
Scientific Programming 15 (2007) 283–297 283
IOS Press

Conditional workflow management: A survey
and analysis

Emir M. Bahsi, Emrah Ceyhan and Tevfik Kosar
Center for Computation and Technology (CCT) and Department of Computer Science, Louisiana State University,
Baton Rouge, LA 70803, USA
E-mail: {embahsi, eceyhan, kosar}@cct.lsu.edu

Abstract. Workflows form the essential part of the process execution both in a single machine and in distributed environments.
Although providing conditional structures is not mandatory for a workflow management system, support for conditional workflows
is very important in terms of error handling, flexibility and robustness. Several of the existing workflow management systems
already support conditional structures via use of different constructs. In this paper, we study the most widely used workflow
management systems and their support for conditional structures such as if, switch, and while. We compare implementation of
common conditional structures using each of these workflow management systems via case studies, and discuss capabilities of
each system.

Keywords: Workflows, conditional structures, conditional workflow management

1. Introduction

As the complexity of scientific applications increas-
es, the need for using workflow management systems
to automate end-to-end processing of applications in-
creases as well. Static workflow management systems
that do not provide any complex constructs such as con-
ditions and loops become insufficient in addressing the
needs of complex scientific applications. For instance,
failure in one part of the workflow may cause the whole
workflow to fail if there is no alternative branch. This
problem could easily be elevated by the use of a con-
dition and an alternative task to be executed in case
of the failure of the original task. As a more specific
example, if a file transfer task fails, the same file could
be transferred using another protocol, or from another
source depending on the type of the failure. Or, if no
alternative way of transferring the same file is avail-
able, the file can be re-created using another task. This
would require a conditional structure in the workflow.
As another example, we may want to repeat a simula-
tion (which consists of a sequence of tasks) until we
get an error value between desired limits. This would

require support for a condition as well as a loop in the
workflow management system.

Several existing workflow management systems sup-
port conditional structures at some extent. Each of
these systems implements these structures in different
ways. While some systems introduce if and switch type
of structures with which we are familiar from high-level
programming languages, some of them introduce sim-
ple logical elements instead, which potentially could be
used to implement higher level constructs. In the lat-
ter case, users must create their own conditional struc-
tures by connecting those logical elements with other
elements.

In this paper, we study the most widely used work-
flow management systems and their support for con-
ditional structures such as if, switch, and while. The
systems we have studied include Apache Ant [4],
ASKALON [23], DAGMan [18], GrADS [16], Grid-
bus [19], ICENI [5], Karajan [14], Kepler [15], Pega-
sus [9], Taverna [1,24], Triana [13], and UNICORE [8].
Among the systems that support conditional structures,
we choose six of them, and perform detailed compari-
son of their support for these complex constructs. In our
comparisons, we use implementation of simple con-

ISSN 1058-9244/07/$17.00  2007 – IOS Press and the authors. All rights reserved

284 E.M. Bahsi et al. / Conditional workflow management: A survey and analysis

Table 1
Conditional structures in grid work-
flow managers

Name IF Switch While

Apache Ant Y Y N
ASKALON Y Y Y
DAGMan N N N
GrADS N N N
Gridbus N N N
ICENI Y * Y
Karajan Y Y Y
Kepler Y Y N
Pegasus N N N
Taverna Y N N
Triana Y N Y
UNICORE Y N Y

Y: Supports.
N: Does not Support.
*: Not much information found.

ditional structures which would be required to solve
above mentioned problems. In the end, we discuss
capabilities of each system.

The outline of this paper is as follows. In Section 2,
we present our survey on existing workflow manage-
ment systems and their support for conditional struc-
tures. In Section 3, we illustrate implementation of
conditional structures in each system based on our case
studies. We discuss some of the key observations we
had during this study in Section 4, and we conclude the
paper in Section 5.

2. Support for conditions in workflow
management systems

Our study has shown that four of the twelve studied
workflow management systems do not support condi-
tional structures at all. These systems are: DAGMan,
GrADS, GridBus, and Pegasus. Each of the remaining
eight systems supports at least one type of conditional
structure. Table 1 shows each of these systems and
which conditional structures they support. Although
some workflow management systems do not support
conditional structures, other structures they provide can
be used to imitate conditions at a certain extent. An
example to this is, using the pre-script constructs in
DAGMan to imitate if statements. Below, we present
the workflow management systems which support con-
ditional structures in more detail.

2.1. ASKALON

ASKALON is a grid application development and
computing environment [23] based on AGWL [22],

which aims to provide an invisible grid to the applica-
tion developers. AGWL is an XML-based workflow
language, which describes Grid workflow applications
at a high level of abstraction. AGWL is located at
the top of the ASKALON architecture, which is used
for composition of grid workflows. AGWL supports
both computational tasks and user defined tasks. These
activities are connected by data and control flows.

AGWL supports two types of conditional activities:
if and switch structures. Each activity has data-in and
data-out ports. Figure 1a and 1b show two data flows of
the if structure. The data flow is provided by connect-
ing data-in and data-out ports to activities based on the
control flow. However, control outcome of if or switch
activity is not known at compile time. Therefore, which
inner activity’s data-out port should be connected to an
activity outside of that conditional activity cannot be
determined. As can be seen from Fig. 1b, this issue is
solved by connecting all inner activities’ data-out ports
to the data-out port of the conditional activity and also
connecting the data-out port of the conditional activ-
ity to the next activity that comes after the condition
structure.

AGWL supports three loop activities: while, for and
forEach. There is a conditional structure in the loop
activity, which determines whether loop will continue
or not. In addition to conditional structure, loop activity
includes other structures. As in conditional structures,
loop activities also include data-in and data-out ports.
Figure 1c illustrates while loop in AGWL. The first
activity of the loop is to retrieve data from the data-in
port of the loop or from another activity outside the
loop. The data-out port of the last activity of the loop
is connected to the data-in port of the while structure.
At the end of each loop iteration, the data in the data-
in port is replaced with the data produced by the last
activity of the loop. The data-in port of the loop is also
connected to the data-out port of the loop structure. If
loop terminates based on the result of the conditional
activity, data packages of the data-in ports are mapped
to the data-out ports of the loop. After the termination
of the while loop, activities outside the loop can obtain
the data from data-out port.

2.2. DAGMan

DAGMan (Directed Acyclic Graph Manager) has
been developed as part of the Condor project [18], and
acts as the meta-scheduler for Condor. Given that there
can be thousands of jobs that need to be executed in a
certain order as part of an application; DAGMan han-

E.M. Bahsi et al. / Conditional workflow management: A survey and analysis 285

Fig. 1. Conditional Structures in AGWL [22] – a) data flow in illegal form in if activity b) data flow in legal form in if activity c) while loop d)
Imitating conditional dag in DAGMan [18].

dles dependencies between jobs and their execution or-
ders.

DAGMan is a very simple workflow management
system and does not provide any complex constructs
such as conditions or loops. On the other hand, DAG-
Man provides other constructs such as pre- and post-
scripts, which are lightweight processes run before or
after a job’s execution.

Although DAGMan does not support conditional
structures, some users have discovered one usage of
pre-scripts as imitating the functionality of conditional
structures [18]. Based on the result of a previous DAG
node, a pre-script can determine whether the node must
be executed or not. An example to this is given in
Fig. 1d. This usage in reality does not provide con-
ditional execution of a task. It executes both tasks in
either case, but simply overwrites the task which we do

not want to execute with a no op task which does not
have any effect in the system.

2.3. Triana

Triana [13] is both a problem solving and a program-
ming environment. Since it is written in Java, Triana
can be installed and run almost on any system.

In Triana, composition of scientific applications can
be done via its user portal. The graphical user interface
of Triana is fairly convenient for users when creating
workflows for their purposes. Users do not need to
know anything about XML or Web Services Flow Lan-
guage (WFSL) [10] to use Triana. They can compose
applications by drag-and-drop mechanisms. Users can
also drag programming units and tools from toolbox-

286 E.M. Bahsi et al. / Conditional workflow management: A survey and analysis

es, and drop them onto their workspaces. Units are
connected drawing cables from one to another.

Triana supports two kinds of conditional processing:
if and loop structures. Figure 2a and 2b show an ex-
ample of how if and loop structures are implemented in
Triana.

In the if structure shown in Fig. 2a, T1 sends a value
to condition and then the value is compared with the
value in condition. If the value in T1 is less than
the value in condition, then T2 sends the data to T4,
directing both control and data flow to T4, hence killing
T3. On the other hand, if the value in T1 is greater than
the value in condition, then T2 sends the data to T3,
giving both control and data flow to T3, and kills T4.

In the loop structure shown in Fig. 2b, T1 sends a
value to the condition. The value is first evaluated and
if exit condition is met, then output of T1 is sent to
T2 and T2 executes. Otherwise, output of T1 is sent
to T3 to get a new value. After getting a new value,
it is compared again with exit condition. This process
continues until the value obtained from T3 is met to
exit condition. One important point in this figure is that
T1 sends a value only once. If the value in T1 does
not match the value in condition, it keeps getting new
values from T3 until the value from T3 matches the
value in condition.

2.4. Karajan

Developed at the Argonne National Laboratory,
Karajan is part of Java CoG Kit. It is derived from Gri-
dAnt [7] and provides additional capabilities such as
scalability, workflow structure, and error handling [14].
It has two different syntaxes. One is CoG Kit K syn-
tax with which we are familiar from other high-level
languages and second one is CoG Kit XML which we
explained in this paper.

Karajan supports if and choice constructs as condi-
tional structures. Figure 2c illustrates how if structure
is implemented in Karajan. If structure enables the ex-
ecution of different tasks based on the results of some
conditions. So a simple if construct can be formed by
if, condition, then, else, and elseif elements.

Choice element of Karajan can also be considered as
a conditional construct. It works similar to the switch
statement which exists in many high-level languages.
Choice element executes the inner elements sequential-
ly. If an element fails to execute, then next element is
executed and gains access to some variables about the
previous task execution. These variables are: element,
error, stack trace, the exception (if java exception is the

reason of the failure). Choice element runs the inner
elements until a successful completion is found. At that
time, it does not execute next elements, but gives the
control to the element that comes after choice element.

Karajan supports both for and while structures as
loop constructs. While is executed until its condition
element evaluates to false as shown in Fig. 2d [12]. For
structure iterates for a range of values.

There are also some logic elements which help users
to create conditions of both if and while structures.
These elements are and, or, not, equals, true, and false.
Conditions can be created by either choosing one of
them or combining multiple elements.

2.5. UNICORE

UNICORE (Uniform Interface to Computing Re-
sources) is a grid middleware, which has an open, ser-
vice oriented architecture. Main goal of UNICORE is
to provide seamless, secure, and intuitive access to dis-
tributed resources [8]. UNICORE provides to users a
programming environment to design and execute their
workflows. In UNICORE, the workflow is represented
as a Directed Acyclic Graph (DAG).

UNICORE supports some advanced control struc-
tures, which are conditional execution (if-then-else),
repeated execution (do-n), conditional repeated execu-
tion (do-repeat), and suspend (time conditional) action
(hold-job). These control structures use three types of
test conditions: ReturnCode, FileTest and TimeTest.

The if-then-else structure chooses one of two branch-
es for execution at the run-time. It uses one of the
three conditions mentioned above. If ReturnCode test
is used, a dependency must exist between a task and
the if-then-else construct. Client will check dependen-
cy and prevent user from submitting non-deterministic
jobs.

The DoRepeat construct repeats a group of actions
based on the result of a condition. It selects one of the
three condition tests. This is same as if-then-else struc-
ture. If ReturnCode is selected, the result of an action
in the body of DoRepeat becomes the ReturnCode.

The HoldJob construct waits for a specific amount
of time before executing the task. It uses TimeTest
condition.

The DoN structure is very similar to for structure
in high-level languages. It has a counter named ‘N’,
which determines the number of repetition. Users must
set this counter before submitting the job. Therefore,
this control structure differs slightly from the other con-

E.M. Bahsi et al. / Conditional workflow management: A survey and analysis 287

Fig. 2. Conditional structures in Triana, Karajan and UNICORE a) if structure in Triana b) while structure in Triana c) if structure in Karajan d)
while structure in Karajan e) if structure in UNICORE f) while structure in UNICORE.

trol structures in that it does not use any condition be-
cause the conditions are determined at run-time.

The ReturnCode test uses result of a task as a condi-
tion for the next task. It compares the result of a task
in three different ways to decide whether the next task
will be executed or not. First method is to compare
the result of the task with some specified value. If they
are equal, next task can be executed. Second and third
methods are successful execution and unsuccessful ex-
ecution of the last task, respectively. ReturnCode test
is very useful in terms of fault tolerance. When a task
fails (which means becoming unsuccessful), neither an
exception is thrown nor the whole workflow fails; in-
stead, a new task is executed as an alternative.

By using FileTest condition, a task is executed ac-
cording to a file’s status. This status could be: file ex-
ists, file does not exist, file is readable, file is writable,
and file is executable.

The TimeTest condition checks whether a specified
time has passed or has reached to execute the task.

The implementation of if construct in UNICORE is
shown in Fig. 2e. As can be seen from the figure, after

the execution of condition, one of the tasks from C
and D is selected for execution. Figure 2f illustrates
the loop structure in UNICORE. It executes set of jobs
based on correctness of the condition. Both if and while
conditions could be one of the test conditions which
are mentioned above.

2.6. ICENI

ICENI (Imperial College eScience Networked In-
frastructure) provides and coordinates grid services for
eScience applications. ICENI has a GUI construction
tool which provides high-level abstraction for users to
construct and define their own applications. This tool
generates real execution plan in an XML format derived
from YAWL (Yet Another Workflow Language) [11,
17,26]. ICENI workflow language supports conditions,
loops and parallel execution.

ICENI has two compositions: spatial and temporal
compositions. We are only interested in temporal com-
position since it represents the workflow of the applica-

288 E.M. Bahsi et al. / Conditional workflow management: A survey and analysis

tion. Each component in the workflow is composed by
collection of nodes. Nodes differ according to their be-
haviors. The types of nodes are: activity, send, receive,
start, stop, andSplit, andJoin, orSplit and orJoin [5].

Conditions in ICENI are provided by orSplit and or-
Join. OrSplit can be considered as a conditional struc-
ture and all nodes after that are choices for execution.
Only one of the child nodes can be selected for exe-
cution. Similar to andJoin, orJoin is the point where
all conditional branches converge. It requires only one
of its parents to be completed to transfer control to
next node. If one node after orSplit and before or-
Join (meaning that a node is in one of the conditional
branches) is connected to a node coming before orSplit,
then a loop structure occurs.

2.7. Kepler

Kepler is a popular workflow manager which aims
to produce an open-source scientific workflow system
that allows scientists to design scientific workflows and
execute them efficiently using emerging Grid-based ap-
proaches to distributed computation [15]. Kepler is de-
rived from Ptolemy [6]. In Ptolemy, many actors have
conditional behavior. For example, generic filters may
use conditions to filter some tokens at the input ports
to forward them to their output ports. However, we are
not interested in these kinds of actors. Instead, we are
focusing on workflow control actors (Fig. 3a and 3b).

The Comparator is a logic actor, which takes two
inputs and compares them according to <, <=, >, >=,
==. Output is a boolean result.

The Repeat structure repeats input tokens on the out-
put by specified number of times.

The BooleanSwitch actor has one data input and one
control input. It has two output ports: TrueOutput and
FalseOutput. Based on the value on the control input,
data in the input port is forwarded to the output port.
Since Kepler does not have an if construct, Boolean-
Switch actor can be considered as the closest construct
to it. Figure 3a shows an example of BooleanSwitch in
Kepler.

The Select actor has a control input, a data input,
and one output port. However, data input is divided
into channels. Select construct forwards the value to
the output port from the channel that is specified by the
value in the control input.

The Switch actor has one data input port, one control
input port and many output ports. Control input port
selects one output port to forward the input data to that

output port. Figure 3b illustrates an example of Switch
structure in Kepler.

The BooleanMultiplexor does the reverse operation
of BooleanSwitch. It has two data input ports, one
control input and one output port. According to the
value on the control input, one of the input ports is
selected to forward data to the output port.

The Equals actor has one multi-input port. In other
words, input port has many channels. Equals actor
checks the values on the input channels and compares
them. If all values are equal, then it produces a true
output, otherwise a false output.

The IsPresent actor has one input and one output
port. It produces true output if data is presented in the
input port on each firing [20].

2.8. Taverna

Taverna [21] is the workflow manager of myGrid [1]
project which is a collection of comprehensive loosely-
coupled suite of middleware components for supporting
silico experiments in biology .

The conditional structures in Taverna aim to achieve
the same functionality as if and switch structures in
high-level languages such as C, Java and PERL. When
a branch is selected for execution based on a condition,
both control and data links, which are coming to that
branch, are satisfied. This branch becomes the ‘true’
branch of the condition. Since the other branch is not
selected, it becomes the ‘false’ branch and is never
executed.

There is a sample conditional structure in Fig. 3c.
Input to the condition is a boolean value. This value is
sent to both tasks: C and C ′. This figure is designed
considering the fail if false and fail if true processors
of Taverna. They are conditional processors and refer
to C and C ′ tasks in our figure. When a boolean value
is produced by T1, this value is sent to both conditional
tasks. One of the conditional tasks fails and causes to
all tasks coming after it to fail. The other conditional
task completes successfully and gives the control to the
next task.

Figure 3d shows the implementation of a switch
structure in Taverna. As can be seen from the figure,
there are many tasks connected to task C which refers
to fail if false processor of Taverna. Each branch has
one conditional task which is very similar to the Fig. 3c.
However the difference between two figures is the val-
ue coming from T1 which is sent to each S task refer-
ring to java beanshell script. Each script evaluates a
boolean value and sends it to the next conditional task.

E.M. Bahsi et al. / Conditional workflow management: A survey and analysis 289

Fig. 3. Conditional structures in Kepler, Taverna, and Apache Ant a) BooleanSwitch structure in Kepler b) switch structure in Kepler c) if structure
in Taverna d) switch structure in Taverna e) if structure in Apache Ant f) switch structure Apache Ant.

If the value coming to C is true, all tasks in that branch
will be executed. If the value is false, that branch will
not be executed at all.

2.9. Apache ant

Apache Ant is a java-based tool for controlling build
processes. Ant built files are written in XML and each
one includes one project. Each project has at least
one target and can have many targets. Targets are
set of tasks and have five attributes: name, depends,
if, unless and description. Each target must have a
name. Depends attribute creates dependencies between
targets. These dependencies determine the execution
order of the targets. Description is an optional attribute
that can be used to provide a one-line description.

In some cases, it is necessary to execute one target
based on the value of a condition. If a target is needed
to execute when a condition becomes true, if attribute
is used, otherwise unless attribute is used. This is one
way of using conditions while creating a workflow [4].

There is also a condition task in Ant. The condition
task has property attribute, which is set when a condi-
tion becomes true. Ant has also some other conditional
elements to be used in condition task. These elements
can be used as nested elements in each condition task.
And, not, or, xor, available, equals, isset, and contains
are mostly used conditional elements in the condition
task. These conditional elements provide users with
the possibility of creating more useful conditions.

Besides these core tasks, some conditional and it-
erative tasks are developed by Ant-contrib [3] project.
These new conditional and iteration elements would
make it difficult for new users to understand and in-
crease the maintenance cost if they were included in the
core tasks group. However, the goal of Ant is to exclude
complexity and functionality as much as possible [1].

Ant-contrib [2] is a project that contributes to Ant by
developing conditional and iterative structures. These
structures are:

If structure performs some tasks based on the value
of a condition. Condition sets the value of the specified
property to true if condition holds true. There are a

290 E.M. Bahsi et al. / Conditional workflow management: A survey and analysis

number of conditional tasks that can be used in the
condition task.

The task used in condition does not have an attribute.
However, it may have up to three kinds of children
elements: elseif, then and else. Figure 3e illustrates an
example of how if structure is implemented in Apache
Ant.

The switch structure is developed by Ant-contrib. As
can be seen from Fig. 3f, it is very similar to switch
structure in C and Java. Only difference is that it is
written in XML format in Ant-contrib.

3. Case studies

In this section, we compare six of the studied work-
flow management systems in more detail using three
case studies. The workflow management systems we
compare in this section are: Kepler, Triana, Taverna,
Apache Ant, Karajan, and UNICORE.

3.1. Case Study – I

In this case study, we have two tasks in the workflow:
Task A for staging some input data, and Task C for
performing a computation using the data transferred in
A. The goal of this case study is as follows: if task A
fails for some reason, execute an alternate task (Task
B) which will transfer the same file from a different
source location and will feed this file into task C. Fig-
ure 4 shows the implementation of this workflow struc-
ture using six different workflow management systems
mentioned above, for which we give the details next:

Kepler. Figure 4d shows the implementation of the
described conditional structure in Kepler. In this par-
ticular example, we download a file from a URL by
using wget command. For this purpose, execute cmd
remotely/locally actor is selected. This actor executes a
command in a specified system. It has two input ports.
Target is the first input port that takes a string constant,
specifying the target system where our command will
be executed. Local string is used as input for this port
since we want to execute our code in local machine.
Second input is a command which takes a string con-
stant that will be executed. This actor has four output
ports. These are: stdout, stderr, exitcode, and errors.
Since we need to know whether our command is suc-
cessfully executed or not, we are only interested in exit-
code port. Exitcode output is connected to select actor.
Select actor chooses one of the commands based on the
value coming from exitcode port. If wget command

fails, alternative wget command will be forwarded to
second execute cmd remotely/locally actor. Otherwise
a meaningless wget command will be sent because first
execute cmd remotely/locally actor must have already
downloaded the file.

Triana. In Triana, we have written our own tool
in Java for downloading a web page, which we call
my stage in. It has one output port and produces ‘4’ if
web page is downloaded successfully and ‘1’ if there is
an error. Figure 4e shows how our implementation of if
is done in Triana. As can be seen from the figure, two
my stage in tools are used. These tools are connected
by an if tool which is described in previous section. if
tool’s test value is set to ‘2’. When first my stage in
tool fails, the control is sent to second my stage in
tool since test value is greater than the failure code of
my stage in. On the other hand, when first my stage in
completes execution successfully, the control is sent to
merge tool.

Taverna. In Taverna, when a processor fails, oth-
er processors, whose execution depends on the pro-
cessor that is failed, can never execute. Therefore,
we have performed small modifications in our exper-
iment to implement a similar example. After mod-
ification, our goal in if case is to choose one alter-
native webpage based on a numeric return value of
the previous task. For this purpose, we used two
Get web page from URL processors to download web
pages, one Write Text File tool to save the web page
to the local system, and two conditional processors:
fail if false and fail if true. In addition to these tools,
we have implemented a Java beanshell in order to cast
the numeric value to a boolean value. Figure 4f shows
this if implementation in Taverna. As seen in the fig-
ure, the input is taken from the user and assumed to be
the result of a processor. Beanshell script changes the
numeric value to boolean and sends the output to both
fail if false and fail if true processors. The failure of
the condition is based on the boolean value and it will
cause that complete branch to fail. The other branch
corresponding to the successful condition will continue
execution and the target web page will be download-
ed as a result of the related Get web page from URL
processor’s execution.

Apache Ant. As mentioned in Section 2.9, if and
switch structures are added to Apache Ant by Ant-
Contrib project. However, we used if structure to im-
plement both if and switch examples since the switch
structure of Ant-Contrib task is not suitable for our sce-
nario as if structure. Switch structure is appropriate for
the situations where execution of a task depends on a

E.M. Bahsi et al. / Conditional workflow management: A survey and analysis 291

Fig. 4. Implementation of if Structures in: a) Apache Ant b) Karajan c) UNICORE d) Kepler e) Triana f) Taverna.

value. However, in our case study execution of a task
depends on the failure of the previous task. Figure 4a
shows the implementation of if example. As can be
seen from the figure, http element is used as the con-
dition to check whether the given URL exists or not.
Based on this condition, one of the then and else ele-
ments is selected for execution. Both then and else el-
ement include a get element whose job is downloading
a file from a URL.

Karajan. Figure 4b shows our if example in Kara-
jan. As can be seen from the figure, choice element
is used including two execute tasks and one echo task.
Execute tasks are used for executing wget command by
different URLs. If the first execute task fails, second
task is executed. If both of the execute tasks fail, echo
task creates an error message.

UNICORE. For all of implementation examples in
UNICORE, we have used script tasks. In these tasks
wget command is called. Figure 4c shows our if imple-
mentation in UNICORE. As can be seen, program ex-
ecutes task A, if (IfThenElse) task, and task C sequen-

tially. Task A includes a wget command which tries the
first URL. If task includes another script task called B.
Task B has also a wget command with an alternative
URL. Based on test condition of if, wget command in
task B is executed if task A fails. Task C is a script
that includes an echo command. It is executed after if
task. Its execution does depend on neither success nor
failure of task A.

3.2. Case Study – II

In this case study, we want to be able to choose
among more than two alternative tasks available. In
order to implement this, we need a structure more com-
plex than a simple if, such as a switch structure.

Kepler. Switch implementation in Kepler (shown
in Fig. 5d) is very similar to if implementation. In
this case we have used three more string constants
for the third execute cmd remotely/locally. However,
execution of the third set of actors depends on results
of the two command executions. First two exitcode

292 E.M. Bahsi et al. / Conditional workflow management: A survey and analysis

Fig. 5. Implementation of switch Structures in: a) Apache Ant b) Karajan c) UNICORE d) Kepler e) Triana f) Taverna.

outputs are sent to Multiply or Divide actor and the
result is connected to second select actor. Select actor
will choose the third meaningful wget command if none
of the previous wget commands were successful. It will
choose meaningless wget command if at least one of the
previous wget commands was completed successfully.

Execute cmd remotely/locally is the most suitable ac-
tor for our purpose since it does not throw any exception
when execution of the command fails. Instead, it sends
an error message. However, many actors in Kepler
throw exception when they fail. Therefore, the possi-
bility of adding conditional behavior to Kepler depends
on which tasks will be used for specific purposes.

Tirana. Figure 5e shows our implementation of
switch in Triana. Similar to the implementation of the
if example, we used my stage in, if and merge tools. In
this case, one more if and my stage in tools are used
since three different transfer tasks are involved. The
second my stage in is connected to second if since the
execution of the third my stage in tool should depend
on the success of previous my stage ins. The model

can be expanded by adding more my stage in, if tools
and incrementing the number of input ports of merge
tool.

Taverna. Figure 5f shows our implementation
of switch by using three beanshell scripts, three
fail if false and three get web page from URL proces-
sors. There are three branches and each beanshell
script is used for each branch. The workflow runs
very similar to if case. The major difference is in
switch case where each beanshell script evaluates its
own boolean value based on its implementation and
sends to different branches. The fail if false proces-
sors, which retrieve true value from previous scripts let
its branch execute. The branches can be incremented
by adding sets of beanshell scripts, fail if false, and
Get web page from URL processors.

Apache Ant. Figure 5a shows the implementation
of switch structure using Apache Ant. In this example,
there exists an additional elseif element. Inside this
element, there is another http element for checking the
existence of second web page. If condition is met

E.M. Bahsi et al. / Conditional workflow management: A survey and analysis 293

Fig. 6. Implementation of while Structures in: a) Karajan b) Triana c) UNICORE.

Fig. 7. How to Merge? [25].

the file is downloaded from the web page URL that is
specified in elseif, otherwise web page URL in the else
element is tried for downloading the file. To expand the
branches of our switch example, more elseif elements
can be added.

Karajan. In Figure 5b, switch example is imple-
mented using choice element in Karajan. In this ex-
ample there is one extra execute task. Therefore, one
more execute task will be executed if the first two tasks
fail. In order to expand the examples, the number of
alternative execute tasks can be increased.

UNICORE. Although UNICORE does not have a
special switch structure, we have used two if structures
to imitate it. Figure 5c shows our implementation of
switch in UNICORE. As can be seen, there are four
script tasks called as A1, A2, A3 and B. A1, A2, and
A3 tasks include wget commands with different URLs.
If A1 fails, first IfThenElse task executes A2 which
has an alternative URL for A1. IfThenElse2 runs after

completion of A2 and gives control to A3 if A2 fails to
retrieve web page. A3 executes wget with its URL and
delegates control to B. B task has an echo command
and executes in any case.

3.3. Case Study – III

In this case study, we implement a loop structure
which repeats a certain part of the workflow until it
meets a certain condition.

Triana. Figure 6b illustrates our while implemen-
tation in Triana for downloading a webpage. As can
be seen from the figure, my stage in tool’s input and
output ports are connected to output and input ports
of loop tool, respectively. Loop’s exit condition is set
based on the return value of my stage in tool, so that
my stage in will try to download the webpage until it
succeeds.

294 E.M. Bahsi et al. / Conditional workflow management: A survey and analysis

<project>
 <include file="cogkit.xml"/>
 <echo message="Program started"/>
 <choice>
 <task:execute executable="wget" arguments="http://www.cct.lsu.edu/~embahsi/zzz.jpg" provider="local" redirect="true"/>
 <task:execute executable="wget" arguments="http://www.cct.lsu.edu/~embahsi/das.jpg" provider="local" redirect="true"/>
 <echo message="{error}"/>
 </choice>
 <echo message="Program finished"/>
</project>

a)

<project name="Emir" default="init" basedir=".">
 <taskdef resource="net/sf/antcontrib/antcontrib.properties">
 <classpath>
 <pathelement location=".\ant-contrib\ant-contrib-1.0b3.jar"/>
 </classpath>
 </taskdef>
 <target name="init">
 <if>
 <http url="http://www.cct.lsu.edu/~embahsi/a.jpg" />
 <then>
 <get src="http://www.cct.lsu.edu/~embahsi/a.jpg" dest="./myfiles/a.jpg"/>
 <echo>File is being downloaded from first resource</echo>
 </then>
 <else>
 <get src="http://www.cct.lsu.edu/~embahsi/b.jpg" dest="./myfiles/b.jpg"/>
 <echo>First resource did not work so file is downloaded from alternative source</echo>
 </else>
 </if>
 </target>
</project>

b)

Fig. 8. Codes Generated in Implementation of Case Study–I a) using Karajan b) using Apache Ant.

Karajan. Figure 6a shows while example imple-
mented in Karajan. In this figure, while element, which
is already provided by Karajan libraries, is used. In or-
der to control the execution of while loop, a nested con-
dition element is used inside the while element. This
condition checks the value of a variable for controlling
execution of while. In addition, while element includes
a choice element, which has an execute task to retrieve
a web page. If it fails, next element in choice, which
is a variable declaration, executes and sets the variable
to ‘0’ in order to specify that the execute element has
failed. Otherwise variable declaration is skipped. This
variable declaration will affect the condition’s value in
the next iteration, when the loop control comes back to
condition again.

UNICORE. Figure 6c illustrates our while imple-
mentation by using DoRepeat task of UNICORE. As
can be seen DoRepeat task contains task A1 which has
wget command with a URL address. DoRepeat task’s
condition checks the success of A1 and repeats running
it until A1 downloads the file from URL and finishes
execution.

4. Discussion

Our study showed that the level of support for condi-
tional structures in each of the workflow management
systems is quite different. Systems like UNICORE
and Karajan provide very rich and powerful condition-
al structures, which allow the user to build almost any
conditional workflow possible. On the other hand, al-
though the systems like Kepler and Apache Ant pro-
vide some level of conditional structure support, they
are very limited in terms of functionality and do not al-
low to create some types of conditions (i.e. loops). Ad-
ditionally, some conditional structures are developed
to implement very specific use cases and do not allow
control of flow for all types of tasks. For instance in
the first two scenarios of Apache Ant we have had to
use http core conditional task to check the existence of
a URL. Although this worked in a “file downloading”
example, it would not work for selecting between other
types of tasks.

In some of the workflow management systems, fail-
ure of a task causes whole workflow to fail. This makes
the implementation of a condition more difficult espe-

E.M. Bahsi et al. / Conditional workflow management: A survey and analysis 295

<tool>
 <toolname>emir_if</toolname>
 ...
 <tasks>
 <task>
 <toolname>ConstView</toolname>
 <package>Common.Const</package>
 ...
 </task>
 <task>
 <toolname>Merge</toolname>
 <package>Common.Stream</package>
 ...
 </task>
 <task>
 <toolname>my_stage_in2</toolname>
 <package>emir</package>
 <proxy type="Java">
 <param paramname="unitName">
 <value>emir.my_stage_in3</value>
 </param>
 <param paramname="unitPackage">
 <value>emir</value>
 </param>
 </proxy>
 ...
 <input>
 <type>java.lang.Object</type>
 </input>
 <output>
 <type>Const</type>
 </output>
 <parameters>
 <param name="file_url" type="userAccessible">
 <value>http://www.cct.lsu.edu/~embahsi/c.jpg</value>
 </param>
 <param name="outputType0" type="unknown">
 <value>triana.types.Const</value>
 </param>
 <param name="file_location" type="userAccessible">
 <value>C:\triana\myfile.jpg</value>
 </param>
 ...
 </parameters>
 </task>
 <task>
 <toolname>my_stage_in1</toolname>
 <package>emir</package>
 <proxy type="Java">
 <param paramname="unitName">
 <value>emir.my_stage_in3</value>
 </param>
 <param paramname="unitPackage">
 <value>emir</value>
 </param>
 </proxy>
 ...
 <input>
 <type>java.lang.Object</type>
 </input>
 <output>
 <type>Const</type>
 </output>

g*

*g
<parameters>
<param name="file_url" type="userAccessible">
 <value>http://www.cct.lsu.edu/~embahsi/a.jpg</value>
 </param>
 <param name="outputType0" type="unknown">
 <value>triana.types.Const</value>
 </param>
 <param name="file_location" type="userAccessible">
 <value>C:\triana\myfile.jpg</value>
 </param>
 ...
 </parameters>
 </task>
 <task>
 <toolname>ConstGen1</toolname>
 <package>Common.Const</package>
 ...
 <parameters>
 <param name="constant" type="userAccessible">
 <value>2.5</value>
 </param>
 ...
 </parameters>
 </task>
 <task>
 <toolname>If</toolname>
 <package>Common.Logic</package>
 ...
 <parameters>
 <param name="threshold" type="userAccessible">
 <value>2.000</value>
 </param>
 ...
 </parameters>
 ...
 </task>
 <connections>
 <connection type="NonRunnable">
 <source taskname="Merge" node="0" />
 <target taskname="ConstView" node="0" />
 </connection>
 <connection type="NonRunnable">
 <source taskname="If" node="0" />
 <target taskname="Merge" node="0" />
 </connection>
 <connection type="NonRunnable">
 <source taskname="my_stage_in2" node="0" />
 <target taskname="Merge" node="1" />
 </connection>
 <connection type="NonRunnable">
 <source taskname="If" node="1" />
 <target taskname="my_stage_in2" node="0" />
 </connection>
 <connection type="NonRunnable">
 <source taskname="my_stage_in1" node="0" />
 <target taskname="If" node="0" />
 </connection>
 <connection type="NonRunnable">
 <source taskname="ConstGen1" node="0" />
 <target taskname="If" node="1" />
 </connection>
 </connections>
 </tasks>
</tool>

Fig. 9. Code Generated in Implementation of Case Study–I using Triana.

cially in the scenarios where an alternative task execu-
tion is needed in the case of a task failure. In order to
prevent the whole workflow to fail, tasks should pass
an exit code to the workflow manager when they fail.
For instance, Kepler has an actor called execute cmd
remotely/locally that returns an exit code. The value of
the exit code depends on the success of the execution.
However not all of the actors in Kepler return exit code.
Processes in Taverna cause the rest of the workflow

to fail in the case of a failure. They do not return an
exit code. On the other hand each process has retry,
delay, and backoff behavior that increase the level of
fault tolerance. In Triana the logical and control tasks
provide control flow by passing data to the appropri-
ate branch. In order to implement our case studies we
have written our own task called my stage in in Java
that produces an output based on the success of the
task. If and loop tasks choose the appropriate branch

296 E.M. Bahsi et al. / Conditional workflow management: A survey and analysis

for the rest of the execution of the workflow. As can
be seen from Triana case studies, in some cases users
may need to write their own tasks. However, most of
the times only small modifications to the existing tasks
can be enough. These modifications include adding a
new output port and sending an output value. By this
way users can add exit code to any task.

An important factor in choosing between different
workflow management systems is user friendliness, or
in other words the ease of implementation of the same
structures using each system. In our case studies, we
have spent least amount of time for implementations in
UNICORE since it has a condition called ReturnCode
test. By using ReturnCode test a new task can be
executed as an alternative when the previous task fails.
In addition, ReturnCode test can be used for comparing
the return value of a task with a number. This property
of ReturnCode can be beneficial for some situations
where a task’s execution depends on the previous task’s
return value.

Similarly, the amount of code that needs to be gener-
ated in implementing those structures can be important
for some users. Our studies showed that least code gen-
eration is required by Karajan and Apache Ant,whereas
most code generation is required by Triana and Taver-
na. Of course, most of these systems provide graphical
user interfaces which takes the responsibility of code
generation from the user. But still, this can be an im-
portant factor in choosing the most suitable workflow
management system for some users. We have provid-
ed the codes generated by some of the workflow man-
agement tools as examples in Figs 8 and 9. Figure 8a
shows the code generated for the implementation of
case study – 1 (if construct) using Karajan. Figure 8b
shows the same for Apache Ant, and Fig. 9 for Triana.

The conditional structures can be observed in two
parts: exclusive choice and simple merge. Exclu-
sive choice is the point in the workflow process where,
based on a decision or workflow control data, one of
several branches is chosen. Simple merge is the point
in the workflow process where two or more alternative
branches come together without synchronization [25].

Multi-choice is the point in the workflow process
where number of branches is chosen based on a decision
or workflow control data. Implementation of multi-
choice is somehow easier than the merge construct. In
merge construct, it is very difficult to determine where
to synchronize and when to merge (Fig. 7).

Improper usage of split and join pairs may cause
deadlock. When a process splits into multiple sub-
processes through an OR-Split, and the sub-processes

subsequently join via an AND-Join or synchronize us-
ing a synchronizer, then any activities and rules follow-
ing the join or the synchronizer could never get activat-
ed – i.e., resulting in deadlock, because the activities
following the split would not terminate together [25].

Some tasks may fail at some point in the execution
of the workflow. This failure may cause the whole
workflow to fail. In order to prevent this, workflow
structure may execute alternative tasks when a task
fails. Each alternative task must have a priority value
and this priority value will show the execution order of
the alternative tasks in case of a failure.

In conditional parts of the workflows, it is not possi-
ble to decide at compile time which branch is going to
be executed next. This decision is made at the run-time.
Therefore, workflow management systems should also
provide a dynamic data flow like control flow.

5. Conclusion

In this paper, we studied the most widely used work-
flow management systems and their support for condi-
tional structures such as if, switch, and while. We have
observed that some of the most popular systems do not
support conditional structures at all. We have also ob-
served that, although some workflow management sys-
tems do not support conditional structures, users may
find alternative ways to imitate the conditional struc-
tures using other structures provided by these workflow
management systems.

We have compared implementations of common
conditional structures using each of these workflow
management systems via case studies, and discussed
capabilities of each system. Our study shows that the
same structure can be implemented in completely dif-
ferent ways by different workflow management sys-
tems. And, although some systems do not support all
of the conditional structures we have studied, more ba-
sic structures such as if can be used to implement other
complex conditional structures in many cases.

Acknowledgements

This work is partially supported by NSF grant CNS-
0619843 (PetaShare) and Louisiana BoR-RCS grant
LEQSF (2006-09)-RD-A-06 (CoastDap). We also
would like to thank Jeremy Cohen. Tom Oinn, Stian
Soiland. Mattew Shields. Gaurang Metha, Kassian
Plankensteiner, Ken Kennedy, Jia Yu, Mihael Hategan,
Gregor von Laszewski for their feedback and contribu-
tion.

E.M. Bahsi et al. / Conditional workflow management: A survey and analysis 297

References

[1] About myGrid accessed December 2006 [Online]. Available:
http://www.mygrid.org.uk/?&MMN position=1:1.

[2] Ant-contrib Tasks accessed December 2006 [Online]. Avail-
able: http://ant-contrib.sourceforge.net/.

[3] Ant-contrib Tasks accessed December 2006 [Online]. Avail-
able:
http://ant-contrib.sourceforge.net/tasks/tasks/index.html.

[4] Apache Ant accessed December 2006 [Online]. Available:
http://ant.apache.org/.

[5] A. Mayer, S. McGough, N. Furmento, W. Lee, S. Newhouse
and J. Darlington, ICENI Dataflow and Workflow: Compo-
sition and Scheduling in Space and Time, In UK e-Science
All Hands Meeting, Nottingham, UK, IOP Publishing Ltd,
Bristol, UK, September 2003, 627–634.

[6] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E.A. Lee, J. Tao and Y. Zhao, Scientific Workflow
Management and KEPLER System, Concurrency and Com-
putation: Practice & Experience, Special Issue on Scientific
Workflows, to appear, 2005.

[7] Cog Kit GridAnt Project Page accessed December 2006 [On-
line]. Available: http://www.globus.org/cog/projects/gridant/.

[8] D. Erwin et al., UNICORE Plus Final Report – Uniform In-
terface to Computing Resources, The UNICORE Forum e.V.,
ISBN 3-00-011592-7, 2003. Online:http://www.unicore.org/
documents/UNICOREPlus-Final-Report.pdf.

[9] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S.
Patil, M.H. Su, K. Vahi and M. Livny, Pegasus: Mapping
Scientific Workflow onto the Grid, Across Grids Conference
2004, Nicosia, Cyprus, 2004.

[10] F. Leymann, Web Services Flow Language (WSFL 1.0), IBM,
May 2001.

[11] Grid Workflow: ICENI accessed December 2006 [Online].
Available: http://www.gridworkflow.org/snips/gridworkflow/
space/ICENI.

[12] G.v. Laszewski and M. Hategan, Java CoG Kit Kara-
jan/GridAnt Workflow Guide, Technical Report, Argonne Na-
tional Laboratory, Argonne, IL, USA, 2005.

[13] I. Taylor, S. Majithia, M. Shields and I. Wang, Triana
WorkFlow Specification, GridLab Specification available at:
www.gridlab.org/WorkPackages/wp-3/D3.3.pdf.

[14] J. Yu and R. Buyya, A Taxonomy of Workflow Man-
agement Systems for Grid Computing. Technical Re-
port GRIDS-TR-2005-1, Grid Computing and Distribut-
ed Systems Laboratory, University of Melbourne, 2005.
http://www.gridbus.org/reports/GridWorkflowTaxonomy.pdf.

[15] Kepler Project accessed December 2006 [Online]. Available:
http://www.kepler-project.org/.

[16] K. Cooper, A. Dasgupata, K. Kennedy, C. Koelbel, A. Man-
dal, G. Marin, M. Mazina, J. Mellor-Crummey, F. Berman, H.
Casanova, A. Chien, H. Dail, X. Liu, A. Olugbile, O. Sievert,
H. Xia, L. Johnsson, B. Liu, M. Patel, D. Reed, W. Deng,

C. Mendes, Z. Shi, A. YarKhan and J. Dongarra, New Grid
Scheduling and Rescheduling Methods in the GrADS Project,
NSF Next Generation Software Workshop, International Par-
allel and Distributed Processing Symposium, Santa Fe, IEEE
CS Press, Los Alamitos, CA, USA, April 2004.

[17] LESC – London e-Science Centre ICENI accessed Decem-
ber 2006 [Online]. Available: http://www.lesc.imperial.ac.
uk/iceni/.

[18] P. Couvares, T. Kosar, A. Roy, J. Weber and K. Wenger, Work-
flow Management in Condor, In Workflows for e-Science, Ed-
itors: I.Taylor, E.Deelman, D.Gannon, M.Shields, Springer
Press, January 2007 (ISBN: 1-84628-519-4).

[19] R. Buyya and S. Venugopal. The Gridbus Toolkit for Service
Oriented Grid and Utility Computing: An Overview and Sta-
tus Report, in 1st IEEE International Workshop on Grid Eco-
nomics and Business Models, GECON 2004, Seoul, Korea,
IEEE CS Press, Los Alamitos, CA, USA, April 23, 2004,
19–36.

[20] S.S. Bhattacharyya, C. Brooks, E. Cheong, J. Davis, II, M.
Goel, B. Kienhuis, E.A. Lee, J. Liu, X. Liu, L. Muliadi, S.
Neuendorffer, J. Reekie, N. Smyth, J. Tsay, B. Vogel, W.
Williams, Y. Xiong, Y. Zhao and H. Zheng, Ptolemy II Hetero-
geneous Concurrent Modeling and Design In Java-Volume 1:
Introduction to Ptolemy II. Memorandum UCB/ERL M05/21
EECS UC Berkeley, CA 94720, July 15, 2005.

[21] Taverna 1.5.2 Manual” accessed August 2007 [Online]. Avalil-
able: http://www.mygrid.org.uk/usermanual1.5/index.html.

[22] T. Fahringer, J. Qin and S. Hainzer, Specification of Grid
Workflow Applications with AGWL: An Abstract Grid Work-
flow Language. IEEE International Symposium on Cluster
Computing and the Grid 2005 (CCGrid 2005), Cardiff , UK,
May 9–12 2005. IEEE Computer Society Press.

[23] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, Podlipnig, J.
Qin, M. Siddiqui, H. Truong, A. Villazon and M. Wieczorek,
ASKALON: A Grid Application Development and Comput-
ing Environment, 6th International Workshop on Grid Com-
puting , Seattle, USA, IEEE Computer Society Press, Novem-
ber 2005.

[24] T. Oinn, M. Greenwood, M. Addis, M.N. Alpdemir, J. Ferris,
K. Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P.
Lord, M.R. Pocock, M. Senger, R. Stevens, A. Wipat and C.
Wroe, Taverna: Lessons in Creating a Workflow Environment
for the Life Sciences, Concurrency and Computation: Practice
& Experience, Volume 18, Issue 10 (August 2006) Workflow
in Grid Systems Pages: 1067 – 1100, 2006, ISSN:1532-0626,
John Wiley and Sons Ltd., Chichester, UK.

[25] W.M.P. v. d. Aalst, A.H.M. t. Hofstede, B. Kiepuszewski
and A.P. Barros, Workflow Patterns, Technical Report FIT-
TR-2002-02, Queensland University of Technology, Brisbane,
Australia, 2002.

[26] YAWL: Yet Another Workflow Language accessed August
2007 [Online]. Available: http://www.yawl-system.com/.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

