
volved in editing, building, or running of the applica-
tion itself. Users employ their own tools to insert spe-
cific implementation code.

Depending on its design, the IDE is a full partner
in a developer’s code creation means that once under-
taken, the IDE is forever the basis of the developer’s
code base. Traditional IDEs are involved in every as-
pect of the development meaning that special-purpose
IDE application is necessary for all aspects of code
creation, testing, and deployment. Unless Boccais in-
voked specifically to alter or augment some component
aspect, the application is otherwise edited, built, and
debugged without Bocca intervention. Thus, Bocca’s
“cost of abandonment” is low. There is little penalty
for getting started with Bocca, and in the event that
Boccabecomes too restrictive, continuing development
without it.

7. Quantifying Bocca’s impact

Quantitative studies of Bocca’s impact on developer
productivity have not been performed because of the
rapid and iterative nature of Bocca ’s development.
We can, however, provide measures of the complex-
ities managed by counting the artifacts Bocca auto-
matically manages. The statistics in Table 1 refer to
the previous example of Section 1.3 choosing an im-
plementation language of C++. These are rough mea-
sures of Bocca’s effectiveness in reducing the software
engineering complexity the scientist must deal with
in developing portable component software. The only
significant dependence of these results on the choice
of implementation language is that the lines of helper
code (CCA source) generated are substantially higher
to manage object type handling and exceptions in lan-
guages lacking those concepts, such as C and For-
tran.

We show in Table 1 the quantity and sizes of files
and code generated by Bocca use, by execution of
the builder plugin, and by installation of the result-
ing product. For the two components and one port in
the example of Fig. 2, the set of customizable files is
small, while the glue code is both lengthy and wide-
spread. The majority of the glue code is due to the
CCA requirement that components be language agnos-
tic.

Portable HPC software build systems are expen-
sive to create, debug, and maintain. The CCA speci-
fication and the Babel tool prescribe no standards for

326 B.A. Allan et al. / Managing scientific software complexity with Bocca and CCA

Table 1
Project entities managed with Bocca
Files Lines Code type
User customizable
3 116 SIDL Files
4 1354 Babel Impl source
16 481 Build system
Uneditable
n/a 498 CCA source (inserted into Impl)
94 9732 Babel glue source code
798 157,709 Build process intermediates
Installed product
26 n/a Interface libraries
2 n/a Component libraries
70 22,513 Headers or scripts
201 4 Package metadata (xml)

build processes or installation practices. Bocca fills
this void using the pattern set by the builder-plugin of
the user’s choice, completely hiding the size and com-
plexity of the build infrastructure required to assemble
the different makefile fragments into a complete build
process.

Several Bocca users have adopted the more radi-
cal (and considerably cheaper) approach that the entire
build system is only a generated and therefore dispos-
able artifact. These users permanently manage only the
files containing their value-added work: the SIDL def-
initions, the component implementations, the external
software dependencies, and the scripts that regenerate
the build system.

8. Conclusions and future work

The development environment for high-perfor-
mance computing software presents unique require-
ments that are not addressed by any of the com-
monly available integrated development systems. Such
requirements include the need to seamlessly support
mixed language development, where the same project
involves code written in any of the commonly used
languages in high performance computing. Addition-
ally, the need to support development and deploy-
ment on high-end computing platforms that may lack
proper infrastructure for GUI-based development ren-
ders the command-line user interface essential for de-
velopment tools that target such platforms. Further-
more, the fact that HPC code is typically ported to sev-
eral platforms during its useful life time renders the

use of any platform-specific development environment
highly undesirable.

The Bocca development tool addresses the unique
requirements for high-performance scientific comput-
ing software. Bocca facilitates the rapid prototyping of
complex multilingual applications, while at the same
time providing the required infrastructure for the con-
tinued refinement and update of the original applica-
tion design. Bocca’s infrastructure, developed entirely
in the widely available Python programming language,
guarantees ease of portability to any HPC platform.
The default Bocca-generated build system uses stan-
dard, portable tools that guarantee maximum porta-
bility of Bocca projects across HPC platforms. Fur-
thermore, Bocca generated projects are not dependent
on Bocca itself for build and deployment. Thus, such
projects can evolve independently of Bocca, should the
need arise.

The underlying design philosophy of Bocca maxi-
mizes the reuse of widely accepted standard tools in the
HPC community, while streamlining the development
and deployment process. The pluggable build system
back-end architecture of Bocca relies on the integra-
tion of widely available build systems and tools, rather
than introducing a new build system that locks devel-
opers into a specific build methodology that may not
fit their expertise or development requirements.

Acknowledgments

This work was supported in part by the Mathemati-
cal, Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Com-
puting Research, Office of Science, US Department
of Energy, under Contract DE-AC02-06CH11357 (Ar-
gonne National Laboratory); Oak Ridge National
Laboratory, managed by UT-Battelle, LLC, for the
US Department of Energy under contract DE-ACO05-
000R22725. Sandia is a multiprogram laboratory op-
erated by Sandia Corporation, a Lockheed Martin
Company, for the US Department of Energy under con-
tract DE-AC04-94AL85000.

References

[1] B.A. Allan and R.C. Armstrong, CCA tutorial: Intro-
duction to the Ccaffeine framework, http://www.cca-
forum.org/tutorials/archives/2002/tutorial-2002-06-24/tutorial
ModFramework.pdf, 2002.

B.A. Allan et al. / Managing scientific software complexity with Bocca and CCA 327

[2] B.A. Allan, R. Armstrong, D.E. Bernholdt, F. Bertrand, [10] CCA tutorials, http://www.cca-forum.org/tutorials/.
K. Chiu, T.L. Dahlgren, K. Damevski, W.R. Elwasif, T.G.W. [11] Dabeaz LLC, Ply homepage, http://www.dabeaz.com/ply/
Epperly, M. Govindaraju, D.S. Katz, J.A. Kohl, M. Krishnan, index.html, 2008.

G. Kumfert, J.W. Larson, S. Lefantzi, M.J. Lewis, A.D. Mal-
ony, L.C. Mclnnes, J. Nieplocha, B. Norris, S.G. Parker, J. Ray,
S. Shende, T.L. Windus and S. Zhou, A component architec-
ture for high-performance scientific computing, Intl. J. High

[12] R. Dick and K. Gaitanis, Graph — Directed and undi-
rected graph data structures and algorithms, http://ziyang.ece.
northwestern.edu/ dickrp/python/mods.html, 2005.

Perform. Comput. Appl. 20(2) (2006), 163-202 [13] J. Ellson, E. Gansner, L. Koutsofios, S.C. North and G. Wood-
[3] B. A Allan, R.C. Armstrong, A.P. Wolfe, J. Ray, D.E. Bern- hull, Graphviz — Open source graph drawing tools, in: Graph

holdt and J.A. Kohl, The CCA core specification in a dis- Drawing, LNCS, Vol. 2265, Springer, Berlin/Heidelberg, 2002,

tributed memory SPMD framework, Concurr. Comput.: Pract. pp. 394-597.

Exp. 14(2) (2002), 323-345. [14] W. Elwasif, B. Norris, B. Allan and R. Armstrong, Bocca:
[4] Babel homepage, http://www.lInl.gov/CASC/components/ A development environment for HPC components, in: HPC-

babel.html, 2008. GECO/CompFrame 2007, Montreal, Canada, October 2007.
[5] D. Beazley, Simplified wrapper and interface generator [15] S.R. Kohn, G. Kumfert, J.F. Painter and C.J. Ribbens, Divorc-

(SWIG), http://www.swig.org, 2008. ing language dependencies from a scientific software library,
[6] K. Beck, Extreme Programming Explained: Embrace Change, in: 10th SIAM Conference on Parallel Processing, Portsmouth,

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, VA, 2001.

USA, 2000. [16] G.T. Leavens and M. Sitaraman, Foundations of Component-
[7] D.E. Bernholdt, R.C. Armstrong and B.A. Allan, Managing Based Systems, Cambridge University Press, New York, NY,

complexity in modern high end scientific computing through 2000.

component-based software engineering, in: Proc. of HPCA [17] R.Mecklenburg, Managing Projects with GNU Make, O’ Reilly

Workshop on Productivits and Performance in High-tnd Con- Media, Inc., Sebastopol, CA, 2004.

1 s) s s 1€ .

IS”:)cl:lj (2004), Madri pain omputer [18] D. Thomas, D.H. Hansson, L. Breedt, M. Clark, J.D. David-
(8] RM -I)-/i Bill. Burke, Enterprise JavaBeans 3.0, Sth edn son, J. Gehtland and A. Schwarz, Agile Web Development with

O.’R(;,ill3./ Media. Inc ’Sebastopol CA. 2006 v ’ Rails, 2nd edn, Pragmatic Progammer, Lewisville, TX, 2006.
[9] CCA tutorial hands-on guide: A step-by-step walk-through

for creating CCA components, http://www.cca-forum.org/
download/tutorial/guide-html1-0.5.3_rc1.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

