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Abstract. The grid vision of a single computing utility has yet to materialize: while many grids with thousands of processors
each exist, most work in isolation. An important obstacle for the effective and efficient inter-operation of grids is the problem of
resource selection. In this paper we propose a solution to this problem that combines the hierarchical and decentralized approaches
for interconnecting grids. In our solution, a hierarchy of grid sites is augmented with peer-to-peer connections between sites
under the same administrative control. To operate this architecture, we employ the key concept of delegated matchmaking, which
temporarily binds resources from remote sites to the local environment. With trace-based simulations we evaluate our solution
under various infrastructural and load conditions, and we show that it outperforms other approaches to inter-operating grids.
Specifically, we show that delegated matchmaking achieves up to 60% more goodput and completes 26% more jobs than its best
alternative.
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1. Introduction

In the mid-1990s, the vision of the grid as a com-
puting utility was formulated [17]. Since then, hun-
dreds of grids have been built – in different countries,
for different sciences, and both for production work
and for computer-science research – but most of these
grids work in isolation. So, the next natural step is
to have multiple grids inter-operate in order to serve
much larger and more diverse communities of scien-
tists and to put the ensemble of resources of these grids
to better use. However, grid inter-operation raises seri-
ous challenges in the areas of, among others, resource
management and performance. In this paper we ad-
dress these two challenges with the design and evalua-
tion of a delegated matchmaking protocol for resource
selection and load balancing in inter-operating grids.

*Corresponding author: A. Iosup, Parallel and Distributed Sys-
tems Group, Delft University of Technology, Mekelweg 4, 2628 CD,
Delft, The Netherlands. Tel.: +31 15 2784433; Fax: +31 15 2786632;
E-mail: A.Iosup@gmail.com.

Our work was motivated by the ongoing efforts
for making two multi-cluster grids, the DAS [13] and
Grid’5000 [7], inter-operate. Much like similar grid
systems, e.g., CERN’s LCG, their resources are in gen-
eral under-utilized, yet in few occasions the demand
exceeds the capacity of the individual systems. In such
occasions, two (undesirable) alternatives are to queue
the extra demand until it can be served, and to enlarge
the individual systems. A third, and potentially more
desirable option is to inter-operate grids, so that their
collective demand will ideally incur a rather stable,
medium-to-high utilization of the combined system.

The decision to inter-operate grids leads to non-
trivial design choices with respect to resource selection
and performance. If there is no common resource man-
agement system, jobs must be specifically submitted
to one of the grids, which may lead to poor load bal-
ancing. If a central meta-scheduler is installed, it will
quickly become a bottleneck leading to unnecessarily
low system utilization, it will be a single point of fail-
ure leading to break-downs of the combined system,
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and it is unclear who will physically manage the cen-
tralized scheduler. Traditional decentralized solutions
can also be impractical. Hierarchical mechanisms (still
centralized, but arguably with less demand per hier-
archy node) can be efficient and controllable, but still
have single points of failure, and are administratively
impractical (i.e., who administers the root of the hierar-
chy?). Completely decentralized systems can be scal-
able and fault-tolerant, but they can be much less ef-
ficient than their hierarchical alternatives. While many
solutions have already been proposed [4,8,9,11,31,33,
34], none has so far managed to achieve acceptance in
the grid world, in part because they have yet to prove
that they can yield significant benefits when managing
typical grid workloads.

In this paper, we investigate a decentralized archi-
tecture for grid inter-operation that is based on two
key ideas. First, we leverage a hierarchical architec-
ture in which nodes represent computing sites, and
in which we allow the nodes at the same hierarchi-
cal level and operating under the same authority (par-
ent) to form a completely decentralized network. In
this way, we attempt to combine the efficiency and
the control of traditional hierarchical architectures with
the scalability and the reliability of completely decen-
tralized approaches. Second, we operate this architec-
ture through delegated matchmaking in which requests
for resources are delegated up-and-down the hierar-
chy, and within the completely decentralized networks.
When resource request matches are found, the matched
resources are delegated from the resource owner to the
resource requester. By delegating resources to jobs in-
stead of the traditional migration of jobs to resources,
we lower the administrative overhead of managing
user/group accounts on each site where they can use
resources. Our architecture can be used as an addition
to existing (local) resource managers.

We assess the performance of our architecture, and
compare it against five architectural alternatives. Our
experiments use a simulated system with 20 clusters
and over 3000 resources. The workloads used through-
out the experiments are either real long-term grid
traces, or synthetic traces that reflect the properties of
grid workloads. Our study shows that:

1. Our architecture achieves a good load balance for
any system load, and in particular for high system
loads.

2. Our architecture achieves a significant increase
in goodput [5] and a reduction of the aver-
age job wait time, when compared to central-
ized and decentralized approaches. Furthermore,

when facing severe imbalance between the loads
of the system’s composing grids, our architecture
achieves a much better performance than its al-
ternatives, while keeping most of the traffic in the
originating grids.

3. The overhead of our architecture, expressed in
number of messages, remains low, even for high
system loads.

The remainder of the paper is structured as follows.
In Section 2 we formulate the scenario that motivates
this work: inter-operating the DAS and Grid’5000
grids. In Section 3 we survey briefly the architectural
and the operational spectra of meta-scheduling sys-
tems. We illustrate our survey with a selection of real
systems. In Section 4 we introduce our architecture
for inter-operating grids. We present the experimental
setup used for this work in Section 5. We assess the
performance of our architecture, and that of five archi-
tectural alternatives, in Section 6. Last but not least, in
Section 7 we present our conclusions, and hint towards
future work.

2. The motivating scenario: Inter-operating
the DAS and Grid’5000

We consider as a motivating scenario the inter-
operation of two grid environments, the DAS [13] and
Grid’5000 [7].

2.1. The dual-grid system: Structure and goals

The DAS environment (see Fig. 1(a)) is a wide-area
distributed system consisting of 400 processors located
at five Dutch Universities (the cluster sizes range from
64 to 144). The users, a scientific community sized
around 300, are associated with a home cluster, but a
grid infrastructure grants DAS users access to any of
the clusters. Each cluster is managed by an indepen-
dent local cluster manager. The cluster owners may de-
cide to partially or to completely take away the cluster
resources, for limited periods of time. The DAS work-
load comprises a large variety of applications, from
single-CPU jobs to parallel jobs that may span across
clusters. Jobs can arrive directly at the local clusters
managers, or to the KOALA meta-scheduler [31].

The Grid’5000 environment (see Fig. 1(b)) is an
experimental grid platform consisting of 9 sites, geo-
graphically distributed in France. Each site comprises
one or several clusters, for a total of 15 clusters and
over 2750 processors inside Grid’5000. The users,
a community of over 600 scientists, are associated with
a site, and have access to any of the Grid’5000 re-
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Fig. 1. The logical structure of the dual-grid system composed of (a) the DAS and (b) Grid’5000. Leaves in this structure represent actual clusters
of resources. Nodes labelled 20–30 are administrative-only.

sources through a grid infrastructure. Each individ-
ual site is managed by an independent local cluster
manager, the OAR [9], which has advance reserva-
tion capabilities. The other system characteristics, e.g.,
the cluster ownership and the workload, are similar to
those of the DAS.

The combined environment that is formed by inter-
operating the DAS and Grid’5000 comprises 20 clus-
ters, and over 3000 processors. The goal of this
combined environment is to increase the performance –
reduce the job slowdown, even in a highly utilized sys-
tem. The performance should be higher than that of
the individual systems, taken separately. However, in
achieving this goal we have to ensure that:

1. The load is kept local as much as possible, that is,
jobs submitted in one grid should not burden the
other if this can be avoided (the “keep the load
local” policy).

2. The inter-connection should not require that each
user, or even that each group, should have an ac-
count on each cluster they wish to use.

3. The clusters should continue running their exist-
ing resource management systems.

2.2. Load imbalance in grids

A fundamental premise of our delegated matchmak-
ing architecture is that there exists load imbalance be-
tween different parts of the dual-grid system. We show
in this section that this imbalance actually exists.

We want to assess the imbalance between the loads
of individual clusters. To this end, we analyze two
long-term and complete traces of the DAS and of
the Grid’5000 systems, taken from the Grid Work-
loads Archive (GWA) [1,24]: traces GWA-T-1 and
GWA-T-2, respectively. The traces, sized respectively
over 1,000,000 and over 750,000 jobs, contain for each

job information about the cluster of arrival, the arrival
time, the duration, the number of processors, etc.

We define the normalized daily load of a cluster as
the number of job arrivals over a day divided by the
number of processors in the cluster during that period.
We define the hourly load of a cluster as the number
of job arrivals during hourly intervals. We distinguish
two types of imbalance between the cluster loads, over-
all and temporary. We define the overall imbalance be-
tween two clusters over a period of time as the ratio
between their normalized daily loads cumulated until
the end of the period. We define the temporary imbal-
ance between two clusters over a period of time as the
maximum value of the ratio between the hourly loads
of the two clusters, computed for each hour in the time
period. The overall imbalance characterizes the load
imbalance over a large period of time, while account-
ing for the differences in cluster size. The temporary
imbalance characterizes the load imbalance over rela-
tively short periods of time, regardless of the cluster
sizes. The imbalance metrics proposed here character-
ize well the imbalance of a multi-cluster system when
the collection of random variables describing the sizes
of the arriving jobs for each cluster are independent
and identically distributed. For many grids, the average
job size is one or very close to one (see Section 5.2 and
[24]); thus, the proposed imbalance metrics character-
ize well the imbalance of grid clusters.

Figure 2(a) shows the cumulative normalized daily
load of the DAS system, over a year, from 2005-03-20
to 2006-03-21. The right-most value indicates the av-
erage number of jobs served by each single proces-
sor during this period. The maximum overall load im-
balance between the clusters of the DAS system is
above 3:1. Figure 2(c) shows the hourly load of the
DAS system, over a week, starting from 2005-06-01.
During the interval 2–3 PM, 2005-06-04, there are over
a thousand jobs arriving at cluster 2 and only one at
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(a) (b)

(c) (d)

Fig. 2. Load imbalance between clusters of the same grid. (a) and (b) the cumulative normalized daily load of the clusters in the DAS and
Grid’5000 systems over time; (c) and (d) the hourly load of the clusters in the DAS and Grid’5000 systems over time. Higher imbalance is
denoted by more space between curves.

cluster 5. The maximum temporary load imbalance be-
tween the clusters of the DAS system is over 1000:1.
We have obtained similar results for the Grid’5000
traces, as shown by Fig. 2(b) and (d). We conclude
that there exists a great potential to reduce the delays
through load balancing across DAS and Grid’5000.

3. A brief review of metascheduling systems

In this section we review several meta-scheduling
systems, from an architectural and from an operational
point of view, and for each we give a concise descrip-
tion and a reference to a real system.

3.1. Architectural spectrum

We consider a multi-cluster grid. Below we briefly
present our taxonomy of architectures that can be used

as grid resource management systems (GRMS). We il-
lustrate this taxonomy in Fig. 3.

Independent clusters: (included for completeness)
each cluster has its local resource management
system (LRMS), i.e., there is no meta-scheduler.
Users have accounts on each of the clusters they
want to submit jobs to. For each job, users are
faced with the task of selecting the destination
cluster, typically a cumbersome and error-prone
process.

Centralized meta-scheduler: there exists one (cen-
tral) system queue, where all grid jobs arrive.
From the central queue, jobs are routed towards
the clusters where they are dispatched. The clus-
ters may optionally employ an LRMS, in which
case jobs may also arrive locally. It may be pos-



A. Iosup et al. / Inter-operating grids through Delegated MatchMaking 237
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(c) (d)

Fig. 3. The meta-scheduling architectures: (a) independent clusters, (b) centralized meta-scheduler, (c) hierarchical K-level meta-scheduler,
(d) distributed meta-scheduler with static links.

sible for the manager of the central queue to mi-
grate load from one LRMS to another.

Hierarchical K-level meta-scheduler: there exists a
hierarchy of schedulers. Typically, grid jobs ar-
rive either at the root of the hierarchy, or at the
clusters’ LRMSs. In both cases, jobs are routed
(migrated) towards the clusters’ LRMSs. The
Hierarchical 2-level metascheduler is the most
encountered variant [8,11].

Distributed meta-scheduler: similarly to the inde-
pendent clusters architecture, each cluster has its
LRMS, and jobs arrive at the individual clus-
ters’ LRMSs. In addition, cluster schedulers can
share jobs between each other. This forms in ef-
fect a distributed meta-scheduler. We distinguish
between two ways of establishing links between
clusters (sharing): static (fixed by administrator,
e.g., at system start-up), and dynamic (automat-
ically selected). We also call a distributed meta-
scheduler architecture with static link establish-
ment a federated clusters architecture.

Hybrid distributed/hierarchical meta-scheduler:
each grid site, which may contain one or several

clusters, is managed by a hierarchical K-level
meta-scheduler. In addition, the root meta-
schedulers can share the load between each
other. Other load-sharing links can also be estab-
lished.

3.2. Operational spectrum

We define an operational model as the mechanism
that ensures that jobs entering the system arrive at
the place where they can be run. We identify below
three operational models employed by today’s resource
management systems.

Job routing: jobs are routed by the schedulers from
the arrival point to the resources where they can
run through a push operation (scheduler-initiated
routing).

Job pulling: jobs are acquired by (unoccupied) re-
sources from a higher-level scheduler through a
pull operation (resource-initiated routing).
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Matchmaking: jobs and resources are connected to
each other by the resource manager, which thus
acts as a broker responding to requests from both
sides (job- and resource-initiated routing).

3.3. Real systems

There exist several resource management systems
that can operate a multi-cluster grid. Below we present
a selection, which we summarize in Table 1, including
references.

The Globus GRAM is a well-known middleware for
managing independent clusters environments. It is op-
erated through job routing. Globus GRAM is used in
research and in industrial grids.

The Condor-G, Alien, JoSH, Koala, and OARGrid
implement centralized architectures. Condor-G oper-
ates on top of Globus grids. Alien is used in (a part
of) CERN’s production grid. JoSH operates on top of
the Sun Grid Engine. Koala and OARGrid are used in
research grids. Koala can operate on top of grids that
use Globus or DRMAA-enabled resource managers
[39], e.g., PBS/Torque, the Sun Grid Engine, GridWay,
Condor, etc. OARGrid operates on top of the OAR
cluster manager. Starting with version 2 (released late
2007–early 2008), OAR also supports resource aggre-
gation, which can be used to build hierarchies of re-
sources. Koala and OAR are some of the first meta-

Table 1

Currently deployed meta-scheduling systems. This work proposes a
hybrid distributed/hierarchical architecture, operated through match-
making

System Architecture Operation

Condor [38] Independent Matchmaking

Globus GRAM [12] Independent Job routing

Condor-G [19] Centralized Job routing

Alien [33] Centralized Job pull

JoSH [10] Centralized Job routing

Koala [31] Centralized Job routing

OAR(Grid) [9] Centralized Job routing

OAR(Grid) v. 2 Hierarchical Job routing

CCS [8] Hierarchical 2-level Job routing

Moab/Torque [11] Hierarchical 2/3-level Job routing

NorduGrid ARC [14] Indep./Federated Job routing

NWIRE [34] Federated Job routing

GridWay [21] Federated Job routing

Condor flocking [15] Federated Matchmaking

OurGrid [4] Distributed, dynamic Job routing

Askalon [36] Distributed, dynamic Job routing

schedulers which can co-allocate jobs, that is, they can
simultaneously allocate resources located in different
clusters for the same job. Koala supports both best-
effort and reservation-based co-allocation. OAR sup-
ports reservation-based co-allocation.

CCS and Moab/Torque are both hierarchical meta-
schedulers. CCS is one of the first hierarchical meta-
schedulers that can operate clusters and super-comput-
ers together; it was used mainly in research envi-
ronments. The commercial package Moab/Torque is
currently one of the most used resource management
systems.

The NorduGrid ARC implements an independent
clusters architecture operated through job routing.
However, the job submission process contacts cluster
information systems from a fixed list, and routes jobs
to the site where they could be started the fastest. This
effectively makes NorduGrid a federated clusters ar-
chitecture.

NWIRE, OurGrid and Askalon are all distributed
clusters architectures operated through job routing.
NWIRE and OurGrid implement a federated clusters
architecture. NWIRE is the first such architecture to
explore economic, negotiation-based interaction be-
tween clusters. OurGrid is the first to use a “tit-for-tat”
job migration protocol, in which a destination site pri-
oritizes migrated load by the number of jobs that it has
migrated in the reverse direction in the past. Finally,
Askalon is the first to build a negotiation-based distrib-
uted clusters architecture with dynamic link establish-
ment.

Condor is a cluster management system. As such, it
can straightforwardly be used in an independent clus-
ters environment. However, through its flocking mech-
anism, Condor can be used in a federated clusters en-
vironment. Unlike other cluster management systems,
which define few job submission queues (e.g., one up
to five, as shown by the setup of the traditional clus-
ter systems with traces published in the Parallel Work-
loads Archive (PWA) [2]), the typical Condor deploy-
ment uses one queue per user. Condor is widely used
in research and production clusters.

GridWay operates on top of grids that use Globus or
DRMAA-enabled resource managers. GridWay adopts
Condor’s one queue per user strategy; as such, it ef-
fectively implements a federated architecture with job
routing.

4. The delegated matchmaking architecture

In this section we present our resource management
architecture for inter-operating multi-cluster grids: the
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delegated matchmaking architecture (DMM). We first
build a hybrid distributed/hierarchical meta-scheduler
architecture (see Section 3.1). Then, we operate it us-
ing (delegated) matchmaking (see Section 3.2).

4.1. Overview

We now define how grid clusters and other admin-
istrative units, from hereon sites, are connected. We
aim to create a network of sites that manage the avail-
able resources, on top of and independently of the lo-
cal cluster resource managers. First, sites are added ac-
cording to administrative and political agreements, and
parent-child (hierarchical) links are established. Thus,
a hierarchy of sites is formed, in which the individual
grid clusters are leaves of the hierarchical tree. Then,
supplementary to the hierarchical links, sibling links
can be formed between sites at the same hierarchical
level and operating under the same authority (parent
site).

Each site administers directly its local resources and
the workloads of its local users. However, a site may
have no local resources, or no local users, or both.
A site with no local resources can be installed for a re-
search laboratory with no local computing resources.
A site without local users can be installed for an on-
demand computing center. A site without users or re-
sources serves only administrative purposes.

For our motivating scenario, described in Section 2,
we create the hierarchical links between the sites as
in Fig. 1. Additionally, the sites 0–4, 5–8, 11–12, 13–
14, 15–16, 22–30 and 20–21 are also inter-connected
with sibling links, respectively. Sites 20–30 have been
installed for administrative purposes. To avoid owner-
ship and maintenance problems, there is in fact no root
of the hierarchical tree. Instead, sites 20 and 21 serve
as roots for each of the two grids, and are connected
through a sibling link.

We operate our architecture through (delegated)
matchmaking. The main idea of our delegated match-
making mechanism is to delegate resources’ owner-
ship to the user that requested them through a chain
of sites (and of resource leases), and by adding the
resource transparently for the user to the local user’s
site. Binding the resource to the local user’s site stands
in contrast to the typical practice in today’s systems
based on either job routing or job pull, where jobs are
sent to (or acquired from) the remote resources, where
they are executed. This major change can be beneficial
in practice: the resources are added to the trusted pool
of resources of a neighboring site (simplifies security

issues), and current systems already provide adequate
mechanisms (e.g., the Condor glide-in [38]) that al-
low resources to be dynamically and temporarily added
to a site without the need of root access to the re-
source (simplifies technical issues). On the contrary,
when delegating jobs to resources, the resource man-
agement system needs to understand the job’s seman-
tics, and in particular the file dependencies, the job’s
structure, and the job-to-resource mapping strategy.

4.2. Local operation

We assume that each of the grid’s clusters uses a
Condor-like resource management system. This as-
sumption allows us to consider in our architecture
only the mechanisms by which the clusters are inter-
operated, while benefiting from the local resource
management features of Condor [38]: complete ad-
ministrative control over owned resources (resources
can reject jobs), high tolerance to resource failures,
the ability to dynamically add/remove computing re-
sources (through matchmaking and glide-in). This also
ensures that the administrators of the grid clusters will
understand easily our architecture as it uses concepts
from the Condor world, such as matchmaking.

Similarly to Condor, in our architecture each cluster
is managed by a site manager (SM), which is responsi-
ble for gathering information about the local resources
and jobs, informing resources about their match with a
job and vice-versa, and maintaining the resource leas-
ing information. According to this definition, our SM
is equivalent to Condor’s Negotiator, Collector, and
Accountant components combined. Each resource is
managed by a resource manager (RM), which will
mainly be occupied with starting and running user’s
jobs. Each user has (at least) one permanent job man-
ager (JM), which acts as an application-centric sched-
uler [6] that obtains resources from the local SM. Our
RM and JM definitions correspond to those of Con-
dor’s Start and Sched daemons, respectively. In addi-
tion to the Condor-specific functions, in our architec-
ture a site manager is also responsible for communi-
cating with other site managers.

4.3. The delegated matchmaking mechanism

We now present the operational mechanism of our
architecture, the delegated matchmaking mechanism,
for obtaining remote resources. Job manager JM-1 in-
forms its SM about the need for resources, by send-
ing a resource request (step 1 in Fig. 4). The resource
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Fig. 4. The delegated matchmaking mechanism, during a successful match.

request includes the type of and number of resources
JM-1 requires. At its next delegation cycle, site man-
age SM-1 establishes that it cannot serve locally this
request, and decides to delegate it. SM-1 selects then
contacts SM-2 for this delegation (step 2). To make
the selection, SM-1 uses its target site ordering policy
(see Section 4.4). During its next matchmaking cycle,
SM-2 finds enough free resources, and delegates them
to SM-1 through its local resource management proto-
col (step 3). Then, SM-1 claims the resources, and adds
them to its local environment (step 4). At this point,
a delegation chain has been created, with SM-2 being
the delegation source and SM-1 the delegation sink.
During its next delegation cycle, SM-1 handles JM-1’s
request using its own resource management protocol
(step 5). Upon receiving the resources, JM-1 starts
the user’s job(s) on RM-1 (step 6). Finally, after the
user job(s) have finished, JM-1 releases the resource,
by informing both RM-1 and SM-1 (step 7). The re-
source release information is transmitted backwards
along the delegation chain: SM-1 informs SM-2 of the

resource release. If SM-2’s local resource management
is Condor-based, RM-1 will also inform SM-2 of its
release.

During steps 1–7, several parties (e.g., JM-1, SM-1,
SM-2 and RM-1) are involved in a string of ne-
gotiations. The main potential failures occurring in
these multi-party negotiations are addressed as fol-
lows. First, an SM may not find suitable resources,
both locally or through delegation. In this case, the SM
sends back to the delegation requester (another SM) a
DelegationReject message. Upon receiving a Delega-
tionReject message, an SM will attempt to select and
contact another SM for delegation (restart from step 2
in Fig. 4). Second, to prevent routing loops, and for
efficiency reasons, the delegation chains are limited
to a maximum length, which we call the delegation
time-to-live (DTTL). Before delegating a resource re-
quest, the SM decreases its DTTL by 1. A resource
request with a DTTL equal to 0 cannot be delegated.
To ensure that routing loops do not occur, SMs retain
a list of resource requests they have seen during the
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Fig. 5. A worst-case performance scenario for delegated matchmak-
ing.

past hour. Third, we account for the case when the
user changes his intentions, and cancels the resource
request. In this case, JM-1 is still accountable for the
time during which the resource management was del-
egated from SM-2 to SM-1, and charges the user for
this time. To prevent being charged, the user can select
a reduced DTTL, or even a DTTL of 0. However, re-
quests with a DTTL of 0 will possibly wait more for
available resources.

Delegated matchmaking promises to significantly
improve the performance of the system, by occupy-
ing otherwise unused free resources with waiting jobs
(through load sharing or load balancing, depending on
the system policy configuration discussed later in Sec-
tion 4.4). However, it can also worsen the performance
of the system, by poor resource selection and by poor
delegation routing. The resource selection is mostly in-
fluenced by the load management algorithm (discussed
in Section 4.4). Figure 5 shows a worst-case perfor-
mance scenario for delegation routing. Delegation re-
quests in the figure are ordered in time in their lexico-
graphical order (i.e., delegation A occurs before dele-
gation B). Site 9 issues a delegation request to site 23.
The site schedulers base their decision only on local
information. Due to the lack of information, sites are
unable to find the appropriate candidate (here, site 4),
and unnecessary delegation requests occur. This leads
in turn to messaging overheads, and to increased wait-
ing times, due to waiting for the delegation and match-
making cycles of the target sites. Additionally, the de-
cision to delegate resource requests can lead to a sub-
optimal number of delegations, either too few or too
many. All these load management decisions influence
decisively the way the delegated matchmaking mecha-
nism is used. We dedicate therefore the next section to
load management.

4.4. The delegated matchmaking policies

To manage the load, we use two independent algo-
rithms: the delegation algorithm, and the local requests
dispatching algorithm. We describe them and their as-
sociated policies below.

The delegation algorithm selects what part of the
load to delegate, and the site manager from which the
resources necessary to serve the load can be obtained.
This algorithm is executed whenever the current sys-
tem load is over an administrator-specified delegation
threshold, and at fixed intervals of time. First, requests
are ordered according to a customizable delegation
policy, e.g., FCFS. Then, the algorithm tries to delegate
all the requests, in order, until the local load gets below
the threshold that triggered the delegation alarm. The
algorithm has to select for each request a possible tar-
get from which to bring resources locally. By design,
the potential targets must be selected from the site’s
neighborhood. The neighbors are ordered according to
a customizable target site ordering policy, which may
take into account information about the current status
of the target (e.g., its number of free resources), and
an administrator selection of the request-to-target fit-
ting (e.g., Best Fit). Upon finding the best target, the
delegation protocol is initiated.

The local requests dispatching policy deals with the
ordering of resource requests, both local and delegated.
Similarly to the Condor’s matchmaking cycle, we call
this algorithm periodically, at intervals normally longer
than those of the delegation algorithm cycle. The ad-
ministrator may select the local request dispatching
policy.

We argue that our architecture is operated with a
generic load management mechanism. The three poli-
cies defined above allow for many traditional schedul-
ing algorithms, and in particular gives our architecture
the ability to leverage existing well-established on-line
approximation algorithms [3,35]. The target site order-
ing policy enables the use in our architecture of many
of the results in traditional networking/queuing the-
ory [27]. However, we consider policy exploration and
tuning outside the scope of this paper.

5. The experimental setup

In this section we present the experimental setup:
a simulated environment encompassing both the DAS
and Grid’5000 grids, for a total of 20 sites and over
3300 processors. We first present an overview of the
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simulator. Then, we describe the typical grid work-
loads, which are significantly different from the work-
loads of traditional parallel production environments
[18,30]. Specifically, a grid workload comprises a high
number of single-processor jobs, which are sent to
the grid in batches (Section 5.2). We then present
the workloads, the simulated architectures, and the as-
sumptions that are part of the experimental setup.

5.1. The simulator

We have developed a custom discrete event simu-
lator to simulate the combined DAS-2 and Grid’5000
grid system (see Section 2). Each of the 20 clusters of
the combined system receives an independent stream
of jobs. Depending on each job’s parallelism, one or
several resources are assigned to it exclusively, from
the time when the job starts until the time when the job
finishes.

We attempt to evaluate the steady-state of the sim-
ulated system. To this end, unless otherwise specified
the last simulated event in each simulation is the arrival
of the last job, all job streams considered together. This
ensures that our simulation does not include the cool-
down phase of the system, in which no more jobs ar-
rive while the system finishes the remaining load. The
inclusion of the cool-down phase may bias the perfor-
mance metrics, especially if the last jobs queue at only
few of the clusters. We do not perform a similar elim-
ination for system warm-up, as (a) we cannot distin-
guish reliably between the warm-up period and the nor-
mal system behavior, and (b) given the long duration of
the jobs (see the workloads description in Section 5.3),
the start-up period is small compared to the remainder
of the simulation, especially for high load levels.

The simulator assesses the following performance
metrics:

Utilization, wait and response time, slowdown: We
consider in this work the average values of the
system utilization (U), average job wait time
(AWT), average job response time, and average
job slowdown (ASD). For a review of these tra-
ditional performance metrics, we refer to [16].

Goodput, expressed as the total processing time of
jobs that finish successfully, from the point of
view of the grid resource manager (similar to
the traditional definition [5], but taking into con-
sideration that all grid jobs are executed “re-
motely” from the user’s perspective). For the
DMM architecture, we also measure the goodput

of jobs running on resources obtained through
delegated matchmaking. Furthermore, we ac-
count for goodput obtained on resources dele-
gated from the same site (intra-site goodput),
from the same grid (intra-grid goodput), and be-
tween the grids (inter-grid goodput).

Finished jobs (JF%), expressed as the percentage of
jobs that finish, from the jobs in the trace. Due to
the cool-down period elimination, the maximum
value for this metric is lower than 100%.

Overhead: We consider the overhead of an architec-
ture as the number of messages it employs to
manage the workload. There are five types of
messages: Notify Broker, Negotiate, Job Data
Exchange, Resource Match-Claim-Release, and
DMM (the last specific to our architecture). The
Overhead is then expressed as a set of five val-
ues, one for the number of messages of each
type. Additionally, we consider for our architec-
ture the number of delegations of a job, which is
defined as the length of its delegation chain.

5.2. Intermezzo: Typical grid workloads

Two main factors contributing to the reduction of the
performance of large-scaled shared systems, such as
grids, are the overhead imposed by the system archi-
tecture (i.e., the messages, the mechanisms for ensur-
ing access to resources etc.), and the queuing effects
due to the random nature of the demand. While the for-
mer is under the system designer’s control, the latter
is dependent on the workload. Despite a strong depen-
dency of performance on the system workload, most
of the research in grid resource management does not
employ realistic workloads (i.e., trace-based, or based
on a validated workload model with realistic parameter
values). For the few reported research results that at-
tempt to use realistic workloads [20,32,37], the traces
considered have been taken from or modelled after the
Parallel Workloads Archive. However, there exist sig-
nificant differences between the parallel supercomput-
ers workloads in the PWA and the workloads of real
grid environments. In this section we present two im-
portant distinctions between them.

First, the percentage of “serial” (single-processor)
jobs is much higher in grid traces than in the PWA
traces. There exist 70–100% single-processor jobs in
grid traces (the percentage grows to 99–100% in most
production grid environments), but only 20–30% in the
PWA traces [22,24,30]. There are two potential conse-
quences: on the one hand, the resource managers be-
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Fig. 6. The variability of the runtimes of jobs in batch submissions in grids.

come much more loaded, due to the higher number of
jobs. On the other hand, the resource managers can be
much simpler, since individual single-processor jobs
raise fewer scheduling issues.

Second, the grid single-processor jobs typically rep-
resent instances of conveniently parallel jobs, or batch
submissions. A batch submission is a set of jobs or-
dered by the time when they arrive in the system, where
each job was submitted at most Δ seconds after the first
job (Δ = 120 s is considered the most significant). In
a recent study, Iosup et al. [23] show that 70% of the
jobs, accounting for 80% of the consumed processor
time, are part of batch submissions. The batch submis-
sions are usually managed by batch engines, and the
individual jobs arrive in the system independently. Fig-
ure 6 shows that the runtime of jobs belonging to the
same batch submission varies on average by at least
two orders of magnitude, and that the variability in-
creases towards five orders of magnitude as the size
of the batch reaches 500 or more jobs. The predomi-
nance of batch submissions and their jobs’ high run-
time variability have a high impact on the operation of
a large number of today’s cluster and grid schedulers.
Indeed, the user must submit many jobs as a batch
submission with a single runtime estimate. Hence, the
user cannot estimate the runtime of individual jobs,
other than specifying a large value, typically the largest
value allowed by the system. As a result, the schedul-
ing schemes relying on user estimates, e.g., all back-
filling variants [41], are severely affected.

5.3. The workloads

The workloads used in our experiments are either
traces collected from the individual grids starting at
identical moments in time, or synthetic traces that re-

flect the properties of grid workloads. We use two al-
ternatives to obtain the workloads: we either use data
from real grid traces or generate synthetic workloads
based on the properties of real grid traces. To the best
of our knowledge, ours is the first study that takes into
account the difference between the parallel supercom-
puters workloads (comprising mostly parallel jobs),
and the workloads in real grid environments (compris-
ing almost exclusively single-node jobs).

To validate our approach (Section 6.1), we use traces
collected for each of the simulated clusters, starting at
identical moments in time (the grids from which the
traces originate are described in Section 2). However,
these traces raise two problems. First, they incur a load
below 20% of the combined system [22]. Second, they
represent the workload of research grid environments,
which contains many more parallel jobs than in a pro-
duction grid.

To address both these issues, we employ a model-
based trace generation for the rest of our experiments.
We use the Lublin and Feitelson model (LFM) [30],
which has deservedly become the de-facto standard
for the community that focuses on resource manage-
ment in large-scale computing environments. Using
this model, we generate streams of rigid jobs (that is,
whose size is fixed at the job’s arrival in the system) for
each cluster. Unless otherwise specified, we use the de-
fault LFM parameter values. The job arrival times dur-
ing the peak hours of the day are modelled in LFM us-
ing a Gamma distribution. To generate jobs for a longer
period of time, the LFM uses daily cycle with a sinu-
soidal shape, where the highest value of the curve cor-
responds to the peak hours. The job parallelism is mod-
elled for three classes: single-processor jobs, parallel
jobs with a power-of-two number of nodes, and other
parallel jobs. We change the default value of the prob-
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ability of a new job to be single-processor, p, to re-
flect the values encountered in grid systems: p = 0.95
[22]. The LFM divides the remaining jobs between the
parallel jobs classes, with equal probability. The actual
runtime time of a job is modelled with a hyper-Gamma
distribution with two stages; for parallel jobs, the pa-
rameter that represents the probability of selecting the
first hyper-Gamma stage over the second depends lin-
early on the number of nodes. Thus, the largest jobs
have a high probability of also having a long run-
time. With these parameters, the average job runtime is
around one hour.

By modifying the parameters of the Lublin–Feitel-
son model that characterize the inter-arrival time be-
tween consecutive jobs during peak hours, we are able
to generate a load of a given level (e.g., 70%), for a
system of known size (e.g., 128 processors), during a
specified period (e.g., 1 month). Using this approach,
we generate 10 sets of 20 synthetic job streams (one
per simulated cluster) for each of the following load
levels: 10, 30, 50–100% in increments of 10, 95, 98,
120, 150 and 200%. We call the default load levels the
following nine load levels: 10, 30, 50, 60, 70, 80, 90,
95 and 98%. The results reported in Sections 6.2, 6.3
and 6.4 are for workloads with a duration of 1 day, for a
total of 953–39,550 jobs per set (11827 jobs per set, on
average). We have repeated some of the experiments
in Sections 6.2 and 6.4 for traces with the duration of
1 week and 1 month, with similar results.

5.4. The simulated architectures

For the simulation of the DMM architecture, unless
otherwise noted, we use a delegation threshold of 1.0
and a matchmaking cycle of 300 s. Throughout the ex-
periments, we employ a FCFS delegation policy, a tar-
get site ordering policy that considers only the directly
connected neighbors of a site, and a FCFS local re-
quests dispatching policy. We simulate five alternative
architecture models, described below and summarized
in Table 2.

Table 2

Simulated meta-scheduling architectures

System Architecture Operation

condor Independent Matchmaking

sep-c Independent Job routing

cern Centralized Job pull

central Centralized Job routing

fcondor Federated Matchmaking

DMM Distributed Matchmaking

1. cern: This is a centralized meta-scheduler archi-
tecture with job pull operation, in which users
submit all their jobs to a central queue. When-
ever they have free resources, sites pull jobs
from the central queue. Jobs are pulled in the or-
der they arrive in the system.

2. condor: This is an independent clusters archi-
tecture with matchmaking operation that sim-
ulates a Condor-like architecture. Unlike the
real system, the emulation does not prioritize
users through a fair-sharing mechanism [38]. In-
stead, at each matchmaking round jobs are con-
sidered in the order of arrival in the system.
The matchmaking cycle occurs every 300 s, the
default value for Condor (see NEGOTIATOR_
INTERVAL in the Condor manual).

3. fcondor: This is a federated clusters architecture
with matchmaking operation that simulates a
Condor-like architecture with flocking capabili-
ties [15]. The user’s job manager will switch to a
new site manager whenever the current site man-
ager cannot solve all of its resource demands.
This simulation model also includes the con-
cept of fair-sharing employed by Condor in prac-
tice [38]. At each matchmaking round, users are
sorted by their past usage, which is reduced (de-
cayed) with time. Then, users are served in or-
der, and for each user all feasible demands are
solved. Similarly to condor, the matchmaking
cycle occurs every 300 s. The performance of
the fcondor simulator corresponds to an opti-
mistic performance estimation of a real Condor
system with flocking, for two reasons. First, in
the fcondor simulator, we allow any job man-
ager to connect to any site manager. This poten-
tially reduces the average job wait time, espe-
cially when the grids receive imbalanced load,
as JMs can use SMs otherwise unavailable. Sec-
ond, jobs that cannot be temporarily served are
bypassed by jobs that can. Given that 95% of
the jobs are single-processor, this results in se-
quential jobs being executed before parallel jobs,
when the system is highly loaded. Then, the re-
source fragmentation and the average wait time
decrease, and the utilization increases.

4. central: This is a centralized grid meta-sched-
uler architecture with job push operation. Users
submit all their jobs to a central queue. As soon
as jobs arrive, the queue dispatches them on sites
with free resources. Jobs stay in the queue until
free resources are found. The information about
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the number of free resources is gathered period-
ically by a monitoring service.

5. sep-c: This is an independent clusters architecture
with job push operation.

5.5. The assumptions

In our simulations we make the following assump-
tions.

Assumption 1 (No network overhead). We assume a
perfect communication network between the simulated
systems, with 0-latency. Given the average job runtime
of one hour, we argue that this assumption has little ef-
fect. However, we do present the number of messages
used by our architecture to manage the workload.

Assumption 2 (Identical processors). To isolate the
effects of the resource management solutions, we as-
sume identical processors across all clusters. However,
the system is heterogeneous in number of processors
per cluster.

Assumption 3 (FCFS scheduling policy at cluster
level). We assume that each site employs a FCFS pol-
icy, without backfilling. Backfilling systems are effec-
tive when many parallel jobs exist in the system, and
when accurate job runtime predictions are given by the
users. This situation is uncommon in grids, and also
in many large-scale parallel computing environments
[29,40].

Assumption 4 (Processors as scheduling unit). In
Condor, multi-processor machines can be viewed (and
used) as several single-processor machines. We assume
that this feature is available regardless of the mod-
elled alternative architectures. Note that this increases
the performance of the cern, sep-c and central
architectures, and has no effect on the Condor-based
condor, fcondor and DMM.

Assumption 5 (No background load). In many grids,
jobs may arrive directly at the local clusters’ resource
manager, i.e., bypassing the grid. However, there is lit-
tle information on the load imposed by this additional
workload in practice. Therefore, we assume that there
exists no background load in the system.

6. The experimental results

In this section we present the experimental evalua-
tion of our architecture for inter-operating grids. Our
experiments are aimed at characterizing:

• The behavior of the DMM architecture and of its al-
ternatives, for a duration of one year (Section 6.1);

• The performance of the DMM architecture, and of
its alternatives, under various load levels (Sec-
tion 6.2);

• The effects of an imbalance between the loads of
different grids on the performance of the DMM ar-
chitecture and of its alternatives (Section 6.3);

• The influence of the DMM’s delegation threshold
parameter on the performance of the system (Sec-
tion 6.4);

• The overhead of the DMMmessaging (Section 6.5);
• The influence of the resource binding duration

on the performance of the DMM-operated systems
(Section 6.6).

6.1. Preliminary real trace-based evaluation

For this experiment, we first assess the behavior
of the DMM architecture and of its alternatives when
managing a contiguous subset of 4 months from the
real grid traces described in Section 2, starting from
01/11/2005. Only for this experiment, we do not stop
the simulation upon the arrival of the last job, and we
do include the cool-down period. However, no jobs ar-
rive after the 4-months limit.

We define the workload management messages as
the NotifyBroker, the Negotiate, the Job
Data Exchange and the Resource Match-
Claim-Release messages used by the delegated
matchmaking mechanism (see Section 4.3). We fur-
ther define the resource use messages as the messages
used to maintain and control the resource during the
execution of the job, e.g., the KeepAlive messages
exchanged between the JM and the RM and in all
Condor-based systems while jobs are being run by the
RM, to ensure that the RM (JM) are continuing their
loan (use) agreement.

Figure 7 shows the system behavior over a selected
period of two days. During this period, all architectures
are capable of starting all the incoming jobs. However,
the DMM and the fcondor reduce the most the jobs’
waiting time (their curves follow closely that of the job
arrivals, and are only slightly delayed). In this figure,
the independent clusters architecture condor intro-
duces big delays. This can be explained by the bottom
row of Fig. 7, depicting the number of messages used
by the DMM to manage the workload. The DMM mes-
sages, used to delegate work, appear mostly when the
condor introduces large delays: around hours 10–13
and 33–39 (since the start of the two days period). It is
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Fig. 7. System behavior over a selected period of two days. Top graph: comparison of the number of jobs started by the DMM and by its alternatives.
Bottom graph: number of workload management messages for the DMM.

Table 3

Performance results when running real long-term traces

Simulator No. Jobs AWT ASD Goodput JF

[kJobs] [s] [CPUyr] [%]

cern 455.4 44 6 117 100

condor 455.4 7,681 1,610 117 100

DMM 455.4 1,283 298 117 100

fcondor 455.4 2,570 255 117 100

sep-c 455.4 1,938 590 117 100

in these periods that the number of arriving jobs rises
at some cluster, and delegation or a similar mechanism
is needed to alleviate the problem. Note that the num-
ber of jobs needs not be very high for a delegation to
become desirable: around hour 33 and 39 (since start)
a small cluster becomes suffocated, while much larger
ones are free.

Table 3 shows the performance results for running
the real traces over the whole 4-months period. All
architectures successfully manage all the load. How-
ever, the ASD and the AWT vary greatly across archi-
tectures. The cern has the smallest ASD and AWT,
by a large margin. This is because, unlike the alterna-
tives, it is centralized, and operates in a lightly loaded
system, where little guidance is needed, but its speed
is critical for good performance. The fcondor and

the DMM have similar performance, and are both better
than the independent clusters architectures (condor
and sep-c). For the latter the job response time is
dominated by the time spent waiting for resources.
Independently of whether we use AWT or ASD, the
condor has a poorer performance than sep-c: the
time spent waiting for the next matchmaking cycle af-
fects negatively the performance of condor.

We have repeated the experiments for a one-year
sample with the same starting point, 01/11/2005. We
have obtained similar results, with the notable excep-
tion of fcondor, whose AWT degraded significantly
(it became the worst of all architectures!). We attribute
this poor performance to the flocking target selection:
if the target SM is also very loaded, fcondor wastes
significant time, since the JM will have to wait for the
target SM’s next matchmaking cycle to discover that
the latter cannot fulfill any demands. This gives further
reasons for the development of a dynamic target selec-
tion mechanism such as the DMM.

6.2. The influence of the load level

In this section we assess the performance of the DMM
architecture and of its alternatives under various load
levels. We report the results for the default load lev-
els (defined in Section 5.3). Figure 8 shows the perfor-
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Fig. 8. The performance of the DMM architecture compared with that of alternative architectures, for various system loads.
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mance of the DMM architecture and of its alternatives,
under the default load levels. Starting with a medium
system utilization (50%) and up, DMM offers better
goodput than the alternatives. The largest difference is
achieved for a load of 80%. At this load, DMM offers
32% more goodput than the fcondor. We attribute
this difference to DMM’s better target site selection pol-
icy, and quicker rejection of delegations by loaded sites
that are incorrectly targeted. The centralized meta-
schedulers, cern and central, offer in general
lower goodput values with the notable exception of
cern’s 24% improvement over the best architecture
(DMM and fcondor, tied) for a load level of 30%.

The AWT and the ASD of DMM remain similar to
that of central meta-scheduler architectures, regard-
less of the load level. However, DMM incurs lower
AWT and ASD than fcondor at loads over 70%, and
much better JF% than cern and central. DMM and
fcondor manage to finish many more jobs than their
alternatives, in the same time: up to 93% more jobs
finished, for load levels below 60%, and up to 378%
more jobs finished, for loads up to 98%. We explain
these large differences to the scheduling mechanism.
The centralized architectures (cern and central)
operated with FCFS may keep many jobs blocked in
the queue when the oldest job cannot find its needed
resources. The decentralized architectures (DMM and
fcondor) act as natural backfilling algorithms, that
is, they delegate the blocked jobs and dispatch the oth-
ers. The large delegated jobs will not starve, due to the
DTTL (see Section 4.3). Finally, there is a difference
of 0–4% in JF% between DMM and fcondor, in favor
of DMM.

The independent cluster architectures, sep-c and
condor, are outperformed by the other architectures
for all load levels and for all performance metrics.

The additional performance comes at a cost: the ad-
ditional messages sent by the DMM architecture for its
delegations. Figure 8 also shows the number of dele-
gations per job. Surprisingly, this overhead is relatively
constant for all loads below 90%. This suggests that at
medium to high load levels, the DMM manages to find
suitable delegation targets in linear time, while using
a completely decentralized routing algorithm. Above
80% load, the system is overloaded, and DMM strug-
gles to find good delegation targets, which increases
the number of delegations per job linearly with the load
level increase.

6.3. The influence of the inter-grids load imbalance

In this section we present the effects of an imbalance
between the loads of the two grids on the performance

of the DMM architecture and of its alternatives. We sim-
ulate an imbalance between the load of the DAS, which
we keep fixed at 60%, and that of Grid’5000, which we
vary from 60 to 200%. Note that at load levels higher
than 120% for Grid’5000, the two-grid system is over-
loaded.

Figure 9 shows the performance of the DMM for var-
ious imbalanced system loads. The figure uses a loga-
rithmic scale for the average wait time and for the av-
erage slowdown. At 60/100% load, the system starts
to be overloaded, and all architectures but the DMM
“suffocate”, i.e., they are unable to start all jobs. At
60/150%, when the system is truly saturated, only DMM
can finish more than 80% of the load (it finishes over
95%). The DMM architecture is superior to its alter-
natives both in goodput and in percentage of finished
jobs. Compared to its best alternative, fcondor, DMM
achieves up to 60% more goodput, and finishes up to
26% more jobs. The cern architecture achieves lower
ASD by not starting most of its incoming workload!

Similarly to the case of balanced load, the number
of delegations per job is relatively constant for imbal-
anced loads of up to 60/100%. Afterwards, the number
of delegations per job increases linearly with the load
level increase, but at a higher rate than for the balanced
load case.

To better understand the cause for the performance
of the DMM, we show in Fig. 10 the breakdown of the
goodput components for various imbalanced system
loads. According to the “keep the load local” policy
(defined in Section 2.1), the goodput on resources del-
egated between sites is low for per-grid loads below
100%. However, as soon as the Grid’5000 grid is over-
loaded, the inter-grid delegations become frequent, and
the inter-grid goodput rises, to up to 37% from the
goodput obtained on delegated resources. A similar ef-
fect can be observed for the intra-grid goodput, and for
the intra-site goodput.

6.4. The influence of the delegation threshold

The moments when the DMM architecture issues del-
egations and the number of requested resources depend
highly on the delegation threshold. We therefore assess
in this section the influence of the delegation threshold
on the performance of the system.

Figure 11 shows the performance of the DMM archi-
tecture for values of the delegation threshold ranging
from 0.60 to 1.25, and for six load levels ranging from
10 to 98%. A system administrator attempting to tune
the system performance while keeping the overhead re-
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Fig. 9. The performance of the DMM compared with that of alternative architectures, for various imbalanced system loads.

Fig. 10. The components of goodput for various imbalanced system loads, with DMM: overall, inter-grid, intra-grid and intra-site goodput.
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Fig. 11. The performance of the DMM architecture for various values of the delegation threshold.

Fig. 12. The distribution of the messages in the DMM architecture: (a) for various system load levels and a Delegation T’hold of 1.0; (b) for various
Delegation T’hold values and a 70% system load level.

duced, should select the best delegation threshold for
the predicted system load. For a lightly loaded sys-
tem, with a load of 30%, setting a delegation thresh-
old higher than 1.0 leads to a quick degradation of the
system performance. For a system load of 70%, con-
sidered high in systems that can run parallel jobs [26],
the best delegation threshold is 1.0, as it offers both the
best goodput, and the lowest AWT and ASD.

6.5. The message overhead

Figure 12(a) shows the distributions of the number
of workload management and of the Resource Use

messages, for various system loads (see Section 6.1 for
message type descriptions). DMM adds only up to 19%
more messages to the workload management mes-
sages for load levels below 60%, but up to 97% for
higher load levels. However, the majority of messages
in Condor-based systems are KeepAlive messages;
when taking them into consideration, the messaging
overhead incurred by DMM is at most 16%.

Figure 12(b) shows the distribution of the messages
in the DMM architecture, for various values of the dele-
gation threshold. The system’s load level is set to 70%.
The number of DMM messages accounts for 7–16% of
the total number of messages, and decreases with the
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growth of the delegation threshold. The workload man-
agement overhead grows from 35% (threshold 1.0) to
86% (threshold 0.6).

6.6. The influence of the resource binding duration

In the previous experiments we have not taken into
account the duration of the resource binding procedure.
The ratio between this duration and the average dura-
tion of the average job runtime can be used as a rough
estimation of the desirability of the delegated match-
making mechanism. However, this ratio is only valid
when all jobs are run on delegated resources. We use
simulations to investigate the realistic case where only
some of the jobs require delegations.

We identify three cases of resource binding. In the
ideal binding case, this procedure requires no addi-
tional setup, and is instantaneous (except for the ex-
change of setup messages between the JM and the RM,
which can take 2–3 round-trips). In the light binding
case, a lightweight virtualization mechanism, e.g., the
Condor glide-in [19,38], is deployed on the remote re-
sources before they can be added to the user’s resource
pool. In the heavy binding case, the resource binding
process requires the instantiation of a heavy virtualiza-
tion mechanism, e.g., a full-blown VMware or Xen vir-
tual machine. Table 4 shows the durations for the ideal,
the light, and the heavy binding. We have obtained re-

Table 4

The resource binding duration for the ideal, the light and the heavy
binding

Binding Duration [s] Implementation

Ideal 0 –

Light 5–10 Condor Glide-Ins

Heavy 30–180 VMware, Xen, Amazon EC2

alistic values for the duration of light binding by mea-
suring in a real environment the time it takes for a Con-
dor glide-in to be ready for operation. Similarly, the
duration of heavy binding has been reported for several
of the most-used virtual machines, e.g., VMware and
Xen [7,25,28]. In addition, we have measured the re-
source binding duration for Amazon Elastic Comput-
ing Cloud (EC2) resources to an average of 50 s, with
a standard deviation below 5%.

Figure 13 depicts the performance of the DMM ar-
chitecture when the resource binding duration Δbind
ranges from 0 (ideal binding) to 180 s (heavy binding).
For the workloads considered in this work, there is no
significant increase in the average waiting time due to
the use of resource binding.

7. Conclusion and future work

The next step in the evolution of grids is to inter-
operate several grids into a single computing in-
frastructure, to serve larger and more diverse commu-
nities of scientists. This raises additional challenges,
e.g., load management between separate administra-
tive entities. In this paper we have proposed DMM,
a novel delegated matchmaking architecture for inter-
operating grids. Our hybrid hierarchical/distributed ar-
chitecture allows the interconnection of several grids,
without requiring the operation of a central point of the
hierarchy. In DMM, when a user’s request cannot be sat-
isfied locally, remote resources are transparently added
to the user’s site through delegated matchmaking.

We have evaluated with simulations the performance
of our proposed architecture, and compared it against
that of five alternative architectures. A key aspect of
this research is that the workloads used throughout the
experiments are either real long-term grid traces, or

Fig. 13. The performance of the DMM architecture vs. the resource binding duration.
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synthetic traces that reflect the properties of grid work-
loads. The analysis of system performance under bal-
anced inter-grid load shows that our architecture can
accommodate equally well low and high (up to 80%)
system loads. In addition, the results show that start-
ing from a system utilization of 50% and up to 98%,
the DMM offers a better goodput and a lower average
wait time than the considered alternatives. As a result,
DMM can finish up to four times more jobs than its
alternatives. The difference increases when the inter-
operated grids experience high and imbalanced loads.
Our analysis of performance under imbalanced inter-
grid load reveals that, compared to its best alternative,
DMM achieves up to 60% more goodput, and finishes up
to 26% more jobs.

These results demonstrate that the DMM architecture
can result in significant performance and administra-
tive advantages. We expect that this work will sim-
plify the current efforts in inter-operating the DAS and
Grid’5000 systems, which are currently under way. To
this end, we expect to implement and to deploy our
architecture in the following year. From the technical
point of view, we also intend to extend our simulations
to a more heterogeneous platform, to account for re-
source and job failures, and to investigate the impact
of existing and unmovable load at the cluster level. Fi-
nally, we hope that this architecture will become a use-
ful step for sharing resources across grids.
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