
Scientific Programming 15 (2007) 173–188 173
IOS Press

VLAM-G: Interactive data driven workflow
engine for Grid-enabled resources

Vladimir Korkhov∗, Dmitry Vasyunin, Adianto Wibisono, Adam S.Z. Belloum, Márcia A. Inda,
Marco Roos, Timo M. Breit and L.O. Hertzberger
Faculty of Science, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
E-mail: {vkorkhov, dvasunin, wibisono, adam, inda, roos, breit, bob}@science.uva.nl

Abstract. Grid brings the power of many computers to scientists. However, the development of Grid-enabled applications
requires knowledge about Grid infrastructure and low-level API to Grid services. In turn, workflow management systems provide
a high-level environment for rapid prototyping of experimental computing systems. Coupling Grid and workflow paradigms is
important for the scientific community: it makes the power of the Grid easily available to the end user. The paradigm of data
driven workflow execution is one of the ways to enable distributed workflow on the Grid. The work presented in this paper
is carried out in the context of the Virtual Laboratory for e-Science project. We present the VLAM-G workflow management
system and its core component: the Run-Time System (RTS). The RTS is a dataflow driven workflow engine which utilizes Grid
resources, hiding the complexity of the Grid from a scientist. Special attention is paid to the concept of dataflow and direct
data streaming between distributed workflow components. We present the architecture and components of the RTS, describe the
features of VLAM-G workflow execution, and evaluate the system by performance measurements and a real life use case.

Keywords: Grid, data driven workflow engine, direct data streaming

1. Introduction

Grids have emerged as a global cyber-infrastructure
for the next-generation e-Science applications. Scien-
tific communities utilize Grids to share, manage and
process large data sets. Complex scientific experiments
often require access to distributed resources such as
computational resources, data repositories, third-party
applications, and scientific instruments. The utiliza-
tion of these resources requires multi-domain expertise
which is beyond the common knowledge of a single
scientist. Scientific workflows are designed to auto-
mate scientific processes based on data dependencies
and their control. They also aim at abstracting the us-
age of the necessary underlying resources in order to
help the scientist to focus on his own research [16].
A workflow management system provides the means

∗Corresponding author: Kruislaan 403, 1098 SJ, Amsterdam, The
Netherlands. Tel.: +31 205257599; Fax: +31 205257490; E-mail:
vkorkhov@science.uva.nl.

to compose, execute and monitor the workflow. The
core component of a workflow management system is
an engine responsible for the execution of a scientific
workflow.

In the context of the VL-e [9] project we focus on the
development of the VLAM-G workflow management
system for the e-Science framework. A wide range
of e-science applications from different scientific do-
mains, namely high energy physics, bio-informatics,
bio-diversity, bio-medicine, and tele-science [1] shows
that data access and processing play an important role.
A typical scenario involves a number of steps: (a) ac-
cess data on a remote storage system; (b) move the data
to one of the available computing nodes; (c) process the
data, which results in a new data set (intermediate data)
that is further processed on another node and thus needs
to be moved again. These steps are repeated until the
final data sets are generated and stored in a predefined
location.

Frequently, when following this scenario, scientists
would prefer to delegate all non-scientific activities

ISSN 1058-9244/07/$17.00  2007 – IOS Press and the authors. All rights reserved

174 V. Korkhov et al. / VLAM-G: Interactive data driven workflow engine for Grid-enabled resources

such as finding the appropriate available resources and
manipulating input, output, and intermediate data sets
to a system they trust. Hiding such details of the under-
lying grid execution from the end user allows them to
concentrate on the essential tasks they need to perform
in order to achieve their scientific goals, e.g. defining
original data sets, defining processes that need to be
performed and the order in which these processes must
be executed. On the other hand, the in-depth view at
underlying processing on the low-levels can be provid-
ed as well, and an interested user can check what partic-
ular resources are used, examine intermediate results of
execution and monitor actual computational processes.
The ability to control one or a few parameters of the
processes interactively, without having to stop or restart
experiments, is also desirable.

In the scenario above, as well as in many other sce-
narios describing scientific experiments such as weath-
er predictions [15], bio-medical visualization [12],
knowledge discovery in databases [14,13], and other
scientific domains [14], data is one of the main drivers
of progress in these experiments. In the paper [31] the
authors describe three different use cases from chem-
istry, cosmology and astronomy, where different pat-
terns of pipelined processes have to be executed con-
currently on distributed computing resources. For per-
formance reasons data is streamed between the compo-
nents composing the different levels of the pipeline.

As described in [32], processing data in streams has
certain advantages because it can be done on the fly,
reducing the need to store intermediate data which is
not needed. Therefore, a data-driven workflow engine
is the most appropriate to support efficient execution of
this class of scientific experiments.

In this paper, we present a dataflow driven work-
flow engine, which uses the basic services of the Grid
to allow data streams to be established efficiently and
transparently between remote processes composing a
scientific workflow. This workflow engine consists of a
Run-Time Environment (libvlport library) for workflow
components and a Run-Time System Manager (RTSM)
used to control and orchestrate the execution of the
entire workflow.

The experiment model used in the VLAM-G is a
data-driven model, where scientific experiments can
be composed as a workflow which executes its com-
ponents on the available Grid resources. The engine
orchestrating the execution of the workflow initiates
‘point-to-point’ data streams between workflow com-
ponents allowing intermediate data to flow along the
workflow pipeline. All the resources needed for such

data stream driven distributed processing have to be
available simultaneously in contrast to typical Grid us-
age scenario with resources joining and leaving. Thus a
significant role is played by co-allocation stage that en-
sures simultaneous reservation of the resources needed.
This stage is a complex and broad topic itself, and can
be a theme for a separate paper; here we address the is-
sues of execution and control of a data-driven workflow
not considering co-allocation in details.

This paper is organized as follows. Section 2 re-
views related work in the area of workflow manage-
ment on the Grid. Section 3 presents a general view of
the VLAM-G workflow management system, describ-
ing its architecture and the architecture of its subsys-
tems. Section 4 describes the implementation of the
runtime system library and the wrappers that allow de-
veloping workflow components using a number of pro-
gramming languages. Section 5 shows performance
evaluation results. Section 6 presents a real life ex-
ample of a VLAM-G experiment from bioinformatics
field. Bioinformatics is one of the key areas that has the
requirements for data driven workflow and pipelined
data processing which is illustrated in [44–46]. We
conclude the paper with a discussion of future work in
the context of the on-going VL-e project.

2. Related work

Within the e-Science and Grid communities, Work-
flow Management Systems (WMS) are the subject of
intensive research since they provide an appropriate
abstraction level to allow any scientist to take advan-
tage of the capabilities of geographically distributed re-
sources [39,40]. Different approaches have been pro-
posed to formulate the workflow concept and to pro-
mote the development of diverse trends in terms of the
functionality and features of workflow systems.

Grid-enabled WMS(s), especially in e-Science, of-
ten have to manage geographically distributed concur-
rent computational processes that exchange data in a
peer to peer fashion across different security domains.
To achieve this goal, different approaches have been
developed by various research groups. For example,
the P-GRADE portal [33] operates defining dependen-
cies between different components with respect to their
execution order which is appointed by output/input file
transfers between jobs. The management of workflow
in P-GRADE is performed by a WMS based on Condor
DAGMan [34] with extensions to provide necessary file
transfers.

V. Korkhov et al. / VLAM-G: Interactive data driven workflow engine for Grid-enabled resources 175

The recent trend towards Service Oriented Archi-
tecture (SOA) stimulated the development of another
category of WMS(s) targeting the composition of ser-
vices, often implemented as Web services (e.g. Tav-
erna [26] and Triana [27]). In the case of the Triana
project, the proposed WMS supports the composition
of workflows where components can be executed local-
ly, as Web services, or accessed via the GAT-interface
job submissions [28]. Taverna is another WMS popu-
lar within the bio-informatics community; it is mostly
oriented to work with a set of biological web services,
it has a number of additional components which allow
semantic annotation of workflow components and data
provenance.

In e-Science, there is a large set of libraries and ap-
plications that is difficult to re-implement to fit the new
grid-computing paradigm; This software is considered
as legacy code that cannot be modified. The manipula-
tion of the legacy code is an important feature for both
WMS supporting SOA based components and the ones
utilizing job submissions to grid-enabled resources.

Another important feature of some e-Science appli-
cations is the demand for direct data streaming between
distributed processes on the grid, especially for appli-
cation domains that rely upon semi-realtime data pro-
cessing. A number of workflow management systems
focus on the development of robust and efficient data
streaming over the Grid. Some of these systems focus
on enabling data streaming capabilities, such as SCi-
FLo [18] where the data streaming is provided by bi-
nary channels, GriddLeS [19] where streaming func-
tionality is supported over pipes, and Narada Broker-
ing [20], which supports the interesting concept of hy-
brid streams where multiple “simple streams” are in-
trinsically linked. Some systems offer more complete
frameworks enabling more control and steering of the
streams. The UniGrids Streaming Framework [21]
provides steering capabilities as well as data stream-
ing. A UniGrids Web Service is used to control a
set of available stream types, to create streams, and to
manage already created ones. The Styx Grid Service
(SGS) [22] is another example of a streaming frame-
work which uses a remote service type that allows data
to be streamed directly between service instances. The
Styx clients can monitor progress and status through
persistent connections. SGS can interoperate with oth-
er service types such as Web Services in a workflow.
Other systems such as ASSIST [23] propose high-level
structured parallel programming capabilities which in-
cludes a skeleton-based language, and a set of compil-
ing tools and runtime libraries for supporting the data

streaming. The DSP Grid [24] is conceptualized as
a workflow engine with the capability of dynamically
marshalling the required data stream resources, plan-
ning the decomposition of the process graph and dis-
patching the component work across Grid resources to
maintain data stream processing in real-time.

To describe application workflows,a variety of work-
flow description languages are used. Most of the exist-
ing WMS use their own languages with different levels
of complexity. For example, in Taverna data models
can be represented using SCUFL (Simple Conceptual
Unified Flow Language), they consist of inputs, out-
puts, processors, dataflow, and control flow. In addition
to specifying execution order, the control flow can also
be triggered by state transitions during the execution of
parent processors. Askalon [25] employs AGWL (Ab-
stract Grid Workflow Language) which provides a set of
constructs to express sequence, parallelism, choice and
iteration workflow structures. Teuta, another Askalon
component, supports graphical specification of Grid
workflow applications based on the UML activity di-
agram which is a graphical interface to AGWL. For a
complete survey and taxonomy on existing workflow
systems we refer the reader to [17].

VLAM-G provides a basic set of capabilities for
building workflows by connecting components to each
other based on data dependencies. As a core concept
VLAM-G uses dataflow between simultaneously exe-
cuting distributed components as an execution driving
activity, while many other systems employ control flow
and/or only perform sequential execution of workflow
steps according to intermediate data readiness. Inter-
mediate data handling is also performed differently.
Some systems like Triana and Taverna use a central-
ized approach whereby all the data is controlled and
collected at the central point where the engine resides.
In turn, VLAM-G and P-GRADE transfer data directly
between the participating components. Another dis-
tinguishing feature of VLAM-G is its ability to con-
trol an executing workflow at runtime in several ways.
Firstly, the workflow components can be parameter-
ized; the parameters can be controlled during execu-
tion. Secondly, as VLAM-G operates with remote jobs
co-allocated at runtime, it enables direct access to the
graphical output of a component (i.e. component GUI,
if one exists) by providing a shared virtual display. To
the best of our knowledge no other system provides
similar capabilities.

176 V. Korkhov et al. / VLAM-G: Interactive data driven workflow engine for Grid-enabled resources

3. A data-driven workflow engine

3.1. The vision

The aim of the VLAM-G system developed at the
University of Amsterdam is to provide and support co-
ordinated execution of distributed Grid-enabled com-
ponents combined in a workflow. This system com-
bines the ability to take advantage of the underlying
Grid infrastructure and a flexible high level rapid pro-
totyping environment. On the high level, a distribut-
ed application is composed as a data driven workflow
where each component represents a process or service
on the Grid. Processes are activated only when the data
is available on their input ports. The significant differ-
ence from other similar systems is the support for si-
multaneous execution of co-allocated processes on the
Grid which enables direct data streaming between the
distributed components: traditional batch processing of
grid jobs and workflow execution based on input/output
files exchange between the components is not suitable
for many use case scenarios. This feature is highly re-
quired for semi-realtime distributed applications e.g. in
the bio-medical domain or in online video processing
and analysis [30].

Grid technology is maturing very quickly, the new
paradigm based on SOA is replacing monolithic archi-
tectures and the original resource oriented approach to
Grid computing. However, the transition to the new
paradigm will not take place overnight; moreover, the
old approaches remain more efficient in a number of
cases. One of the targets of VLAM-G is, thus, to en-
able support for co-existence of different types of grid
execution models within a single workflow. This goal
is achieved by abstracting a particular Grid execution
model to an intermediate common representation. In
VLAM-G a workflow is not composed of particular
specific Grid jobs or services but of components with
a special interface. These components are called mod-
ules, and they are the core entities of the VLAM-G
data-driven workflow. Thus a module can represent a
specially developed application which uses the VLAM-
G native module API (libvlport), a web service, or a
legacy application.

The runtime control of the execution of a distributed
workflow provides the ability to monitor the execution
and influences the behavior of workflow components.
VLAM-G supports several ways of runtime control:
direct interaction with the user interface of a module
(remote X GUI access) and module parameter control
(reading flags and values set by a module and updating

these values from outside the module). Monitoring
delivers all the log data from remote modules to the
VLAM-G user interface thus all the issues in module
execution can be tracked centrally.

Intensive distributed data processing might take a
long time. To facilitate the handling of the executing
workflow, the system is capable of closing the user
interface, detaching from the workflow engine and re-
attaching later on during runtime.

The core features of the system we present are:
(1) Dataflow (and not control flow) is used as a
driving force; (2) Workflow components (VLAM-G
modules) are versatile: a module may be either a
specially developed software component (written in
C++/Java/Python using the VLAM-G API), or an in-
terface to legacy applications or web-services; (3) Dis-
tributed execution: support for Grid job submissions
together with web serivces and local tasks within a
single workflow; (4) Support for legacy applications
wrapped as modules (flexible XML configuration); (5)
Support for remote graphical output: remote X dis-
play for Grid jobs is provided; (6) Interactivity support:
online control via parameters, and via remote graphi-
cal output; (7) Decentralized handling of intermediate
data; (8) Decoupling of GUI and engine;

3.2. The architecture

In this section we present the architecture of the
VLAM-G workflow engine which enables the execu-
tion and the runtime control of distributed data-driven
workflows on the Grid. A workflow is composed of a
set of components called modules which represent an
executing entity (remote application or a web service).
As computing resources VLAM-G can use: (1) grid
enabled local or remote sites (so far VLAM-G works
only with the Globus middleware [7]) that enable in-
bound and outbound communications; this allows data
streams to be established between workflow compo-
nents located on remote grid resources. A special case
is the multi-cluster environment where it is not common
that the internal worker nodes have public addresses
and direct connectivity to the outside. This is a seri-
ous limitation on the existing Grid infrastructure, but
currently we are developing the solution that enables
transparent proxy connections to the workers via the
front cluster node. (2) web and grid services. Below
we will concentrate on the architecture of the workflow
engine starting from modules as workflow components
and finishing with the description of the components
the engine is built of.

V. Korkhov et al. / VLAM-G: Interactive data driven workflow engine for Grid-enabled resources 177

The VLAM-G environment is constructed from two
core components: the graphical user interface (VL-
GUI) and the Run-Time System (RTS) – the engine
which prepares and executes the workflow, handles
the intermediate data and allows the monitoring and
the online control. The VL-GUI is used to create a
complex scientific experiment interactively by compos-
ing a workflow, setting the parameters for each work-
flow component before and at runtime, and transferring
the workflow description to the engine using standard
SOAP protocol.

In the following sub-sections, we describe the archi-
tecture of the RTS which consists of the RTS Manager
(RTSM), the RTSM factory, and the Resource Manager.

3.2.1. The workflow modules
Modules are the core composition elements of the

VLAM-G framework. A module is an entity which
represents a task to be executed on the Grid. It can be
a specially developed application, a web service, or a
legacy application. A workflow is created from a set
of modules. The modules have input and output ports,
which are used to compose the workflow by connecting
the output of a module to the input of other modules.

VLAM-G workflows often target coordinated and
simultaneous distributed processing of streaming data.
Assuming this, a model of a module can be represented
as the sequential retrieval of data from input ports, data
processing and distribution of the result data to output
ports. The execution is performed in a continuous
fashion, so that these steps are repeated until interrupted
or until the incoming data stream is closed.

A module represents a task being executed on the
Grid and from the design point of view it consists of a
processing part and a service part. The processing part
represents the application itself: the code developed
using the VLAM-G module API, a call of a web/grid
service, or a launch of a legacy application. The service
part provides the interface and the basic facilities for
runtime control and the management of data transfers
between modules. All available modules are stored in a
repository, the creation and deployment of a new mod-
ule is simple and straightforward and will be explained
in the course of the paper.

3.2.2. The RTS architecture
Figure 1 shows a high level overview of the VLAM-

G workflow engine: the RTS. The main components of
the system are the RTSM Factory, the RTSM and the
Resource Manager (RM). The scenario of a workflow
enactment using the RTS is the following:

– The RTSM Factory creates an instance of the
RTSM, the VLAM-G workflow engine. The
RTSM instance is responsible for the given work-
flow execution. Multiple simultaneous execut-
ing workflows are supported. The engine takes
as input a directed acyclic graph representing the
dataflow of the workflow where the nodes corre-
spond to the modules (workflow components) and
the edges reflect the data streams.

– The computing resources where the modules are
scheduled can be specified explicitly or retrieved
from the RM. If the execution host of a module
is not specified then the RM searches for optimal
resources for executing the workflow by utilizing
the information on module resource requirements.
The RM handles the discovery, location, and se-
lection of the necessary resources according to the
VLAM-G module requirements. It maps the ap-
plication tasks to the appropriate resources to opti-
mize the workflow performance, utilizing a num-
ber of algorithms and scheduling techniques [4].

– After the resources have been selected, the work-
flow becomes fully concrete, and the RTSM sched-
ules the workflow components using the Globus
job submission mechanism (with non-web service
modules), connects the module ports according to
the workflow description and sets the module pa-
rameters to their default values.

– The RTSM starts the workflow and monitors the
execution of each of the VLAM-G modules in this
workflow.

3.2.3. VLAM-G resource management
To create an optimal schedule for a meta-application,

a data-driven workflow in this case, we need to assign
all the components composing the workflow to appro-
priate resources with the goal of minimizing the cost
of the workflow execution. For this, each module in
the VLAM-G framework is provided with a module
description file that contains information about module
resource requirements, including a default execution
location which may be left blank.

Before creating an RTSM instance, the RTSM Fac-
tory contacts the RM. In turn, the RM processes the
description of the workflow, with execution location
missing for some modules, together with the require-
ments of the modules. The RM performs schedul-
ing decisions based on the application information, the
available resources information, and cost and applica-
tion models (Fig. 2). The application information in-
cludes the requirements that define the quality of the

178 V. Korkhov et al. / VLAM-G: Interactive data driven workflow engine for Grid-enabled resources

RTSM Factory
RTS Manager

RTS Manager
RTS Manager

RTS Resource Manager

Globus
gatekeeper

Node A Module core

Globus
gatekeeper

Node B Module core

GRAM GRAM

IIOPIIOP

data flow

XML description of
experiment

Fig. 1. Run-Time System Architecture.

service requested by the modules. These requirements
include the amount of memory needed, the approxi-
mate number of processing cycles (i.e. processor load),
the storage and the communication load between mod-
ules. VLAM-G uses a RSL-like language to speci-
fy these requirements (RSL is a resource specification
language used in the Globus toolkit to specify the job
to be submitted to the Grid Resource Allocation Man-
ager [3]). The resource information is obtained from
the Grid Monitoring and Discovery Service (MDS) [3],
which also provides forecasts of the resource state from
the Network Weather Service (NWS) [2]. This helps to
estimate the resource load in the specified time frame
in the future and to model the application performance.
The cost and application models are used by the re-
source manager to evaluate a set of candidate schedules
for the application. The cost model refers to the exe-
cution time of the workflow as the performance metric,
and the application model specifies how the execution
of the workflow is simulated. The application model is
usually represented as a DAG which can be executed
in a pipeline or concurrently, and the execution perfor-
mance depends on the application and on the resource
information.

The RM uses several types of heuristics and simulat-
ed annealing to achieve sub-optimal schedules based on
a performance metric (generally the overall execution
time is evaluated). For simulated annealing the RM
tries a number of candidate schedules and simulates the

execution of the workflow with given requirements on
given resources. The results are estimated using a cost
model, resource state information,and predictions. The
algorithm converges to a sub-optimal schedule which
is transferred to the RTSM Factory. Different types of
meta-scheduling algorithms (heuristic algorithms and
simulated annealing), the evaluation results, and anal-
ysis are discussed in detail in [4].

3.2.4. VLAM-G interactive module control
Each VLAM-G module may have parameters that

can be monitored and changed during runtime by the
module itself or by the user. A parameter in the VLAM-
G context is a named entity with a value that can be
changed either from within the module code or from
outside, i.e. from the VL-GUI. A VLAM-G parameter
can be compared to an environment variable of an op-
erating system. This feature allows the users to interact
directly with every module composing the application
workflow, thus the execution of modules can be con-
trolled on the fly without the need to stop and restart
the whole workflow. A parameter is usually associated
with a metric that needs to be controlled or is used to
monitor the internal state of a module during execution.

3.2.5. Legacy application support
We define a legacy application (LA) as follows: An

LA is an application that has no source code available
and cannot be modified. LAs are modeled as black

V. Korkhov et al. / VLAM-G: Interactive data driven workflow engine for Grid-enabled resources 179

Application information

Resource information

Resource manager

Cost and application models

Schedule

Fig. 2. VLAM-G Resource Management.

box applications exchanging data files; both the input
and output data needed for the execution of a LA is
assumed to be a set of files. This model can be mapped
directly to the VLAM-G module concept because input
and output ports can be bound to the exchanged files.
For the legacy applications, a generic wrapper has been
developed (Fig. 3).

Each LA has a configuration file where all input and
output data files are described and bound to the in-
put/output ports. The LA wrapper allows the RTSM to
instantiate the LA in the same way as it instantiates a
native VLAM-G module. The LA wrapper reads the
data from input ports and stores them in the “sandbox”
(a specially created directory for a module to keep all
the files related to its execution) as files, then executes
the LA code. The LA produces a set of output files
stored again in the sandbox after processing the data.
After the LA finishes the execution, the output files
are sent to the associated output ports. This process is
repeated until the stream of input files is over. Thus
the processing is performed in a loop fashion: continu-
ously repeating the retrieval of input files, the process-
ing by the LA and the transfer of the output files, thus
emulating the streams of input and output data.

The same technique is also applied to RPC style web
services. Web services expose their operations in WS-
DL description. Each operation defined in this WSDL
can be imported as a VLAM-G module by applying
a similar approach as the one used by an LA. Thus a
web service with several operations can be imported
as a collection of VLAM-G modules. In turn, each of
the parameters of every operation described in the web
service WSDL is imported as an input port of the cor-
responding module, and its return values are described
as output ports. VLAM-G provides a generic wrapper
for this kind of web service operations The web service

wrapper collects data from input ports and stores it in
input files. A generic client for web services performs
the web service calls, setting up operation parameters
based on input files, and stores the result in an output
file. Finally this output file is sent to the next module
via the output port.

Other projects also address the problem of using
legacy code in Grid environment. GEMLCA [35] en-
ables the deployment of legacy code applications as
Grid services without the need of code re-engineering.
Similarly to VLAM-G, the legacy code here is also pro-
vided as a black box with specified input and output
parameters and environment requirements. The differ-
ence is that VLAM-G wraps an LA not as a web-service
but as an entity supporting implicit data streaming.

4. VLport library: Design and implementation

The VLport library (also referred as libvlport
library) is a part of VLAM-G environment and is de-
veloped at the University of Amsterdam to support ex-
ecution of data driven workflows. The libvlport
library is responsible for maintaining the stream of data
from an output port of a module to an input port of
another module running on a different computing node.
The library is a key component in moving intermediate
data produced at a given step of the application work-
flow to the next step, regardless of the physical location
of two processes.

The libvlport provides the runtime environment
for any VLAM-G module. It offers a basic API for the
creation of I/O ports, changing the parameters of the
VLAM-G modules, and other utility functions. From
the implementation point of view the library provides
a class, which must be used as base for developing

180 V. Korkhov et al. / VLAM-G: Interactive data driven workflow engine for Grid-enabled resources

Fig. 3. Legacy application wrapper.

any VLAM-G module. A module developer imple-
ments the abstract method vlmain (Fig. 4 and list-
ing 1), which contains all computational logic of the
module. The RTSM instantiates, connects, and exe-
cutes all modules composing the workflow. The input
and output ports have a simple interface compatible
with standard C++ streams. Legacy applications and
web services are wrapped and represented to the work-
flow system as VLAM-G modules as well. Interfaces
to Java and Python languages are provided so that na-
tive VLAM-G modules can be developed using these
languages as well.

Listing 1: Example of a native VLAM-G module

#include <vlapp.h>
#include <fstream>

class MyVLApplication : public VL::
VLApplication
{
public:

MyVLApplication(int argc, char
**argv)

: VL::VLApplication(argc,
argv),
log("test_vlapp.log")

{
myOstream = createDefaultO
Port("port_out");

};
virtual ˜MyVLApplication()
{

delete myOstream;
};

virtual std::ostream& getLog()
{

return log;
};
int vlmain(int argc , char
**argv)
{

std::ifstream fstr("File.
orig.dat");

time_t t1;
time(&t1);
*myOstream << fstr.rdbuf();
getLog() << "Time:" << time
(NULL)-t1 << std::flush;

return 0;
};

private:
VL::vostream *myOstream;
std::ofstream log;

};

int main(int argc , char **argv)
{

globus_module_activate(GLOBUS_
COMMON_MODULE);
globus_module_activate(GLOBUS_
IO_MODULE);
try
{

MyVLApplication app(argc,
argv);
app.run();

}
catch(VL::Exception *e)
{

std::cerr << e->what();
delete e;

}
globus_module_deactivate(GLOBUS_
IO_MODULE);
globus_module_deactivate(GLOBUS_
COMMON_MODULE);
return 0;

}

The library provides a number of utility functions
that gives VLAM-G module developers easy access
to all GASS data sources using GridFTP, FTP, HTTP
and HTTPS protocol. The data streamed to/from
ports can be serialized to the eXternal Data Repre-
sentation (XDR) [42]. This makes it possible to ex-
ploit heterogeneous computational resources. How-
ever, module developers can also work with a raw
stream, which is similar to the network sockets. The

V. Korkhov et al. / VLAM-G: Interactive data driven workflow engine for Grid-enabled resources 181

Fig. 4. Port library component architecture.

RTSM establishes all connections, a developer works
with opened streams like any C++-compatible streams
(i.e. iostream). The communication is performed using
Globus IO library [7] and Globus security mechanisms
including authentication and authorization of connec-
tions, and possibly encryption of the data transferred.

The RTS performs internal module control by us-
ing CORBA technology. CORBA has been selected
as a stable and mature technology, not as resource- de-
manding as web services, to enable the management
of centrally controlled distributed objects. CORBA is
considered as a standard technology for intranet com-
munications, while web services are mostly used in
internet scale. RTS manages a set of modules on the
intranet level, while clients like other components of
VLAM can access RTS via web service interface. Typ-
ically one RTS controls the execution of a single sub-
workflow within a cluster, and composition of several
RTS’s building together a complex multi-cluster work-
flow is supported.

For the RTS, each module is represented as a CORBA
object [5]. Each instance of a module has IIOP COR-
BA reference and can be accessed remotely. In order to
avoid firewall problems, the library chooses TCP ports
from a range specified in GLOBUS TCP RANGE vari-
able. Thus, a module can be instantiated even behind a
firewall.

The life cycle of a module can be described as fol-
lows:

1. Initializing a module: The RTSM instantiates a
module on a grid-enabled (using the GRAM pro-
tocol) or local node. All necessary environment
variables are set for proper module initialization.

2. Creating input/output ports: During the initial-
ization stage the input and output ports are creat-
ed. The number of ports is predefined for a mod-
ule and can not be changed during the runtime.

3. Registering a module: The module contacts the
RTSM and registers itself. The RTSM keeps

sending keep-alive messages to the module dur-
ing the runtime. If acknowledgment is not re-
ceived during a predefined timeout the module is
considered crashed.

4. Connecting modules: The RTSM connects mod-
ules with each other according to the dataflow; an
output port can be connected to many input ports
(one-to-many relationship implemented as a set
of standalone connections);

5. Scheduling a module: The RTSM schedules the
modules for execution (the method vlmain is
executed);

6. Exchanging data with other modules: The mod-
ule reads the data from input ports, processes it
and writes results to output ports: loop fashion
execution;

7. Module termination: When a module exits
(i.e. input port has been closed by the previous
module) it returns from vlmain method. All
pending buffers are flushed, and ports are closed.
The module unregisters itself from RTSM reg-
istry and exits.

The control of the parameters of a VLAM-G mod-
ule is implemented as CORBA remote procedure calls.
All the modules in the worklfow are controlled by the
RTSM using IIOP protocol.

To utilize various programming languages such as
Java and Python a set of wrappers has been developed.
The wrappers translate the calls from the target lan-
guage to the C++ libvlport library. Figure 6 shows
the Java wrapper library based on Java Native Inter-
face (JNI). The VLAM-G module core and the wrap-
per are executed in the same Java virtual machine, the
wrapper functions translate the calls to the libvlport li-
brary. Thus a Java module has the same functionality
and life-cycle as a native module. The Python wrapper
employs similar techniques using the SWIG (simplified
wrapper and interface generator) to generate a wrap-
per around the libvlport library. Similar solutions for

182 V. Korkhov et al. / VLAM-G: Interactive data driven workflow engine for Grid-enabled resources

C
O

R
B

A
 in

te
rfa

c
e

API

Module
core

C
O

R
B

A
 in

te
rfa

c
e

Parameter

Module RTS Manager

Parameters

Parameters
P

a
ra

m
e
te

r A
P

I fo
r

o
th

e
r su

b
sy

ste
m

s

Fig. 5. Module parameter interface.

Fig. 6. Java wrapper.

code wrapping have been employed in other projects,
for example Jopera [29] provides a wrapper for Java
snippets, small blocks of Java code usually needed to
preform small computation. It also provides a wrapper
for Unix applications (legacy applications) using the
shell command line and the pipe-based inter-processes
communication.

The VLAM-G port library is developed in C++ and
is implemented as a dynamic library for UNIX sys-
tems. It uses the threaded versions of Globus libraries
and OmniORB – a free high performance ORB for
C++ [5]. The RTSM is a part of the VLAM-G front-
end and is developed in Java. It uses Commodity Grid
Kit for Java [6] and Community OpenORB Project [8].

5. Performance evaluation

The RTS library is designed to provide maximal per-
formance for distributed applications while hiding all
low level details from the application developers. It
must thus provide a throughput comparable with the
standard protocols. In this section we compare the per-

formance of the library with the performance of stan-
dard data transfer tools included to the Globus toolkit,
and measure the introduced overhead.

We evaluated the dependency of the data transfer
performance on the data block size using both standard
Globus utilities and VLport library. The data trans-
fers took place between the nodes of clusters connected
through a high-speed WAN (wide area network). The
clusters are part of the ASCI Supercomputer 2 (DAS
2), which is a multi-cluster system distributed over dif-
ferent universities in the Netherlands. Each cluster
node contains: two 1-Ghz Pentium-IIIs, at least 1 GB
RAM, a Myrinet interface card, a Fast Ethernet inter-
face (on-board). The nodes within a local cluster are
connected by a Myrinet-2000 network, which is used
as high-speed interconnect, mapped into user-space.
In addition, Fast Ethernet is used as OS network (file
transport). The five local clusters are connected by the
Dutch university Internet backbone [11]. To measure
the overhead introduced by the VLAM-G library, the
average throughput of the link was evaluated with the
help of standard Globus tool ‘globus-url-copy’ using
GridFTP protocol. Figure 7 shows the data transfer

V. Korkhov et al. / VLAM-G: Interactive data driven workflow engine for Grid-enabled resources 183

Fig. 7. Average performance of the RTS library on WAN compared with standard Globus data transfer tool.

rate as a function of the data block size (average of 10
measurements per each data-block with the deviation
not exceeding 5 percent). Compared to the throughput
obtained with the VLAM-G RTS library, the globus-
url-copy shows slightly better performance for the test
with parallel stripes (fast GridFTP) and almost the same
outcome in the case of a standard GridFTP protocol.
The maximum data throughput for large data blocks is
about 20 MB/sec for the library. Since the RTS Library
is designed to support data streams, the performed tests
show encouraging results as the speed of the data trans-
fer achieved using the library is comparable to those
achieved using standard Globus tools.

6. A bioinformatics use case

Here we present the SigWin-detector workflow, a
concrete example of how VLAM-G can create an envi-
ronment where biologists can perform their (computa-
tional) experiments on the grid without having to deal
with the complexities of the underling grid middleware,
so they can focus on the biological aspects of their ex-
periments. SigWin-detector was presented at the 2nd
IEEE international conference on e-Science and Grid
computing [41].

SigWin-detector is a generic workflow that can an-
alyze any ordered sequence of values, spanning from
gene expression data to local time series of tempera-

184 V. Korkhov et al. / VLAM-G: Interactive data driven workflow engine for Grid-enabled resources

Fig. 8. Left: SigWin detector basic workflow using the VLAM-G workflow composer. Right: graphical output of the basic workflow for the
time series of temperaures in Amsterdam from 1995 up to 2006.

ture. It is used to identify regions in the sequence where
the median value is higher than could be expected by
chance if the ordering of the values was not relevant.
For example, in a gene expression sequence it identifies
regions of highly expressed genes, while in time series
of temperature it identifies hot periods such as sum-
mers or heat waves. The workflow consists of modules
that implement a generalized and improved version of
the RIDGE method [36], a method originally designed
to identify Regions of Increased Density of Gene Ex-
pression (RIDGE(s)) in profiles of the gene expression
activity of a cell plotted along the chromosomes, so-
called transcriptome maps. SigWin-detector workflow
can be operated interactively in a grid environment. It
takes as input an ordered sequence (a transcriptome
map), computes sliding window medians,and identifies
as significant windows (RIDGEs) the sliding windows
with a median value above a certain false discovery rate
(FDR) threshold, c.f. [38]. Those windows are called
significant windows, or RIDGES in the special case
that the input sequence is a transcriptome map. The
SigWin-detector basic workflow (Fig. 8, left) consists
of the following VLAM modules: (1) ColumnRead-
er, reads the input sequence; (2) Rank, ranks it; (3)
SWMedian, computes sliding window medians for a
given range of odd window sizes; (4) Sample2Freq,
generates a frequency count from the sliding window
median data; (5) SWMedianProb, generates a theo-
retical probability density for the sliding window me-
dian data from the ranked sequence; (6) FDRThresh-
old, applies a false discovery rate (FDR) procedure that
compares the obtained frequency count with the the-
oretical probability to obtain FDR thresholds for each

window size; (7) SigWindow, selects windows above
the FDR threshold; (8) GnuPlot, displays the results
graphically.

Each module performs specific tasks that can be fine-
tuned by using the module’s parameters. For exam-
ple, the parameters of module SWMedian are used to
define the range of window sizes to be computed.

The workflow uses the automatic streaming feature
of VLAM-G to assemble a pipeline that streams the da-
ta generated for each window size to the next module as
soon as it is available: Suppose we want to detect sig-
nificant windows for window sizes s1 up to s4. While
the SWMedian module is generating sliding window
medians for window size s4; modules Sample2Freq
and SWMedianProb will be producing the data for
window size s3; module FDRThreshold will be com-
puting the thresholds for window size s2; and module
SigWin will be selecting the significant windows for
window size s1. Streamig the data also saves the work
of writing intermediary data to files. Alternatively, if
this data is important, we can add a module that will
write it to a file.

Figure 8, right shows the graphical output of the ba-
sic workflow for a time series of temperaures in Am-
sterdam from 1995 up to 2006. The triangular graph
displays the significant windows for all window sizes
showing the obvious cyclic pattern of the seasons. Each
row represents a window size s, where s is an odd
number ranging from 1 day to N = 11 years. Each
column represents a sliding window number (ranging
from (s− 1)/2 to N − (s− 1)/2), hence the triangular
form. Each significant window is identified by a point

V. Korkhov et al. / VLAM-G: Interactive data driven workflow engine for Grid-enabled resources 185

Fig. 9. VLAM-G environment and SigWin detector workflow adapted for displaying significant windows per subsequence. The new modules
are: (A) Read2Columns, (B) SeqSplitter, (C) SWSplitter, and (D) SubSigWindow.

in the graph, and the colors represent the actual sliding
window median expression value.

The basic workflow can be altered by substituting,
deleting, or adding modules. For example, if we do
not want graphical display, the graphics module can be
dropped (this is useful for batch processing). Another
useful alteration is to modify the workflow so that it
identifies significant windows in subsequences of the
original sequence. This subsequence could be a year
or a month in the case of time series, or a chromosome
in the case of transcriptome maps. In the later case,
discovering RIDGEs per chromosome is more sensible,
since the ordering of the chromosomes is arbitrary;
furthermore, this also reduces the computational work,
since the maximum number of genes in a chromosome
is considerably smaller than the total number of genes.
Figures 9 and 10 show the modified workflow and its
graphical output for the case of human trancriptome
map complied in [36].

Besides the graphical output supported by an interac-
tive virtual display, the VLAM-G environment provides

access to standard output and standard error streams of
running modules at runtime. SigWin modules can gen-
erate results with various levels of detail. The logging
detail level is a module parameter that may be con-
trolled at runtime. Thus, depending on his needs, the
user can control the amount of generated and printed
data at any moment with a simple change in logging
parameter values of modules executing remotely.

Implementing SigWin-detector using VLAM-G al-
lowed us to take advantage of some of the features
of the VLAM-G workflow namely: (a) the interactive
creation and execution of workflows in a grid environ-
ment; (b) interactive control of module execution using
parameters (c) the automatic redirection of the remote
graphical output to the end-user default screen; (d) the
possibility to adapt the workflow to meet the user’s
specific needs; (e) the ability to run an experiment in
batch mode by calling the runtime system from a script
directly.

Furthermore, VLAM-G’s modular design disclos-
es the structure of an experiment to biologists in a

186 V. Korkhov et al. / VLAM-G: Interactive data driven workflow engine for Grid-enabled resources

Fig. 10. Graphical output of the modified SigWin-detector workflow taking as input the human transcriptome map compiled in [36].

more testable way than through written publications
and poorly reproducible scripts. This facilitates opti-
mization of parts of the workflow and enables experi-
mentation with variations of the original design. Also,
the workflow itself can be used as a ‘module’ in more
elaborate experiments.

7. Conclusions and future work

In this paper we present VLAM-G – a data-driven
workflow management system, and the Run-Time Sys-
tem, its engine. This engine allows the execution of
data-driven workflows in a transparent way on the avail-
able Grid resources. A VLAM-G workflow is com-
posed of entities called modules that interface native
VLAM-G applications, web services and legacy ap-
plications even if the source code is not available for
modification. Interactive control of the execution is

provided: the end-users can interact with any workflow
component at runtime via a simple parameter interface
or by accessing a virtual display with remote graphi-
cal output. The API for native VLAM-G modules is
provided by VLport runtime libraries which have been
designed to support different languages: C/C++, Java
and Python. A generic wrapper provides the means
to port an existing application or a web service as a
standard VLAM-G workflow component.

The VLAM-G workflow management system can
be used for distributed applications requiring direct
data streaming between the remote components, e.g.
semi-realtime applications, remote devices access and
control etc. The performance evaluation showed that
the overhead brought by intermediate VLport library
is negligible. The analysis of the presented use case
shows the advantages of the VLAM-G environment
in the development of distributed data-driven applica-
tions.

V. Korkhov et al. / VLAM-G: Interactive data driven workflow engine for Grid-enabled resources 187

In the current version, the parameters of VLAM-G
modules are not shared, which restricts the interaction
of the modules to simple input/output ports. In further
versions we plan to introduce a rule-based system that
will monitor the status of the workflow at runtime and
change parameters of a given module depending on
the workflow state. Currently an external centralized
information system is used to keep track of the VLAM-
G module description and characteristics. We plan to
incorporate a discovery system based on peer-to-peer
network that will provide up-to-date information about
available modules and resources.

We are also investigating how additional background
knowledge about the data can be automatically incor-
porated in the system [37]. This information will be
needed for the interpretation of increasingly complex
experiments made possible by Virtual Laboratory.

Acknowledgments

We would like to thank Dr. Marcel van Batenburg
for fruitful discussions and the bioinformatics group
of Dr. Antoine van Kampen for making the human
transcriptome map data available to us.

This work was carried out in the context of the Virtual
Laboratory for e-Science project (www.vl-e.nl). Part
of this project is supported by a BSIK grant from the
Dutch Ministry of Education, Culture and Science (OC
& W) and is part of the ICT innovation program of the
Ministry of Economic Affairs (EZ).

This work was part of the BioRange program of the
Netherlands Bioinformatics Centre (NBIC), which is
supported by a BSIK grant through the Netherlands
Genomics Initiative (NGI).

References

[1] H. Afsarmanesh, R.G. Belleman, A.S.Z. Belloum, A. Ben-
abdelkader, J.F.J. van den Brand , G.B. Eijkel, A. Frenkel,
C. Garita, D.L. Groep, R.M.A. Heeren, Z.W. Hendrikse,
L.O. Hertzberger, J.A. Kaandorp, E.C. Kaletas, V. Korkhov,
C.T.A.M. de Laat, P.M.A. Sloot, D. Vasunin, A. Visser and
H.H. Yakali VLAM-G: A Grid-Based Virtual Laboratory, Sci-
entific Programming 10(2) (2002), 173–181.

[2] R. Wolski, N. Spring and J. Hayes, The Network Weather Ser-
vice: Distributed Resource Performance Forecasting Service
for Metacomputing, Journal of Future Generation Computing
Systems 15(5–6) (October 1999), 757–768.

[3] K. Czajkowski, S. Fitzgerald, I. Foster and C. Kesselman, Grid
Information Services for Distributed Resource Sharing, The
Tenth IEEE International Symposium on High-Performance
Distributed Computing (HPDC-10), IEEE Press, August,
2001.

[4] V. Korkhov, A. Belloum and L.O. Hertzberger, Evaluating
Meta-scheduling Algorithms in VLAM-G Environment, Tenth
Annual Conference of the Advanced School for Computing
and Imaging (ASCI) (June, 2004).

[5] omniORB, Free High Performance ORB. http://omniorb.
sourceforge.net.

[6] Commodity Grid Kits, http://www.globus.org/cog/.
[7] The Globus Alliance, http://www.globus.org/.
[8] The Community OpenORB Project, http://openorb.

sourceforge.net.
[9] Virtual Laboratory for E-Science, http://www.vl-e.com.

[10] Netperf: A Network Performance Benchmark. Information
Network Division, Hewlett-Packard Company, 1995 http://
www.netperf.org/netperf/NetperfPage.html.

[11] The Distributed ASCI Supercomputer 2 (DAS-2) http://www.
cs.vu.nl/das2/.

[12] S. Krishnan, K.K. Baldridge, J.P. Greenberg, B. Stearn and K.
Bhatia, An End-to-end Web Services-based Infrastructure for
Biomedical Application. Grid 2005, 6th IEEE/ACM Interna-
tional Workshop on Grid Computing, Nov 2005.

[13] G. Kickinger, J. Hofer, A.M. Tjoa and P. Brezany, Workflow
Management in GridMiner. In Proceedings of the 3rd Cracow
Grid Workshop, Cracow, Poland, October 2003.

[14] T.M. Nguyen, A.M. Tjoa, G. Kickinger and P. Brezany, To-
wards Service Collaboration Model in Grid-based Zero Laten-
cy Data Stream Warehouse (GZLDSWH) Proceedings of the
2004 IEEE International Conference on Services Computing
(SCC 04).

[15] D. Gannon, S. Krishnan, A. Slominski, G. Kandaswamy and
L. Fang, Building Applications from a Web Service based Com-
ponent Architecture, Proc. of the Workshop on Component
Models and Systems for Grid Applications, June 26, 2004
held in Saint Malo, France. Springer, 2005, to appear. ISBN:
0-387-23351-2.

[16] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher
and S. Mock, Kepler: An extensible system for design and
execution of scientific workflows, in proceedings of 16th In-
ternational Conference on Scientific and Statistical Database
Management, 2004, 423–424.

[17] J. Yu and R. Buyya, A taxonomy of scientific workflow sys-
tems for grid computing, SIGMOD Record 34(3) (2005).

[18] B. Wilson, B. Tang, G. Manipon, D. Mazzoni, E. Fetzer, A.
Eldering, A. Braverman, E.R. Dobinson and T. Yunck, GEN-
ESIS SciFlo: scientific knowledge creation on the grid using
a semantically-enabled dataflow execution environment, Pro-
ceedings of the 17th international conference on Scientific and
statistical database management, 2005, Santa Barbara, CA,
83–86.

[19] J. Kommineni, D. Abramson and J. Tan, Communication over
a Secured Heterogeneous Grid with the GriddLeS runtime en-
vironment, 2nd IEEE International Conference on e-Science
and Grid Computing. Dec. 4–6, 2006, Amsterdam, Nether-
lands.

[20] S. Pallickara and G. Fox, NaradaBrokering: A Middleware
Framework and Architecture for Enabling Durable Peer-to-
Peer Grids, Proceedings of ACM/IFIP/USENIX International
Middleware Conference Middleware-2003. pp. 41–61. Lec-
ture Notes in Computer Science 2672 Springer 2003, ISBN
3-540-40317-5.

[21] K. Benedyczak, A. Nowinski, K. Nowinski and P. Bala, Uni-
Grids Streaming Framework. Enabling streaming for the new
generation grid, ICM, PARA 2006 Umea Sweden, 18–21 June
2006.

188 V. Korkhov et al. / VLAM-G: Interactive data driven workflow engine for Grid-enabled resources

[22] J. Blower, K. Haines and E. Llewellin, Data streaming, work-
flow and firewall-friendly Grid Services with Styx, Proceed-
ings of the UK e-Science All Hands Meeting 19–22 September
2005.

[23] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi and
C. Zoccolo, ASSIST as a Research Framework for High-
performance Grid Programming Environments, In Jose C.
Cunha and Omer F. Rana, editors, Grid Computing: Soft-
ware environments and Tools, chapter 10, Springer, Jan. 2006,
230–256.

[24] J. Delaney, J. Orcutt, M. Abbott, L. Smarr and E. Lazows-
ka, The NSF Laboratory for Ocean Observatories Knowledge
INtegration Grid (LOOKING), American Geophysical Union,
Fall Meeting 2005, abstract IN21B-1182

[25] T. Fahringer, A Jugravu, S. Pllana, R. Prodan, C. Seragiotto
Jr. and H. Truong, Askalon: a tool set for cluster and Grid
computing, Concurrency and Computation: Practice and Ex-
perience 17 (2005), 143–169.

[26] T. Oinn, M. Greenwood, M. Addis, M.N. Alpdemir, J. Ferris,
K. Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P.
Lord, M.R. Pocock, M. Senger, R. Stevens, A. Wipat and C.
Wroe, Taverna: Lessons in creating a workflow environment
for the life sciences Concurrency and Computation: Practice
and Experience, Volume 18 Issues 10, Grid Workflow Special
Issue, August 2005, 1067–1100.

[27] I. Taylor, I. Wang, M. Shields and S. Majithia, Distributed
computing with Triana on the Grid, Concurrency and Compu-
tation:Practice and Experience 17(1–18) (2005).

[28] G. Allen, K. Davis, K. Dolkas, N. Doulamis, T. Goodale, T.
Kielmann, A. Merzky, J. Nabrzyski, J. Pukacki, T. Radke, M.
Russell, E. Seidel, J. Shalf and I. Taylor, Enabling Applications
on the Grid: A GridLab Overview, International Journal of
High Performance Computing Applications: Special issue on
Grid Computing: Infrastructure and Applications (August
2003).

[29] C. Pautasso and G. Alonso, JOpera: a Toolkit for Efficient
Visual Composition of Web Services, International Journal of
Electronic Commerce (IJEC) 9(2) (Winter 2004/2005).

[30] F.J. Seinstra and J.M. Geusebroek, Color-Based Object Recog-
nition on a Grid, Proceedings of the 9th European Conference
on Computer Vision (ECCV 2006) Workshop on Computation
Intensive Methods for Computer Vision (CIMCV 2006), Graz,
Austria, May 7–13, 2006. Copyright c©2006 Springer-Verlag.
(PS).

[31] S.M. Charters, N.S. Holliman and M. Munro, Visualisation on
the Grid: A Web Service Approach, UK e-Science All Hands
Meeting 2004 (September 2004).

[32] G. Fox, G. Aydin, H. Bulut, H. Gadgil, S. Pallickara, M. Pierce
and W. Wu, Management of Real-Time Streaming Data Grid
Services, Concurrency and Computation: Practice and Experi-
ence, Special Issue from Grid and Cooperative Computing 4th
International Conference November 30 to December 3 2005
Beijing China, 2006

[33] P. Kacsuk, G. Dozsa, J. Kovacs, R. Lovas, N. Podhorszki, Z.
Balaton and G. Gombas, P-GRADE: A Grid Programming
Environment, Journal of Grid Computing 1(2) (2003), 171–
197(27).

[34] T. Tannenbaum, D. Wright, K. Miller and M. Livny, Condor –
A Distributed Job Scheduler, Beowulf Cluster Computing with
Linux, The MIT Press, MA, USA, 2002.

[35] T. Delaittre, T. Kiss, A. Goyeneche, G. Terstyanszky, S. Winter
and P. Kacsuk, GEMLCA: Running Legacy Code Applications
as Grid Services, Journal of Grid Computing 3(1–2) (June
2005), Springer Science + Business Media B.V., Formerly
Kluwer Academic Publishers B.V. ISSN: 1570–7873, 75–90.

[36] R. Versteeg, B.D. van Schaik, M.F. van Batenburg, M. Roos, R.
Monajemi, H. Caron, H.J. Bussemaker and A.H. van Kampen,
The Human Transcriptome Map Reveals Extremes in Gene
Density, Intron Length, GC Content, and Repeat Pattern for
Domains of Highly and Weakly Expressed Genes, Genome
Research 13(9) (2003), 1998–2004.

[37] M.S. Marshall, L. Post, M. Roos and T.M. Breit, Using Se-
mantic Web Tools to Integrate Experimental Measurement Da-
ta on Our Own Terms, International Workshop on Knowledge
Systems in Bioinformatics (KSinBIT’06), 2006

[38] Y. Hochberg and Y. Benjamini, More Powerful Procedures for
Multiple Significance Testing, Stat Med 9(7) (1990), 811–818.

[39] Jr. G. Chin, L.R. Leung, K. Schuchardt and D. Gracio, New
Paradigms in Problem Solving Environments for Scientific
Computing. Proceedings of the international conference of
Intelligent User Interface 2002, San Francisco.

[40] Workshop on workflow management in scientific and
engineering applications report, SIGMOD Rec. vol. 26
no. 4, 1997, ISSN 0163-5808, pp. 49–53, DOI
http://doi.acm.org/10.1145/271074.271087, ACM Press.

[41] M.A. Inda, A.S.Z. Belloum, M. Roos, D. Vasunin, C. de Laat,
L.O. Hertzberger and T.M. Breit, Interactive Workflows in a
Virtual Laboratory for e-Bioscience: The SigWin-Detector
Tool for Gene Expression Analysis, Second IEEE International
Conference on e-Science and Grid Computing (e-Science’06),
2006.

[42] R. Srinivasan, XDR: External Data Representation Standard,
RFC 1832, DDN Network Information Center, Aug. 1995.

[43] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C.
Kesselman, S. Meder, V. Nefedova, D. Quesnel and S. Tuecke,
Secure, Efficient Data Transport and Replica Management
for High-Performance Data-Intensive Computing, IEEE Mass
Storage Conference, 2001.

[44] W. Li, I. Shindyalov, H. Casanova, L. Ang, F. Berman, P.
Arzberger, M. Miller, P. Bourne, R. Byrnes, J. Hayes, A. Birn-
baum, V. Reyes, A. Shahab, C. Mosley, D. Pekurovsky and G.
Quinn, The Encyclopedia of Life Project: Grid Software and
Deployment. New Generation Computing, Volume 22, Issue
2, January 2004, 127–136.

[45] A. Dowsey, M.J. Dunn and G.Z. Yang, ProteomeGRID: To-
wards a High-Throughput Proteomics Pipeline Through Op-
portunistic Cluster Image Computing for Two-Dimensional
Gel Electrophoresis, Proteomics 4(12) (December 2004),
3800–3812.

[46] A. Konagaya, Trends in Life Science Grid: From Computing
Grid to Knowledge Grid, International Conference in Bioin-
formatics – InCoB2006 18–20 December 2006, New Dehli,
India.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

