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Abstract. Causal modeling and the accompanying learning algorithms provide useful extensions for in-depth statistical investi-
gation and automation of performance modeling. We enlarged the scope of existing causal structure learning algorithms by using
theform-free information-theoretic concept of mutual information and by introducing the complexity criterion for selecting direct
relations among equivalent relations. The underlying probability distribution of experimental datais estimated by kernel density
estimation. We then reported on the benefits of a dependency analysis and the decompositional capacities of causa models.
Useful qualitative models, providing insight into the role of every performance factor, were inferred from experimental data.
This paper reports on the results for a LU decomposition algorithm and on the study of the parameter sensitivity of the Kakadu
implementation of the JPEG-2000 standard. Next, the analysis was used to search for generic performance characteristics of the
applications.
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1. Introduction

The design and implementation of performance crit-
ical computer applicationsrequiresknowledge of many
interdependent factors. Thistask can only bedonewith
the support of computer aided performance analysis.
Multifunctional performance models result in deeper
insight in the dynamic interactions between various
hardware and software resources. The models should
fulfill many requirements. They should provide in-
formation on the expected performance, offer insight
in the causes of performance degradation, should be
consgtituted of reusable submodels, tell which variables
should be known for predicting others, should make it
possibleto estimate the eff ects of optimizationsand en-
able to reason under uncertainty. Causal models offer
an elegant formalization of these properties.

Causal models intend to graphically describe the
structure of the underlying physical mechanisms gov-
erning a system under study. Causal analysis enables
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a decomposition into independent submodels. Each
variableis determined by its direct causes. Causal the-
ory developed by Pearl is based on the property that
acausal structure is observed by the conditional inde-
pendencies it entails. Basicaly, the theory is based
on a dependency analysis, as expressed by the Markov
property. For model A — B — C, variable A affects
C, but B *screens off’ the influence, since A becomes
independent from C by conditioning on B, written as
Al C|B. If thestate of B isknown, learning A’s state
offers no additional information about C. In absence
of deeper explanations, one can say that B isthe direct
cause of C'.

Causal structurelearning algorithms are able to con-
struct model s based on theindependenciesfoundin the
experimental data and background knowledge provid-
ed by an expert. However, real performance data are
more complex than data typically encountered in re-
search about causal analysis. They contain a mixture
of continuous and discrete variables. Therelationships
betweenthevariablesare not awayslinear and stochas-
tic as assumed in most research. Our generalized ap-
proach eliminates both constraints. All these aspects
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are handled by the extensions we developed and inte-
grated into the TETRAD tool, developed by the Dept.
of Philosophy of Carnegie Mellon University [31]. We
integrated the causal analysis in atool, called EPDA,
also comprising other statistical techniques such as re-
gression analysis, complexity analysis and kernel den-
sity estimation.

This paper reports on the benefits of causal analysis
in the performance modeling process. We investigated
how the dependency analysis, the causal decomposi-
tion and the Markov property can help model construc-
tion. A causal model presents a qualitative model re-
vealing how variables affect one another. The depen-
dency analysis, on which the model is based, alows
the verification of independency assumptions, which
are implicitly present in any model. After causal de-
composition, a regression analysis can be applied on
the submodels X = f(direct causes of X ) toturnthe
model into a quantitative one. The Markov property
enables to validate performance characteristics of the
application, quantities that aim at fully characterizing
the performance behaviour so that they can be used to
explain and predict performance. The requested mod-
els should be of the form

application— characteristics—performance (1)

The characteristics should hold al performance
information of the application, which is captured
by the independence application 1L performance |
characteristics.

The next section gives an overview of related work,
causal models are defined in Section 3 and causal per-
formance models in Section 4. Section 5 explains
the structural learning algorithms, Section 6 the imple-
mented extensions and Section 7 the statistical tech-
niques used in the modeling process. The experimental
results are presented in Section 8.

2. Related work

Many tools exist for automated performance analy-
sis. They areintegrated in frameworksfor coordinated
monitoring and control of computer applications. It is
widely recognized that the complexity of deployed sys-
tems surpasses the ability of humans to diagnose and
respond to problemsrapidly and correctly. Researchon
automated diagnosis and control, beginning with tools
to analyze and interpret instrumentation data, should
providethe meansto guide the devel oper and user with
understandabl e information.

Our research focuses on dependency analysis, when
themodel is not apriori known. The most common ap-
proach isto incorporate a priori models, which explic-
itly or implicitly represent how variablesrelate to each
other. Other approaches let the user himself discov-
er the interrelational structure incrementally. Current
tool sthat support multiple experiment analysispl ot per-
formance variables (SCALEA [34]) and inefficiencies
(Aksum [9]) as a function of application and system
parameters. Others additionally provide a regression
analysis (AIMS [37]). Severa tools allow automatic
bottleneck detection. Examplesare Kojak [21] or Para-
dyn [15]. Our approach adds the facility to find a pri-
ori unknown relations and to reason with the relational
information.

Most performance monitoring tools fall under two
categories: one collecting statistical data (concerned
with counts and durations), the other event traces (the
exact sequence of actions that took place during a run
arerecorded). Statistical dataismore compact thenthat
of event traces, but the predictive power is limited [5].
Our approach is only applicable for the first category.
Itisamultivariate analysisthat triesto characterizethe
relations among the data. The difference with current
work, such as PMaC [28] or PERFORM [12], is that
they work with relational structures that are a priori
chosen or have to be configured manually.

Causal models are not widely used for performance
analysis yet. Cohen and Chase use Tree-Augmented
Bayesian Networks (TANS) to identify combinations of
system-level metricsand threshold valuesthat correlate
with high-level performance states in a three-tier Web
service under avariety of conditions[6].

Most research on causal learning does not consider
models that contain such a wide variety of variables
and relations as encountered in real performance mod-
els. They focus on one type of variables, discrete or
continuous, where the continuous are most often ex-
pected to be quasi-linearly related with Gaussian dis-
turbances [30]. In case of deterministic relationships,
one should exclude variables from the dataset that are
definablein terms of other variablesin the set [27]. We
will arguethat deterministic variables contain valuable
information, worth of being added to the model.

3. Causal models

This chapter will briefly introduce causal models,
see [25,30,33] for a complete theoretic elaboration.
Causal modelsintend to graphically describe the struc-
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Fig. 1. Example causal model.
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ture of the underlying physical mechanisms governing
a system under study. Figure 1 shows a causal model
with 4 variables and their causal relations.

The model bresks up into the submodels P(X; |
parents(X;)), where, for each variable X ;, the condi-
tional probability distribution (CPD) describes the in-
formation we have about X ; when knowing the parents
of node X; in the graph. Each submodel represents a
stochastic processby whichthevaluesof X; arechosen
in responseto the values of parents(X;). The stochas-
tic variation of this assignment is assumed independent
of the variationsin all other assignments. Modularity
resultsin autonomy: asubmodel can be altered without
affecting therest of themodel. Causality thusinherent-
ly provide autonomous submodels that can be reused
when subsystems are used in different contexts.

Each assignment process remains invariant to possi-
ble changes in assignment processes that govern other
variables in the system. This modularity assumption
enables us to predict the effect of interventions. In-
terventions are described as specific modifications of
somesubmodels P(X; | parents(X;)). A causal mod-
€l enablesnot only the prediction of unknownvariables,
but also the effect of local changes madeto the system.
They are therefore extremely useful in engineering or
decision-making, asineconomics. Infact, modelsused
in engineering are implicitly based on the properties
of causality. Consider the digital circuit of Fig. 2, the
scheme makes it possible to predict the output when
the input nodes are set to a certain value. But it also
allows reasoning of how parts of the component should
be changed to attain a certain desired transfer function.

The causal structure, represented by graph G, can
be observed by the conditional independencies. From
model A — B — C (aMarkov chain), it follows that
A isindependent from C by conditioning on B. This
is called the Markov property. A conditional indepen-
dency is denoted by the ternary operation . L. | . and
is defined as follows

AILC|B& P(A|B,C)=P(A|B) (2

The conditional independency implies that learning
thevalue of C' does not provide additional information

about A once we know B. Note that independencies
are qualitative properties, despite the fact that the def-
inition is based on an equality of numerical quantities.
People can easily and confidently detect dependencies,
even though they may not be able to provide precise
numerical estimates of the probabilities[24].

The Causal Markov Condition describes the inde-
pendenciesthat follow from acausal structure. It states
that a variable becomes independent from all its non-
descendants by conditioning on its direct causes. Pearl
developed a graphical criterion, called d-separation, to
retrieveall independenciesthat follow fromthe Markov
condition.

Definition 1. (d-separation) Let p be a path between a
node X and anode Y of a DAG G. Path p is called
blocked given subset Z of nodesin G if thereisanode
w on p satisfying one of the following conditions:

1. w has converging arrows (along p) and neither w
nor any of its descendantsarein Z, or

2. w does not have converging arrows (along p) and
wisin Z.

Z issaid to d-separate X fromY in G, denoted X L
Y | Z, iff they block every pathfrom X to Y.

In the model of Fig. 1, A and C' get d-separated by
B; Dand C by B. Aand D are d-separated, but are
not d-separated if B isgiven. A — B «— D iscdled
av-structure. Conditioning unblocks av-structurein a
path whereasit blocks non-v-structures.

The DAG G together with the conditional distribu-
tions P(node; | parents(node;)) gives a dense de-
scription of ajoint probability distribution over all vari-
ables. The Directed Acyclic Graph (DAG) of Fig. 1
correspondsto the following factorization:

P(A,B,C,D) = P(A).P(D).P(B | A,D)
P(C | B).

A factorization can bebuilt starting from any variable
ordering. Ordering A, B, C, D resultsin the Bayesian
network depicted in Fig. 3. In general, a variable has
incoming edges from all other variables that precede
it in the variable ordering. Unless there are condition-
al independencies that can reduce the number of par-
ents, such as independency ALLC | B inFig. 3. The
graph, however, contains more edges as the true model
of Fig. 1 and represents less independencies. It nev-
ertheless describes the same distribution. A Bayesian
network isadequatefor the prediction of unknown vari-
ables, but not for reasoning about changesto the system
(interventions).

3
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If al dependenciesappearinginthejoint distribution
can be retrieved from the graph with the d-separation
criterion, the graph is called faithful to the distribution.
This means that

X1Y|Z & X1Y|Z. (4)

Causal models should be faithful to redlity. This
meansthat they are ableto explain all observable prop-
erties of the system. It can be shown that if a faithful
graph exists for a distribution, it is the Bayesian net-
work with the minimal number of edges. Since learn-
ing is based on searching for the minimal model, this
property allows the learning of the causal model based
on observational data. Thisisfurther discussed in Sec-
tion 5.

4. Causal models of computer performance

Tointroducecausal performancemodels, wewill use
asimplified performancemodel of aL U decomposition
algorithm. This model is then extended to a more
realistic onein Section 5. LU decompositionisamatrix
decomposition which writes a matrix as the product of
alower and upper triangular matrix [13]. For a3 x 3
matrix, this becomes

a11 a12 a13 1 00| |u11 ui2 uis

a1 @22 a3 | = [li2 10 0 w2 uz3 |(5)
as1 G32 a33 0 0 wuss

This decomposition facilitates solving a system of

linear equations, Ax = b, or finding the inverse of a

matrix. The sequential implementation of the algo-
rithm mainly consists of 3 nested for-loops with the

li3la31

Fig. 3. Factorization based on variable ordering A, B, C, D and
independencies AL C' | BandCL1LD | B.

inner loop having a division, a multiplication and a
subtraction of matrix elements.

The performancemodel showninFig. 4isconstruct-
ed in an intuitive way, for what the user expects to
be a true and useful model. It represents a first-order
approximation of the performancefor the computation
time T,omp Of aLU decomposition algorithm. #op is
the number of basic operations, defined as the execu-
tion of the inner loop. It is determined by the row and
columnsizen. Weonly consider squaren x n matrices.
The datatype of the matrix (float, double, integer, . ..)
influencesthe number of instructions #instr ., needed
to perform 1 basic operation, but also C,,, the num-
ber of processor cyclesfor 1 basic operation. Together
with the processor’s clock frequency fciock and #op
they determine the runtime 7'comp.

The analysis of the properties attributed to this per-
formance model shows that they correspond to those
defining causal models. A variable is expected to be
determined by its parents only. This correspondsto the
Markov condition. Themodel isassumed not to contain
redundant relations. Henceitisminimal. Furthermore,
the paths between the variabl es show the dependencies
among the variables. This corresponds to the faithful-
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datatype

Fig. 4. Simplified causal model of the performance of LU decomposition.

ness condition. Spirtes et al. use these 3 properties —
the Markov condition, minimality and faithfulness—as
axiomatic foundation of causal models [30]. Causa
models explicitly encode relational information. They
offer a formalization of a structured representation of
therelations among variables. They provideinsight in-
to complex situations with many variables and depen-
dencies.

Next, the questionsthat are supposed to be answered
by a performance analysis are of causal nature. Con-
sider the study of network performance: communica-
tion delays should be attributed to the different steps of
the communication process, such as machine latency,
transfer time, network contention, flight time, etc [2].
A correct understanding of the origins of the delaysis
indispensable. The task of identifying them becomes
even more difficult when implementation-specific low
level issues come into play, such as specific protocol
behavior, window delays or chatter [23], since these
are not always fully understood and often cannot be
measured directly. Accordingly, the relations between
theoverall performancequantities observed throughout
the application and the computer system have a causal
interpretation.

Besides the explanatory facilities, causal models can
be exploited to reason about the performance and an-
swer questionslike: Which part of the application gives
space for adequate optimization? What is the most
efficient upgrade of the system?

5. Causal structurelearning

Besides the formal treatment of causal models by
Pearl, another important advance was the design of al-
gorithmsfor learning causal modelsfrom observational
data [30,35]. Varioustools exist that implement these
algorithms, for an overview see[16] or [22]. TETRAD
(freely available at [31]) is open source software, writ-
ten in Java and contains an extensive set of agorithms.
There are two basic types of structure learning algo-

rithms: constraint-based and scoring-based. All learn-
ing algorithms of TETRAD are of the constraint-based
type, from which the PC algorithmisthe basic one[30].
Thealgorithm consist of two parts: firstit constructsan
undirected graph by finding direct relations. This part
is the same for al constraint-based algorithms. Sec-
ondly, the algorithm tries to direct the edges using ori-
entation rules. Besides this, the flexibility of the algo-
rithm allows the insertion of background knowledge.
The user can specify edges that are required or forbid-
den and put constraintson orientations. |n performance
models, application and system parameters are input
nodes that can only have outgoing edges.

The first step of the agorithm, called adjacency
search, is based on the property that direct relations
cannot become probabilistically independent upon con-
ditioning on some other set of vertices (see the Markov
condition). Adjacent variables share exclusive infor-
mation, while indirectly related variables become in-
dependent by conditioning on some other variables,
which will lie on the path between both variables. The
algorithm starts with afull-connected undirected graph
and removes all edges for which a conditioning set can
be found that renders both variables independent. The
algorithm will go through all subsets of variables and
check for conditional independencies. If atest is suc-
cessful, the edge is removed. The algorithm starts by
checking unconditional dependencies and then gradu-
ally adds nodes to the conditioning set up to a certain
maximal number. It selects the nodes in an optimized
way to minimize the tests it has to perform. Figure 5
shows this part of the algorithm for learning the model
of Fig. 1.

Secondly, the algorithm tries to direct the edges us-
ing orientation rules. These rules are based on the de-
tection of v-structures. If three variables are connected
by two edges, for example A — B — D, there are four
possibilities to orient both edges. The v-structure is
recognized among these, sincefor A — B «— D, A
and D areinitially independent, but become dependent
by conditioning on B. For al three other orientation
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Fig. 5. First part of the learning algorithm: Edges are removed from
the full-connected undirected graph by conditional independencies.

possibilities the opposite holds; A and D are initial-
ly dependent, but become independent by conditioning
on B. Applied on the undirected graph of Fig. 5, v-
structure A — B < D isdetected. The B —C'relation
can be oriented as B — C, since an opposite orienta-
tion leads to v-structure A — B «— (' that cannot be
confirmed by the independenciesfound in the data. In
absence of enough v-structures, it might be that there
isnot enoughinformationto direct al edges. Thus, the
learning algorithm leads to a set of observationally in-
distinguishable model s, which have the same undirect-
ed graph and v-structures. Fortunately, the orientation
of the relations in performance models is straight for-
ward in most cases. Knowledge of the input and output
variables allows orientation of the edges connected to
it. Any further doubt about the orientation of some
edges can be resolved by an expert.

The TETRAD manual states that under 6 assump-
tions the algorithm will find the correct equivalence
class of indistinguishable causal models [27]. One
assumption is that the experiment should be typical,
i.e. random. We will choose the input parameters ran-
domly from a uniform distribution. Another assump-
tion states that the faithfulness condition should hold.
This property is violated when there are deterministic
relationships among the variables. Performance mod-
€ls contain inevitably deterministic relations. Thisis
sue is discussed in Section 6.2. The other 4 assump-
tions are valid. Moreover, the PC algorithm requires
causal sufficiency, i.e. that all common causes should
be known: variablesthat are the direct cause of at |east
two variables. By including all parameters of system
and algorithm in the data, all possible common causes
are present.

6. Extensions

To capture the complexity of performance data, the
existing models and algorithms had to be extended in

three ways:

— To handle a mixture of discrete and continuous
data, we used the information-theoretic concept
of mutual information for dependency measure-
ment. It measures the decrease of uncertainty of
one variable when observing other variables.

— Mutual information offers aform-free dependency
measure, whereas the widely used Pearson corre-
lation coefficient measuresthe closeness of arela-
tion to perfect linearity.

— Deterministic relations, by which a variable is a
function of a set of other variables, imply addi-
tional conditional independencies that cannot be
captured by faithful models. We developed exten-
sions to the definition of causal models and to the
learning algorithm.

Our approach to handle these types of variables and
relationsis elaborated in the next subsections.

6.1. Information-theoretic dependency

Thelearning algorithmsare based ontheinformation
about the conditional independencies. TETRAD uses
Pearson’s correl ation coefficient for calculating the de-
pendency of continuousvariables. It givesameasure of
how close arelation approximateslinearity. Condition-
al independenciesare measured by partial correlations,
which can be calculated directly from the correlation
coefficients, but only if linearity holds. Correlations
can measure non-linear relations, as long as they are
quasi-monotonically increasing or decreasing. Partial
correlations, however, fail if the relations diverge too
much from linearity. Thiswas confirmed by our exper-
iments. Therefore we had to use aform-free definition
of dependency. Moreover, correlations cannot distin-
guish between the deviances of linearity and the un-
certainty of the relation. The mutual information mea-
sures, independently from the form of the relation, the
degree of association between variables. It is a mea
sure defined by information theory, see the excellent
introductory book of Cover and Thomas[7]. The core
concept is entropy.

Entropy is the amount of uncertainty of a stochastic
variable. For adiscrete random variable X with apha-
bet A and probability mass function p(z), its entropy
is defined as

H(X) == p(z)log, p(x) (6)
z€A

It representsthe number of bitsfor the minimal bina-
ry code that can describe x. It is maximal for the uni-
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form distribution. The conditional entropy H(Y | X)
is defined as

H(X|Y)=) HX|Y =y) U]
yeB
where B is the a phabet of random variable Y. Proba-
bilistic dependency can be defined as the mutual infor-
mation I(X;Y) of X and Y, whichisthereductionin
uncertainty of X when knowingY":

I(X;Y) = H(X) - H(X|Y) (8)

It is zero when both variables are independent. The
mutual information can be rewritten as

p(z,y)
I(X;Y) =Y plx,y)logy == (9)
ey e p(x)p(y)
Conditional independence, I(X;Y | Z), is defined
in the same way. The G? independence test [3], used
by the TETRAD tool, is of the same form:

2 , observed
G° =2 Z observed. In pr—— (20)
For measuring the entropy of continuous variables,
their distributions are discretized. For a variable X
with density f(z) and division of therangeof X inbins
of length A, the entropy of the quantized distribution

is[7]
+oo
Hwﬁz—/ Fla) Alogy(F(z)A) (A1)

The discretized definition of mutual information is
of the same form as Eq. (9). This makes it possible
to handle continuous and discrete variables identically
and calculate dependencies for a mixture of continu-
ous and discrete variables. The difference with Pear-
son’s correlation coefficient is that mutual information
considers each value of X independently, it sums for
every x the decrease in uncertainty of Y. Therelation
between X and Y can be arbitrary, whereas correlation
comparesthe y values in the whole range of X.

The main disadvantage of our test is that larger sam-
ple sizes are needed. The definition suggests that for
every value of X multiple data points are needed. This
approach would be the same as discretizing the con-
tinuous variable and would also induce a quantization
error. Kernel density estimation, explained in Sec-
tion 7.1, overcomes these problems. The reason is
that P(X = x) isinfluenced by the data pointsin the
neighborhood of . The number of data points needed
can belimited, the estimation only assumes asmoothly
changing distribution.

O Y=f(X) C :

Fig. 6. Causal model with Y = f(X) afunction.

For measuring independence, a threshold on the mu-
tual information is used, of 0.4 for continuous and 0.2
for discrete variables.! Our independencetest replaces
the original Tetrad independent tests.

6.2. Deterministic relations

The existence and construction of causal modelsare
based on the property that adjacent nodes share exclu-
sive information, meaning that there is no other node
that renders them independent. This assumption is vi-
olated if some variables contain the same information
about another variable. We call the variables X and Y’
information equivalent with respect to atarget variable
7 if

XNZ & XUZ|Y &YUZ|X (12)

Either variable becomes conditionally independent
from Z by conditioning on the other. Take the model
of Fig. 6. X contains all information about Y, thus
Y1 Z | X follows, besides X 1l Z | Y that follows
from the Markov property. The deterministic or func-
tional relation between X and Y imply that both are
information equivalent for Z.

Information equival ences cannot be represented by a
faithful model. The first condition of Eq. (12) implies
that X and Z should be related. The second condition
statesthat X isonly indirectly related to Z viaY. Yet
the third condition implies the opposite, that Y should
be related to Z via X. Consequently, the adjacency
search (explained in Section 5) will fail in constructing
such amodel, sinceit would remove both edges X — 7
andY — Z.

The solution we propose is to augment the models
with the information of deterministic relations and in-
formation eguivalences [9]. This knowledge enables
usto draw the right conclusions. The d-separation cri-
terion was already extended by Geiger, Spirteset a. to
retrieve independencies that follow from deterministic
relations, to what they called D-separation [10,30].

1By the estimation of the distributions (Section 7.1), even inde-
pendent variables generate a small positive value for the mutua in-
formation. Calibration by comparing dependent and independent
variables lead to the threshold values.
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For learning faithful models containing information
equivalent variables we propose to connect the target
variablewith theinformation equivalent variablewhich
has the simplest relation with the target. From the per-
spective of information, X and Y are equivalent with
respect to Z in the model of Fig. 6. Connecting both
variableswith Z disrupts minimality, thereforewe pro-
pose to connect the variable having the simplest rela-
tionwith Z. Under the assumption that the compl exity
increases along a causal path, the complexity of X — Z
will be higher than that of Y — Z. The adjacency
search procedure was modified for finding equivalent
variables by comparing the conditional independence
tests according to Eq. (12). An extrastep was added to
the algorithm in which the complexity of equivalent re-
lationsis calculated using a regression analysis and the
one with the least complexity is chosen. The learning
algorithm then outputs the minimal model.

Deterministic variables add redundant information
to the model. Many authors therefore demand to elim-
inate them from the data. We take a different view-
point. Relevant deterministic variables provideinsight
in the underlying mechanisms. They also often reduce
the complexity of the model, as will be shown in the
performance modeling experiments.

7. Statistical techniques

Various statistical techniques are combined for the
modeling.

7.1. Kernel density estimation

For applying the information-theoretic definitions, it
is necessary to obtain an estimation of the underlying
probability distributions. The distribution of discrete
variables can be estimated by simply counting the num-
ber of occurrences of each state and dividing them by
the number of data points». For continuous variables,
kernel density estimation makes it possible to estimate
the distribution from limited sample sizes. The kernel
estimate is constructed by centering a scaled kernel at
each observation. The value of the estimate at point
is the average of the n kernel ordinates at that point.
Theideais to spread a ‘probability mass' of size 1/n
associ ated with each data point about its neighborhood.
See [8] for a gentle introduction, [17] for interactive
appletsand Fig. 7 for an example.

The estimated distribution is the result of a convolu-
tion of the data points with a well-chosen kernel [36]:

pe) = = 2K <3‘" b‘“’) 13

with n the sample size and K(.) the multivariate
kernel function, which is symmetric and satisfies
J K(z)Az = 1. Thefactor b is the smoothing band-
width and determinesthe width of the kernel. Theoret-
ic analysis and simulation have shown that the choice
of the kernel is not crucial. The bandwidth is the de-
termining factor for good estimates. A bandwidth too
big would flatten the distribution, a too small would
generate a peak for every data point. A good trade-off
smoothens the distribution nicely, as shown in Fig. 7.
In our experiments, we chose the Gaussian kernel func-
tion. As a balanced bandwidth, we used 4 times the
rangedivided by the number of datapointsfor the band-
width. The rationale behind this choiceis that kernels
of neighboring points should overlap. The bandwidth
should therefore be rel ated to the distance to the closest
neighbor. The average distance between neighboring
pointsistherangedivided by the number of datapoints.
Henceit isagood unit to scale the bandwidth against.

For the estimation of multivariate distributions, mul-
tidimensional Gaussians are used. For each dimen-
sion aspecific bandwidth is cal culated according to the
method used for the 1-dimensional case.

7.2. Regression and complexity analysis

Regression analysisis used to find the most appropri-
atefunction that fitsthe curve X; = f;(parents(X;)).
This is based on the fact that any distribution can
be described by functional models, in which each
variable X; is determined by a function of its par-
ents and the unobserved disturbances U;: X; =
fi(parents(X;),U;) [25]. The feasibility of the com-
plexity quantification becomes plausible by the mod-
ularity assumption of causality (Section 3), by which
the overall model is decomposed into local submodel,
representing the basic physical mechanismsthat gener-
ate the states of the variables. The submodels are then
of theform X; = fi(parents(X;)) + U; which makes
curvefitting possible.

Curvefitting is atrade-off between hypothesis com-
plexity and goodness-of-fit onthedataset. Weadvocate
the Minimum Description Length (MDL) approach, ac-
cording to which we should pick the hypothesis H ,,,4;
from model class M with

Hpar = arg mingen{L(H) + L(D | H)}(14)
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Pk}

Fig. 7. Data points (the 7 crosses) and kernel estimate (black line) constructed by Gaussians at each point (gray lines).

H.,,,q; 1sthe hypothesiswhich minimizesthe sum of the
descriptionlength of H and of thedata D encoded with
thehelp of H [11].

The model class M is populated with functions ap-
propriatefor the system under study. For aperformance
modeling, we added the polynomials, the inverse, pow-
er, square root and step function. The degree of the
polynomialsis increased until the point where the de-
scription length starts increasing. The description of
the hypothesisthen containsthe values of the functions
parameters, each needing d bits, and the function type,
for which we count 1 bytefor each operation (addition,
subtraction, multiplication, division, power, squareroot
and logarithm) in the function.? A floating-point val-
ue is encoded with d bits, whereas an integer value i
requireslog(s) bits.

It is shown that the optimal precision d for each
parameter is given by d = 1/2log, n + ¢, with n the
sample size and ¢ some constant [26]. Thus

2This choice of description method attributes shorter description
lengths for simpler function, but nevertheless is somewhat arbitrary.
The correctness of the MDL approach is based on the Invariance
Theorem. The shortest programs that outputs a given string written
in different universal computer languages are of equal length up to
a certain constant [20]. A complete objective measure is thus not
possible.

1
L(H)= #pammeters.o'g%(n)

(15)
+8.#operations + K

with K a constant term that does not depend on H.
Thereforeit does not play any role in finding the min-
imal description. The second part of the description,
L(D | H), reflects the goodness-of-fit of the curve
Y = f(X). By choosing the normal distribution as
probability distribution of the errors (the deviances of
the data with respect to the curve), L(D | H) equals
the sum of squared errors:

L(D | H) =Y (yi — f(z:))* (16)
i=1

The regression analysis has to minimize the sum of
Egs (15) and (16). The Java library, written by Dr
Michael Thomas Flanagan (http://www.ee.ucl.ac.uk/~
mflanaga), was used for this purpose. The routines
return the closest fit of the given function according to
the minimization of the sum of squared errors.

If some of the parents of a node in a causal model
are discrete variables, several distinct curves are con-
sidered: one for each value combination of the dis-
crete variables. The total complexity is the summa:
tion over al individual functions, except that equal
parameter values or function types are only counted
once. For discrete variables, the conditional distribu-
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tions P(X; | parents(X;)) are described by discrete
distributions. The number of probabilitiesin the prob-
ability table determine the complexity.

Wewill definethat if one of two information equiva-
lent sets hasfewer elements, therelation with thetarget
variableis‘simpler’.

7.3. Modeling process

Figure 8 shows the different steps during the model-
ing process. Our EPDA tool offersall statistical facili-
ties in a semi-automatic way: the user guides the pro-
cess by choosing the sequence of tasks to be executed.
Experiments are profiled and the measured variables
are stored in a database. Derived variables, defined
by the user, are calculated. The model can, for exam-
ple, often be simplified by dividing variables with the
most influential variable. Performance metrics divided
by the work size give work-independent values, char-
acterizing the performance load per work unit. Other
interesting values to analyze are the partial derivatives
of metrics f as functions of the program parameters
x,y, z. Thepartial derivativeisthe derivativeof f with
respect to one of those parameters, say x, with the oth-

ers held constant, written as (%) . It quantifiesthe

change of f by a changing . M%deling is an itera
tive process. At any time, the user can specify derived
variables he wants to be added to the model.

The modeling starts with a qualitative analysis, the
main focus of our work. The causal structure learning
algorithm applied on the data returns the graph of the
causal model. This model offers a reduction in com-
plexity, since the model is decomposed into simpler
submodels that can be studied independently. Curve
fitting applied on the submodel sallowsthe construction
of analytical models of the form f(X; | parents(X;))
in case the parents of (X;) are continuous variables.
The quantification of submodels with a discrete vari-
able produce multiple curves, onefor each discrete val-
ue of the variable. If those curves have similar shapes,
the parameters of the shapes can be analyzed by adding
them to the data and the model. This allows character-
ization of the influence of the discrete variable.

8. Experiments
This section reports on the modeling results of the

LU decomposition algorithm and the Kakadu image
compression algorithm.

8.1. Experimental setup

During each experiment a record is written to a
database containing the measured values for each vari-
able. The number of processor cycles, number of in-
structions, level 1 and level 2 cache misses are read
from the processor hardware counters using the PAPI
library [4]. An off-linetool enablesto view the exper-
imental data, select variables, calculate derived vari-
ables and write them to TAB-separated file [18]. The
data can then be loaded as mixed data into TETRAD.
The PC agorithm with default optionsisthen applied to
it. As background knowledge the user indicates which
aretheinput (parameters) and output variables (overall
performance metrics and partial derivatives).

8.2. Performance modeling

The parameters of the the LU decomposition ago-
rithm are:

— n from 5 to 300

— datatype: short (2 bytes), int (4b), float (4b), dou-
ble(8b), long (8b) and longdouble (12b)

— optimization: theinner loop of the calculation can
be optimized. The result of adivision that is per-
formed twice is stored in a temporary variable so
that it does not have to be recal cul ated the second
time.

Figure 9 shows the performance model of second-
order approximation. We see that only the level 2
cache misses Ly M, have a non-negligible influence
on the performance. But even with these additional
variables, datatype is still directly related to Cp. In
other words, LoM,, and instr,, are insufficient to
explain all processor cycles.

We also introduced the derived variable elementsize,
thesizein bytes of the datatype. Themodel then shows
that the cache misses are determined only by the size
of the data, not by itstype. Thisknowledge enablesthe
prediction of the cache missesfor new types. Moreover,
elementsize is a continuous variable. Therelation with
the cache misses is afunction, which makesit possible
to predict the cache misses for yet unknown sizes. The
strength of our approachisillustrated by thefact that the
relation of the discrete variable datatype and the cache
misses would be a table without predictive capacities.
Thisillustrates the benefits of redundant, deterministic
variables.

The model shows that optimization only influences
the number of instructions, not the cache misses. But
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Fig. 9. Detailed performance model of LU decomposition.

the number of instructions cannot completely charac-
terize the effect on the performance. Optimization is
alsorelated to the number of cyclesC,,,. Thisconfirms
that the number of instructionsisnot agood measurefor
explaining the overall performance after all. Itisthere-
fore the number of cycleswe havetolook at. Toinves-
tigate deeper the effect of the optimization on the per-
formance, the partial derivative 9C,, /0 optimization
iscalculated. It givesthe decreasein number of cycles
by the optimization. By adding this variable, we can
learn on which variables the effect of the optimization
depends. Figure 10(a) showsthat thedecreasein cycles
depends on the datatype. Quantitative results show it
isabout 50 cyclesfor integers, only 18 cyclesfor floats
or doubles, but 110 for longs.

Dependency analysis also allows the validation of
models presumed by the user. The influence from
datatypeon C,,, goesvia Ly M,, and instr .y, asshown
inFig. 9. Omitting thelink datatype — Cop, however,
would beincorrect. Thiscan beverified by applying the
Markov condition (see Section 3) onnode C ,,,: without

the link, datatype would be independent of C',,, given
Ly M, and instr,,. Yet, the independent test applied
on the experimental data gives a mutual information
I(datatype; Cop | LaMop, instrop) = 0.45. Thisis
above the threshold of 0.2, so Markov is violated and
both nodes must be connected in the model.

8.3. Datatype characterization

We want to characterize the influence of the discrete
variable datatype on the performance. It turns out that
the cache misses can be predicted with the size of the
datatype, called elementsize, but that the penalty cycles
caused by amiss cannot be predicted by an application-
independent feature.

Figure 11 presents the experimental data of the level
2 cache misses in function of matrix size. It shows
clearly how the misses jump to another level when the
cache memory isfilled completely. Parametrization of
Ly M, in function of its parents is done by a regres-
sion analysisperformed on the curvesfor each datatype
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Fig. 11. Experimental results of LU decomposition: Level 2 cache misses versus matrix size n. in function of the data type.

separately, as datatype is a discrete variable that does
not alow to define continuous functions over it. The
curvefitting thus seeks for Lo M, = f;(n) with ¢ cor-
responding to the datatype. It resultsin astep function:

LoM,, ==0 if n < thresholdr,u 17)
= jumpy,y if m > thresholdr,ns

The cache misses before the jJump can be neglected,
sinceit is smaller than the resolution of the estimation.
Then, the parameters jump r, ,, and thresholdz, ;s of
the functions are added to the model. They both de-
pend on elementsize, as shown in Fig. 10(b). A regres-
sion analysis reveals that both are linearly related to
elementsize. This can be expected. The cache datais
badly reused since only the first element of the cache
line (of 64 bytes) fetched from the lower memory level
is effectively used. The cache line is overwritten dur-

ing the following instructions, when data further in the
matrix is needed.

Next, C,,, is analyzed quantitatively, in order to re-
veal how many cycles are spent to computation and
how many cyclesthe processor isjust waiting for mem-
ory accesses. The curve C,,, isfitted for each datatype
separately and gives

Cop = CPI.#instro, + Cryn-LaMoyp (18)

It results in an equation with 2 unknowns, C P1, the
cycles per instructions, and C'r, s, the penalty cycles
due to a cache miss. Dependency analysis reveals that
CPI 4till depends on the datatype, but unexpectedly
alsodoes Cr,, . Thepenalty cyclesincreasefrom 166
per miss for the integer datatype, 295 for double, to
418 for longdouble. These values, however, depend on
the application. Which as was shown by a dependency
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analysis performed on data retrieved from experiments
with other applications.?

8.4. Application factors

A goal of performance modeling is to predict the
runtime of an application on an arbitrary system. This
requires the detection and definition of independent
application and system performance characteristics —
called application signature and system profile—and a
simplefunctional relation to calculate the performance
of the application running on the system. Thisiscalled
the convolution method [29]. The independence of the
characteristics signifies that application characteristics
areindependent of the system, and thusvalidfor all sys-
tems. Viceversa, system characteristicsare application
independent, adequate for predicting the performance
of other applications. Figure 12 showsthe performance
model developed in the previous sections. We added
Cinstr and Chen to differentiate between the cycles
spent on executing instructions and those spent idling
due to memory accesses. The model supposes that
threshold 1., as canbecalculated by the memory usage
of theapplication and the memory size of themachine.

The figure shows which variables could constitute
the application signature and which the system profile,
respectively thetop and bottom variables. This charac-
terization is, however, too simple. C'1, s (the penalty
cyclesdueto alevel 2 cache miss) is hot a system con-
stant, since depending on the datatype and application.
Also C'P1I, the cycles per instructions, is application
dependent. Moreover, threshold 1., cannot be deter-
mined by the memory requirements and memory size
only. The modeling thus failed in finding independent
system characteristics.

8.5. Parameter sensitivity of image compression

Next, we applied our approach for modeling the pa-
rameter sengitivity of the Kakadu algorithm for the
compression of still images. Kakaduisa C++ imple-
mentation of the JPEG-2000 standard [14], which has
been devel oped to address a number of weaknessesin
the existing JPEG standard and to provide a number of
new features. It supports lossless and lossy compres-
sion, progressive recovery of images by resolution, re-
gion of interest coding, random access to particular re-

3 A matrix multiplication and a merge sort, which can be regarded
as quite similar to the LU decomposition. They exhibit the same
cache miss pattern as depicted in Fig. 11.

gionsof animage, etc. It thereforeisextremely suitable
for internet applications. The coding algorithm mainly
consists of two stages. The first stage splits the image
into frequency bands through the iterative application
of awavelet transform. Each transformyieldsfour sub-
bands: horizontally and vertically lowpass (LL), hori-
zontally lowpassand vertically highpass(LH), horizon-
tally highpassand vertically lowpass (HL) and horizon-
tally and vertically highpass (HH). Thewavel et decom-
positionisassociated with R resolution levels, where at
eachlevel theLL bandisfurther decomposed, asshown
in Fig. 13. Due to the statistical properties of these
subband signals, the transformed data can usualy be
coded more efficiently than the original untransformed
data.

During the second stage, the subbandsare partitioned
into code blocks, typicaly 64 x 64, which are inde-
pendently coded using a bit-plane coder (all first bits
of the pixels of the block are coded together, followed
by the second hits, etc.). It generates a sequence of
symbols that is compressed by a entropy coder: the
MQ coder. Rate scalability is achieved through quality
layers. The coding passes containing the most impor-
tant data (based on the lowpass subbands) are included
in the lower layers, while the coding passes associat-
ed with finer details (based on the highpass subbands)
areincluded in higher layers. During decoding, the re-
constructed image quality improvesincrementally with
each successive layer processed. Consult [1] for an
easy accessible introduction, and [32] for an elaborate
discussion.

The Kakaduimplementation, writtenin C, hasitskey
focus on memory efficiency and execution speed. We
investigated the parameter sensitivity of the compres-
sion executiontime—the cost in performance of chang-
ing the algorithm’s configuration. Due to Kakadu's
high number of parameters, a task well suited for be-
ing automated. Experiments were performed with 12
different images, scaled to different widths and heights
(ranging both from 500 to 10000 pixels), and various
parameter settings that overspan the entire configura-
tion space. After sometry-outswe selected themost in-
teresting parameters for running the final experiments:
the precision of the data representation (16-bit or 32-
bit), the kernel used for the wavelet transform (the 5/3
or 9/7 kernel), the blockSize used in the second stage
(ranging from 4 x 4 up to 64 x 64), the number of
quality layers (varied from 2 to 12) and the bitrate of
thehighest layer (set between 0.5to 10 bits/pixel). This
last parameter is only set when lossy compression is
employed. At each run, the following variables are
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Fig. 13. Wavelet decomposition of an image into subbands by the
JPEG-2000 compression.

measured: the image size, the runtime 7', the number
of processor instructions instr, the resulted number of
bits of the compressed image bits, the level 2 caches
misses L2M and the number of processor cycles per
instructions (C PI). All these quantities, except size
and C P1, aredivided by theimage sizeto get per pixel
values. They are denoted by the suffix ‘ppel’. The
results approve that most of these values become size
independent and hence simplify the model. Further-
more, some interesting partial derivatives are calculat-
ed, explained in Section 7.3. They are named dX dY
signifying the derivative of the function of X with re-
spect to parameter Y while the other parameters are
kept constant.

Figure 14 shows the learned model for lossless and
lossy compression. Lossless compression resultsin a
bitrate, variable bitsppel, measured in bits per pixel,
which reflects the information necessary to describe
the image. It is determined by the compressibility of

the image. Lossy compression allows the bitrate to be
chosen by the user. The data for lossless and lossy
compression were analyzed independently, after which
both resulting models were merged into one. Arrows
with dashed lines indicate relations that only apply for
lossless compression.

The results for lossless compression comprise the
following interesting observations:

— All performance characteristics increase linearly
with the image size, the values per pixel arethere-
fore size independent.

— The number of desired quality layers has no sig-
nificant impact on the bitrate or performance.

— Theresulting bitrate, bitsppel, influencesthe num-
ber of instructions, instrppel, and the the cycles
per instruction, C'P1. The bitrate is, however, an
outcome of the compression and can thus not be
acause. The correct interpretationisthat it is the
compressibility of the image, determining bitsp-
pel, that a so affects the performance.

— The cache misses do not affect the runtime. This
confirms the memory efficiency of the implemen-
tation. The model reveals that the number of in-
structions are a good indicator for the number of
cache misses.

— The increase of the runtime T'ppel by choosing
a higher precision is not considered as signifi-
cant by the independency test. The derivative
dTppel _dprecision is, however, positive, and de-
pends on the kernel and the image width.

The model simplifies for lossy compression, when
bitsppel is set as aparameter. In that case, the number
of instructions, instrppel, is only affected by bitsppel
and blockSize. Furthermore, C' P is not influenced by
the compressibility of the image.
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Fig. 14. Performance model of JPEG-2000 Image Compression with Kakadu. Arrows with dashed lines only apply for lossless compression, for

which bitsppel is not set as a parameter.

8.5.1. Image characterization

Ideally, every image can be characterized by one
compression performancefactor, which determinesthe
number of instructions as well as the runtime, and is
valid for all possible parameter configurations. Thisis
certainly not the case as can be seen on Fig. 14. For
lossless compression, imageType influences the com-
pressibility bitsppel, instrppel and C PI independent-
ly. This meansthat an image has at least three distinct
features characterizing the compression performance.
None of the three variables contains the information
of imageType so that it is able to predict the values of
the 2 others without needing the value of imageType.
Next, the influence of imageType on dTppel dkernel
indicates that the compression behaviour of an image
with one kernel says little about its behaviour with an-
other kernel. Indeed, inspection of the datareveal sthat
someimages are compressed faster with kernel 5/3 and
others with 9/7. Images also behave differently under
different blocksizes, expressed by the relation between
imageType and dTppel .dblockSze. Only the compu-
tational cost of using higher precision data representa-
tions, dTppel -dprecision, isimage independent.

9. Conclusions

A causal model is a qualitative model representing
the direct causal relations among the variables. It fur-

thermore allows the retrieval of the dependency qual-
ification between any 2 variables. We showed that
causal structure learning algorithms are able to con-
struct causal performance models from experimental
data. Statistical techniques are used to extend existing
algorithmsin order toincorporatethevariety of variable
types and relations encountered in performance data.
The genera independence test based on mutual infor-
mation was used to handle combinations of continuous
and discretevariablesand non-linear relations. Theun-
derlying probability distribution of experimental datais
estimated by kernel density estimation. An extension,
based on the complexity of relations, was necessary for
modeling data containing deterministic relations. The
learning module was integrated in the semi-automatic
modeling process of performance, which also included
parametrization using regression analysis.

The benefit of causal models lies in their intrinsic
support for the Markov condition and the decompos-
ability of the modelsinto independent submodels. Ex-
periments show that accurate qualitative modelsarein-
ferred. The models provide insight in which and how
variables affect the overall performance, as demon-
strated by the performance sensitivity analysis of the
Kakadu image compression algorithm. Modeling con-
sists, besides decomposition, of defining generic sys-
tem and application propertiesthat characterize the as-
pects of their behavior that influence the performance.
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Causal analysis can reveal such properties. The results
showed that for LU decomposition a simple perfor-
mance model is inadequate in capturing independent
application and system characteristics.
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