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Abstract. Symmetry-exploiting software based on the generalized Fourier transform (GFT) is presented from a practical design
point of view. The algorithms and data structures map closely to the relevant mathematical abstractions, which primarily are based
upon representation theory for groups. Particular care has been taken in the design of the data layout of the performance-sensitive
numerical data structures.

The use of a vanilla strategy is advocated for the design of flexible mathematical software libraries: An efficient general-
purpose routine should be supplied, to obtain a practical and useful system, while the possibility to extend the library and replace
the default routine with a special-purpose – even more optimized – routine should be supported.

Compared with a direct approach, the performance results show the superiority of the GFT-based approach for so-called dense
equivariant systems. The GFT application is found to be well suited for parallelism.

1. Introduction

Many engineering problems in the real world exhibit a significant amount of geometrical symmetry. Just to
mention a few examples, we note that groups of conductors used for high-voltage electricity transport are often placed
symmetrically in order to minimize disturbances, Buckminster balls are based on the symmetry of an icosahedron in
order to maximize volume with a minimum of material, and propellers, used in technical applications ranging from
turbines to airplanes, exhibit a cyclic symmetry.

In this paper, we are interested in the numerical simulation of partial differential equations (PDEs) that evolve
in symmetrical regions, and we are concerned with the exploitation of this symmetry in the numerical algorithms.
Our approach is based on the generalized Fourier transform (GFT) and has its origin in work by Allgower et al. [6]
The approach can be particularly useful for a class of dense linear algebra systems that stem from geometrically
symmetric domains. As explained below, systems in this class are referred to as dense equivariant systems, and they
may arise for instance when the boundary element method is used [14].

The GFT approach can also be useful for geometries that are almost symmetrical, or partly symmetrical. An
almost symmetric problem can be approximated as symmetrical, and the solution of this problem can be used to
derive a preconditioner [32]. Block-circulant preconditioners, see, for example [19,20], can be seen as a special case
of this strategy. Another approach can be applied for partly symmetric problems. Here, it is possible to use domain
decomposition methods and treat the symmetric part in isolation, thereby exploiting the symmetry [9].

However, our impression is that the GFT and its potential are relatively unknown in the scientific computing
community. This is partly explained by the fact that the underlying mathematics, in particular representation theory
for groups, is not common knowledge among scientific computing researchers. With adequate software support,
however, we believe that usage of the GFT for symmetric problems could increase.
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(a) 4 symmetry (b) 4 symmetry

Fig. 1. Geometries suitable for GFT methods.

Software for group theory has a strong tradition with the group theory language Cayley from 1976 as a noteworthy
landmark [12]. At present, “there are two systems which are particularly well suited for computations with groups:
GAP and MAGMA” [28]. In the related research area of fast GFTs [26], GAP has been used, for example, by Egner
and Püschel [13]. However, for the number-crunching applications that we are interested in, we think stand-alone
software is more appropriate.

In this paper, we present a software package that is designed particularly with the solution of dense equivariant
systems in mind. We are aware of two other packages dedicated to this application [15,21]. The first of these
packages handles so called fix points, while the second focuses on a design based upon generic programming. In
comparison with these projects, we have paid particular attention to the layout of the data structures that affect
performance the most. We use LAPACK [7] for efficient matrix computations. The ANSI-C software abstractions
are based closely on the mathematical abstractions, in order to achieve understandability and flexibility.

The outline is as follows. In Section 2, we give an overview of the mathematical machinery required for the GFT.
In Sections 3 and 4, we outline how the software is designed and implemented, and we also discuss implementation
variants, both general-purpose “vanilla” routines and special-purpose, fast routines. Section 5 shows performance
results for the variants mentioned, and makes comparisons between a symmetry-exploiting solve and a direct solve of
a dense equivariant system. These comparisons clearly show the importance of exploiting symmetries, as concluded
in Section 6. Here, we also discuss the vanilla strategy for mathematical software.

2. Background

Consider the geometries of Fig. 2. The propeller shape in (a) is clearly invariant under rotations by 90, 180, and
270 degrees, as well as under the identity transformation (a rotation by 0 or 360 degrees). The cylinder shape in (b) is
invariant under the same rotations, as well as under four reflections. We notice the connection between symmetries
and groups; the rotations in (a) form the cyclic group C 4 with four elements whereas the rotations plus the reflections
in (b) form D4, the dihedral group with 8 elements. The transformations under which a symmetric shape is invariant
is referred to as the shape’s symmetry group.

Symmetric shapes and their corresponding symmetry groups are important in many applications. A linear operator
L, such as the Laplacian or an integral operator, is equivariant if it commutes with every transformation g in the
symmetry group, i.e., Lg = gL.

In this section, we give an overview of how a corresponding discrete operator is block-diagonalized by the GFT.
The underlying mathematical theory is based on representation theory for groups. We summarize the theory in order
to motivate our design and to make the paper self-contained. The notation is based on a recent introduction to the
subject [3].
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2.1. Groups and representations

First, we need some basic group theory. A group G is a set of elements that is closed under an associative binary
operation, that has an identity element e, and for which every element g has an inverse g −1. We point out that the
groups we consider do not need to be abelian (commutative). The dihedral groups, for example, are nonabelian
because a reflection followed by a rotation is not the same as a rotation followed by a reflection. We are concerned
with finite groups, i.e., the number of elements |G| < ∞. Actually, since we are interested in symmetric shapes in
three dimensions, we are interested in relatively small groups. For the applications that we have in mind, the largest
group of interest is the symmetry group of the icosahedron, which has 120 elements [5].

We consider groups acting on indices, thus partitioning the index set into orbits. An orbit of an index i consists
of all indices ig obtained by letting all group elements g act on i. In this paper, we consider the case where all orbits
have |G| elements, i.e., the case when the action is free.

Second, we need some representation theory. Given a group G, a complex representation ρ of dimension d ρ is a
map ρ : G → Cdρ×dρ such that

ρ(gh) = ρ(g)ρ(h), g, h ∈ G. (1)

We focus on complex representations here, but real representations are defined analogously.
Two representations ρ and σ are equivalent if they are related via a similarity transform, i.e., ρ(g) = Tσ(g)T −1

for all g ∈ G and some nonsingular T ∈ Cdρ×dρ . A representation is reducible if it is equivalent to a block-diagonal
representation. This means that ρ is reducible if there exists a nonsingular T such that

Tρ(g)T−1 =
(

σ(g) 0
0 τ(g)

)
, g ∈ G,

where the representations σ and τ have dimensions dσ and dτ that are strictly between 0 and dρ. An irreducible
representation cannot be block-diagonalized as above. For example, any representation of dimension 1 is irreducible.

Every representation can be reduced into irreducible representations. For every finite group G, there exists a
complete list R of nonequivalent irreducible representations [29]. The list of representations can be understood as
a way to represent the elements of a group G as block-diagonal matrices, a point of view that we have discussed
elsewhere [4]. The number of nonequivalent irreducible representations (the number of blocks in the block-diagonal
matrices) and the dimension dρ of each representation (the dimension of the corresponding block) are properties
of the group in question. These properties also depend upon whether the representation is real or complex. For
complex representations and finite groups, it holds that∑

ρ∈R
d2

ρ = |G|. (2)

Third, we introduce the generalized Fourier transform as an isomorphism between the group algebra and its
corresponding Fourier algebra. The group algebra CG is a vector space C |G| where the group elements are basis
vectors and for u ∈ CG we use the notation u =

∑
g∈G u(g)g. The group algebra CG is equipped with a convolution

product u, v 
→ u ∗ v where

(u ∗ v)(g) =
∑
h∈G

u(h)v(h−1g).

The corresponding Fourier algebra is a block-diagonal matrix algebra ĈG =
⊕

ρ∈R Cdρ×dρ . The generalized

Fourier transform (GFT) is a mapping CG → ĈG defined by

û(ρ) =
∑
g∈G

u(g)ρ(g), ρ ∈ R, (3)

where û =
⊕

ρ∈R û(ρ). We remark that the GFT depends upon the choice of bases for the representations in R.
The inverse GFT (IGFT) is defined by

u(g) =
∑
ρ∈R

dρ

|G| trace (û(ρ)ρ(g−1)), g ∈ G. (4)
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Fig. 2. Relationships between the different spaces.

2.2. Exploiting equivariance

We will now discuss how the basic concepts introduced above can be used to design efficient algorithms for the
kinds of problems that we are interested in solving. Thus, we consider geometries that are invariant under a symmetry
group G of transformations, and we study the discretization matrix A of an equivariant PDE operator. Provided that
the discretization is symmetry-respecting, A becomes equivariant [1]. In the context of matrices, this means that

Ai,j = Aig,jg , (5)

where i, j are discretization indices acted upon by g ∈ G. Equivariant discretization matrices are encountered in the
context of many different numerical methods, for example, the finite element method [1,10], finite differences [33],
discretization via radial basis function [17,18], or as we mentioned in the introduction, the boundary element
method [6,9].

In this paper, we assume that the discretization of the PDE leads to a dense equivariant linear system of equations
Ax = b. Furthermore, we assume that the group action partitions the index set I of size n into m orbits of size |G|.
By picking one index from each orbit we may represent the orbits by a suitable selection S ⊂ I [6].

An overview of the symmetry-exploitation strategy is given in the commutative diagram of Fig. 2. The diagram
shows that an original matrix vector multiplication Ax in vector space C n, where A is equivariant, can be reformulated
as a convolution A ∗ x in the vector space C

mG or as a multiplication Âx̂ in the vector space ĈmG. As discussed
in more detail below, we refer to CmG and ĈmG as the group space and the Fourier space, respectively. We point
out that the key to exploiting symmetry and equivariance for our kind of applications is to do the expensive work in
the appropriate space, and to use the gft and the inverse transform igft (not shown in the diagram) for transforming
between spaces.

Group space formulation It is evident that the equivariance property (5) implies that A contains a number of
duplicates. The group space formulation avoids this by the following invertible mappings, for i, j ∈ S and g ∈ G.

Ai,j(g) = Aig,j ,

xi(g) = xig ,

bi(g) = big.

Here, x and b belong to the vector space CmG = Cm ⊗ CG. They contain the same data as their counterparts in
the n-dimensional vector space. A difference is that while x ∈ Cn is indexed with one index i ∈ I, x ∈ CmG is
indexed with two indices i ∈ S and g ∈ G. Our notational convention is that x i ∈ CG, x(g) ∈ Cm, and xi(g) ∈ C.

Similarly, A ∈ C
m×mG = C

m×m ⊗ CG, and by the same notational convention we have that A i,j ∈ CG and
A(g) ∈ Cm×m. The advantage with the above mappings is that duplicates in A are avoided, and A contains only a
fraction 1/|G| of the elements in A. This is beneficial not only in terms of storage but also when the discrete operator
itself is constructed, since duplicate elements need not be computed.

By generalizing the group algebra convolution, it is simple to show that the original linear system of equations
can be expressed as A ∗ x = b. The group space convolution A ∗ x is given by
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(A ∗ x)(g) =
∑
h∈G

A(h)x(h−1g),

where a standard matrix vector product Cm×m × Cm → Cm is used for the products A(h)x(h−1g).
We conclude that the original equation can be solved by solving its counterpart in group space instead. Note

that x and b are vectors according to the vector space axioms, even though they are not the kind of vectors that
computational scientists usually deal with. In the same spirit, we will refer to A as a matrix in group space, it acts
upon group space vectors, even though it is not a standard matrix.

Fourier space formulation In order to solve the problem in group space, it is reformulated as a linear system of
equations in Fourier space. This is achieved by applying the GFT in the group algebra element-wise. The vector
GFT is given by

x̂i(ρ) =
∑
g∈G

xi(g)ρ(g), ρ ∈ R, i ∈ S. (6)

Here, x̂ ∈ ĈmG = Cm ⊗ ĈG can be understood as a block-diagonal matrix where block ρ, i.e. x̂(ρ), has dimensions
mdρ × dρ. The matrix GFT is given by

Âi,j(ρ) =
∑
g∈G

Ai,j(g)ρ(g), ρ ∈ R, i, j ∈ S. (7)

The matrix Â ∈ ̂Cm×mG = Cm×m ⊗ ĈG is a block-diagonal matrix where block ρ, i.e. Â(ρ), is mdρ × mdρ.
It is easy to show that A ∗ x = b corresponds to Âx̂ = b̂, a matrix matrix equation where all matrices are

block-diagonal. We refer to Â as the matrix in Fourier space, while we refer to x̂ and b̂ as Fourier space vectors, even
though they actually are block-diagonal matrices. In summary, the formulation in Fourier space is a block-diagonal
version of the original linear systems of equations. It is much cheaper to solve the system in Fourier space, since
each block is smaller than the original matrix and each block equation can be solved separately. For applications
where dense equivariant systems are to be solved, this block-diagonalization is the most important way to exploit
equivariance.

Regarding the GFT formulas (6) and (7), they are generic with respect to different groups and choices of irreducible
representations. By studying the structure of the groups and their representations, it is possible to derive fast versions
of the GFT, so called fast GFTs [23,25]. The standard FFT is actually a prominent example of this. The FFT is
a fast version of the DFT, which may be interpreted as a GFT for a cyclic group. In Section 4, we describe the
implementation both of general vanilla versions and of two fast GFT versions for D 4.

3. Data structures

We strive to design data structures and algorithms that match the mathematical concepts, in order to get software
that is easy to use and maintain. The UML [24] class diagram in Fig. 3 is motivated by the theory in the previous
section. It shows the static associations between the key concepts corresponding to the group G, a list R of
nonequivalent irreducible representations, and vectors and matrices in group space and Fourier space. The dynamic
interactions among the participating objects are visible in the commutative diagram in Fig. 2, and the overall GFT
approach for solving an equivariant system Ax = b is shown in Algorithm 1. Note that it is not necessary to form
all of A and we therefore assume that the mapping into the group space equation A ∗ x = b has already been taken
into account.

The design challenge, however, is to address computational efficiency and efficient memory handling as well.
In the following subsections, we describe design considerations for the data structures for groups and irreducible
representations, as well as vectors and matrices in group space and Fourier space. We refer to Yamba Yamba for a
more detailed description [34].
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Algorithm 1 GFT approach for solving an equivariant system A ∗
x = b.

Let Â = gft (A), b̂ = gft (b)
for ρ ∈ R do

Solve Â(ρ)x̂(ρ) = b̂(ρ)
end for
Let x = igft (x̂)

GftVector

GftMatrix

GftGroup

GftGroupRep

GftTransformedVector

GftTransformedMatrix

Fig. 3. Class diagram for the key concepts GftGroup, GftGroupRep, GftVector, GftMatrix, GftTransformedVector, and GftTransformed-

Matrix, representing G, R, CmG, Cm×mG, ĈmG, and ̂Cm×mG, respectively.

3.1. Group

The concept of a group is clearly an important abstraction, which must supply the group order, the group operation,
the inverse operation and so forth. There are different ways to implement groups, taking advantage of special
properties of different groups or exploiting reuse between groups. A cyclic groupC N , for example, can be represented
as integers and the group operation can be implemented as addition modulo N . Another structure that is simple to
exploit is the direct product G1 ×G2, which is the Cartesian set of groups G1 and G2, and where the group operation
is (g1, g2)(h1, h2) = (g1h1, g2h2), for (g1, g2), (h1, h2) ∈ G1 × G2.

Previously, we have discussed how C++ template mechanisms can be used to obtain a clean group interface and
efficient variant implementations of different groups, since compile time polymorphism can be exploited [21]. In
that design, cyclic groups are objects of the parametrized class Cyclic<N>, and the direct product of, for example,
C4 with C8 is represented by the class

typedef DirectProduct < Cyclic < 4 >, Cyclic < 8 > > C4timesC8;

In the present project, we have chosen to implement in C and to keep the design at a low abstraction level. In the
spirit of the vanilla design philosophy, we have chosen to implement the group by representing each group element
by an integer, and to supply the group operation and the inverse operation as arrays of integers. In our context, there
are three issues that we want to emphasize:

1. The implementation of the group is not time-critical. The important task is to design a useful API, and to
have a working implementation. If a future application requires a more sophisticated solution, it is possible to
supply special-purpose implementations for special groups.

2. We focus on symmetry groups of geometries in 2D and 3D. The most complicated group for the applications
that we have in mind is the symmetry group of the icosahedron, which only has 120 elements [5]. It is therefore
not a serious restriction to use arrays for maintaining the group operation.
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numReps: int
table: int*
inverse: int*
dims: int

name: char

gftGroupCreate(name:char*
                          order:int,
                          numReps: int,
                          table: int*,
                          inverse: int*,

gftGroupOperation(g: int, h: int) : int
gftGroupInverse(g: int) : int

gftGroupDelete() : void
gftGroupCheck() : bool

GftGroup

order: int

                          dims: int*) : GftGroup

Fig. 4. GftGroup, implementing G.

3. Our implementation allows a user to input the group operation and inverse operation as tables from a file,
generated by hand or perhaps by another program. Since this solution is rather error-prone, we provide a
routine that checks that the group axioms hold.

A group is represented by the data structure GftGroup, see the UML diagram in Fig. 4 and the description of the
application program interface (API) given below. Note that it is simple to implement variations of the GftGroup
data structure, for instance to support cyclic groups without having tables for the group operation. We also stress
that the number of irreducible representations and their dimensions depend upon the underlying field, supplied by
the user.

Group API

The operations of GftGroup are:

gftGroupCreate Constructor. Create a group by supplying the requested inparameters.
gftGroupDelete Destructor.
gftGroupCheck Check that the group axioms (associativity, identity, inverse) hold.
gftGroupOperation Return the group operation gh.
gftGroupInverse Return the inverse element g−1.

We also supply get operations for the name, the order, the number of irreducible representations and their
dimensions. The data members of GftGroup are:

name String containing the name of the group.
order Positive integer containing the group order.
num reps Positive integer containing the number of irreducible representations.
table order × order matrix containing the group operation table.
inverse Array containing the inverses.
dims Array containing the dimensions of the irreducible representations.
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3.2. Irreducible Representations

The list R of nonequivalent irreducible representations is maintained by the GftGroupRep data structure. There
are several more or less sophisticated ways of implementing this important abstraction. Here, we focus on the
interface and we provide a vanilla implementation, in analogy with GftGroup.

Let us first formalize the notation in more detail. Let q be the number of representations in R, and enumerate the
nonequivalent irreducible representations from R0 to Rq−1. We discuss complex representations here, and the r-th
irreducible representation is thus Rr : G → Cdr×dr , where dr = dimRr. For a given representationRr and a given
group element g, we denote an element in the matrix Rr(g) by Rr(g)µ,ν where µ, ν ∈ [0, . . . , dr − 1]. Equation (2)
shows that R contains |G|2 scalar elements in total.

In our vanilla implementation of GftGroupRep, all |G|2 elements of R are organized in a straight-forward array.
In order to obtain fast access to individual representations R r, the d2

r |G| elements of Rr are stored consecutively. To
determine an appropriate ordering of the indices µ, ν ∈ [0, . . . , d r − 1] and g ∈ G, we examine how Rr is accessed
during the GFT (3). The transform x 
→ x̂ is carried out as a sum over g ∈ G. Therefore, we store R r(·)µ,ν , i.e.,
the |G| elements Rr(g)µ,ν , g ∈ G, consecutively. As a consequence, we notice that the transform (3) actually can be
expressed as a matrix vector multiplication. Let each row of a |G| × |G| matrix R contain R r(·)µ,ν , and let col(x̂)
denote a “columnization” of û, i.e., organize the elements in the block-diagonal matrix û ∈ ĈG as a column vector
with |G| elements. Then we see that

col(û) = Ru (8)

computes the GFT, provided that the indexing of R matches the indexing of u and û.
Thus, by storing elements of R as a |G| × |G| matrix R, the GFT can be achieved by a call to LAPACK. In

addition, we see that a convenient way to implement a vanilla version of the IGFT (4) is by computing R −1 by
another LAPACK call, and carry out the matrix vector multiplication u = R−1 col(û).

The data structure GftGroupRep is illustrated in Fig. 5 and described below. Notice that the number of irreducible
representations as well as their respective dimensions are available through the GftGroup member. Regarding
precision, both single precision complex and double precision complex are supported via a link time option. We also
support single precision and double precision real numbers. This means that the vanilla implementation supports real
GFTs for groups where the dimensions of the real and complex nonequivalent irreducible representations coincide.
This is the case for many important groups, for example, all dihedral groups, the symmetry group of the cube, and
the symmetry group of the icosahedron [22].

Group Representation API

The operations of GftGroupRep are:

gftGroupRepCreate Constructor. Create a list of nonequivalent irreducible representations by supplying the
requested inparameters.

gftGroupRepDelete Destructor.
gftGroupRepCheck Check that each representationRr is a representation, i.e., check that Rr(gh) = Rr(g)Rr(h)

for all g, h ∈ G and all Rr ∈ R.
gftGroupRepInverse Return R−1, obtained via a Lapack call. The out-parameteripiv contains pivot information.
gftGroupRepGetElement Return Rr(g)µ,ν .
gftGroupRepGetRep Return Rr(·)µ,ν .

The data members of GftGroupRep are:

group An association to the corresponding group.
data The matrix R, containing all elements of R.
indices An array containing the array indices of the first element of each of the different irreducible representations

in the data buffer. This array is maintained in order to facilitate a fast computation of the addresses of the
elements of R.
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GftGroupRep

group: GftGroup
data: complex*
indices: int*

gftGroupRepCreate(buff: complex*,
                                 group: GftGroup) : GftGroupRep
gftGroupRepDelete() : void
gftGroupRepCheck() : bool
gftGroupRepInverse(out inv: complex*,
                                  out ipiv: int*) : void
gftGroupRepGetElement(r: int,
                                         mu: int,
                                         nu: int,
                                         g: int) : complex*
gftGroupRepGetRep(r: int,
                                  mu: int,
                                  nu: int) : complex*

Fig. 5. GftGroupRep, implementing R.

3.3. Group space vectors and matrices

When transforming matrices and vectors of an equivariant system Ax = b, where A ∈ C n×n and x, b ∈ Cn,
into their corresponding elements in the group space, A ∈ Cm×mG and x, b ∈ CmG, the computational effort can
be minimized through careful selection of the numbering system used for the indices. Different numberings lead
to different but equivalent equivariant systems. The transformation into the group space can be simplified by the
selection of a numbering scheme that corresponds to the order in which the group elements are listed. With such
a selection, the transformation of a vector into its group-space counterpart is reduced to a reinterpretation of the
contents of the data structures, cf. the discussion in connection with Algorithm 1.

Let G be the group describing the symmetry, let m be the number of orbits of the discretization. Under a free action
of G a symmetry-respecting discretization of m orbits has a number of elements equal to n = m|G|. For all orbits,
let i ∈ 0, . . . , m − 1 be the orbit index. Assign the subset of element indices {i|G|, . . . , (i + 1)|G| − 1} to orbit i
according to the following procedure. Pick o i as the first element of the orbit, i.e., let oi correspond to index i|G|, and
let gk for k = 0, . . . , |G| − 1 denote group element of index k, and assign to o igk index i|G|+ k. Figure 6 illustrates
this numbering for a symmetry-respecting discretization with two orbits for the case of group D 4 generated by a
rotation a and a horizontal reflection b. The group elements are enumerated in the order e, a, a 2, a3, b, ab, a2b, a3b.
Element 0 is chosen as the first elements of orbit {0, . . . , 7}, element 1 is obtained when element 0 is acted upon by
a, etc. The second orbit {8, . . . , 15} is numbered similarly.
With this numbering the vector x is stored in the following order:

x0(0) . . . x0(γ), x1(0) . . . x1(γ), . . . xm−1(0) . . . xm−1(γ),

where γ = |G| − 1.
A group space vector x is represented by the data structure GftVector and a group space matrix A is represented

by the data structure GftMatrix, see Figs 7 and 8 and the API descriptions below. Notice that the original vector x
can be represented by the same data structure as x, thanks to our choice of index ordering.

Group space vector API

The operations of GftVector are:

gftVectorCreate Constructor. Create a group space vector by supplying the requested inparameters. Typically used
for initializing the right-hand side b.
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Fig. 6. Group space indexing for D4 with m = 2.

numOrbits: int
data: complex*

gftVectorCreate(buff: complex*,
                           group: GftGroup,
                           numOrbits: int) : GftVector
gftVectorDelete() : void
gftVectorAlloc(group: GftGroup) : GftVector
gftVectorOrbit(i: int) : complex*
gftVectorElement(i: int, 
                             g: int) : complex*

group: GftGroup

GftVector

Fig. 7. GftVector, implementing CmG.

gftVectorAlloc A second constructor, which omits initialization of data. Typically used for allocating the unknown
x.

gftVectorDelete Destructor.
gftVectorOrbit Return address of xi.
gftVectorElement Return address of element xi(g).

The data members of GftVector are:

group An association to the corresponding group.
num orbits The number of orbits.
data The elements of x.

Group space matrix API

The operations of GftMatrix are:

gftMatrixCreate Constructor. Create a group space matrix by supplying the requested inparameters.
gftVectorDelete Destructor.
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GftMatrix

group: GftGroup
numOrbits: int
data: complex*

                           group: GftGroup,
gftMatrixCreate(buff: complex*,

gftMatrixDelete() : void
                           numOrbits: int) : GftVector

gftMatrixOrbit(i: int,

gftMatrixElement(i: int, 
j: int,

j: int) : complex*

                             g: int) : complex*

Fig. 8. GftMatrix, implementing Cm×mG.

group: GftGroup
numOrbits: int
data: complex*
indices: int*

gftTransformedVectorCreate(group: GftGroup,
                                               numOrbits: int) : GftTransformedVector
gftTransformedVectorDelete() : void
gftTransformedVectorBlock(r: int) : complex*
gftTransformedVectorElement(i: int, 

                                                  mu: int,

GftTransformedVector

                                                  r: int,

                                                  nu: int) : complex*

Fig. 9. GftTransformedVector, implementing ĈmG.

gftMatrixOrbit Return address of Ai,j .
gftVectorElement Return address of element Ai,j(g).

The data members of GftMatrix are:

group An association to the corresponding group.
num orbits The number of orbits.
data The elements of A.
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group: GftGroup
numOrbits: int
data: complex*
indices: int*

gftTransformedMatrixCreate(group: GftGroup,
                                               numOrbits: int) : GftTransformedMatrix
gftTransformedMatrixDelete() : void
gftTransformedMatrixBlock(r: int) : complex*
gftTransformedMatrixElement(i: int, 

GftTransformedMatrix

                                                  j: int,
                                                  r: int,
                                                  mu: int,
                                                  nu: int) : complex*

Fig. 10. GftTransformedMatrix, implementing ̂Cm×mG.

3.4. Fourier space vectors and matrices

The data types representing elements in the Fourier spaces ĈmG and ̂Cm×mG were designed with the primary
goals of achieving an efficient solution of the system Âx̂ = b̂ and to obtain efficient computation of the GFTs. To
this end, we organized the data structures as follows.

Since the transformed equation Âx̂ = b̂ actually consists of q independent equations Â(Rr)x̂(Rr) = b̂(Rr), for
r = 0, . . . , q−1, it is essential to store the elements of Â(Rr), x̂(Rr), and b̂(Rr) consecutively. If representationRr

has dimension dr > 1, x̂(Rr) and b̂(Rr) are matrices with more than one column. Columns are stored consecutively,
indexed by ν = 0, . . . , dr − 1. The data layout of the Fourier space vectors is arranged using the following order of
the indices, where r is the outermost index:

r = 0, . . . , q − 1; ν = 0, . . . , dr − 1; µ = 0, . . . , dr − 1; i = 0, . . . , m − 1.

The choice of index ordering for the vectors determines the ordering of the Fourier space matrices. Fourier space
matrices are organized with the indices in the following order:

r = 0, . . . , q − 1; ν = 0, . . . , dr − 1; j = 0, . . . , m − 1; µ = 0, . . . , dr − 1; i = 0, . . . , m − 1.

This data layout allows us to solve Âx̂ = b̂ via standard LAPACK calls. Other layouts are possible, but it is
essential to store blocks separately and it is important that the matrix layout and the vector layout match each other.

A Fourier space vector x̂ is represented by the data structure GftTransformedVector, see Fig. 9 and the API
description below. A Fourier space matrix Â is represented by the data structure GftTransformedMatrix, see
Fig. 10. The API is not further described, since operations and data members are almost identical to those for Fourier
space vectors.

Fourier space vector API

The operations of GftTransformedVector are:

gftTransformedVectorCreate Constructor. Create a Fourier space vector by supplying the requested inparameters.
gftTransformedVectorDelete Destructor.
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gftTransformedVectorBlock Return address of x̂(Rr).
gftTransformedVectorElement Return address of element x̂i(Rr)µ,ν .

The data members of GftTransformedVector are:

group An association to the corresponding group.
num orbits The number of orbits.
data The elements of x̂.
blockIndices An array that maintains the first index of each block.

4. Algorithms

Using the data structures described in the previous section, we have developed several implementations of the
GFT algorithm. The purpose is to study how different strategies perform in the context of solving dense equivariant
linear systems of equations with the GFT approach.

The first variants, Vanilla, are general and map closely to Eqs (6) and (7). The second Matrix Multiplication
variant is based upon the notion of computing the GFT via a matrix vector multiplication Eq. (8). This makes it
possible to use LAPACK. Finally we have implemented Fast variants for the case of D 4. Here, the structure of the
specific group and its list of nonequivalent irreducible representations are used to reduce the number of arithmetic
operations in the GFT.

4.1. Vanilla variants

The general Vanilla implementations map closely to Eqs (6) and (7). Six nested loops are used for the matrix

GFT Cm×mG gft→ ̂Cm×mG, and five loops are used for the vector GFT CmG gft→ ĈmG. Apart from roundoff errors,
the ordering of the loops has no implications for the final result, but the performance of the algorithm depends on
the loop ordering [16].

We have implemented two loop orderings, shown for the case of the matrix GFT in Algorithms 2 and 3. The first
ordering is chosen to match the access pattern of Â, whereas the second ordering accesses the elements of A more
efficiently. The computational complexity of both algoritms is |G| 2 multiplications and |G|2 additions per group
algebra GFT CG → ĈG.

Algorithm 2 Vanilla 1 algorithm for the matrix GFT.

for r = 0, q − 1 do
for ν = 0, dr − 1 do

for j = 0, m − 1 do
for µ = 0, dr − 1 do

for i = 0, m − 1 do
Âi,j(Rr)µ,ν = 0
for g ∈ G do

Âi,j(Rr)µ,ν = Âi,j(Rr)µ,ν + Rr(g)µ,νAi,j(g)
end for

end for
end for

end for
end for

end for

4.2. Matrix multiplication variant for the matrix GFT

Since the GFT can be understood as a matrix vector multiplication, we developed a version where the GFTs are
carried out via calls to LAPACK. The matrix GFT is shown in Algorithm 4. The layout of A makes it possible to
interpret A as a |G| × m2 matrix, and the GFT is carried out by a single matrix matrix multiplication. Since the
result must be permuted in order to fit the prescribed layout of Â, this variant uses a temporary memory buffer T .
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Algorithm 3 Vanilla 2 algorithm for the matrix GFT.

for j = 0, m − 1 do
for i = 0, m − 1 do

for r = 0, q − 1 do
for ν = 0, dr − 1 do

for µ = 0, dr − 1 do
Âi,j(Rr)µ,ν = 0
for g ∈ G do

Âi,j(Rr)µ,ν = Âi,j(Rr)µ,ν + Rr(g)µ,νAi,j(g)
end for

end for
end for

end for
end for

end for

Algorithm 4 Matrix multiplication matrix GFT.

Interpret A as a |G| × m2 matrix
Compute T = RA, where R is explained in Section 3.2
Insert T into col(Â)

4.3. Fast variants

By exploiting the structure of R, fast GFTs can be developed. It is beyond the scope of this paper to discuss
fast GFTs in detail, and we refer to Maslen and Rockmore for a survey [23,25]. Fast GFTs for dihedral groups
have been studied by, for example, Stiller [30]. We are interested in studying the importance of fast GFTs for our
kind of applications, and we have developed two fast versions for the case of D 4, where the GFT corresponds to
multiplication with

R =




1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 0 −1 0 −1 0 1 0
0 −1 0 1 0 −1 0 1
0 1 0 −1 0 −1 0 1
1 0 −1 0 1 0 −1 0




.

In the case of D4, the structure of R is simple enough to allow development of fast GFTs by inspection. For the
conventional vanilla approach, the application of the GFT requires 2|D 4|2 = 128 arithmetic operations. may be
carried out in |D4|(2|D4| − 1) = 120 arithmetical operations. The Fast 1 variant û = fgft1(u) is computed by
an algorithm that requires 12 temporary variables and 20 arithmetic operations per orbit. The algorithm avoids
unnecessary multiplications and reuses temporary results, in a straight-forward fashion. The Fast 2 variant reuses
temporary results more agressively, and computes û = fgft2(u) with an algorithm that requires 6 temporary variables
and 17 arithmetic operations per orbit. The details of the Fast algorithms are accounted for in the Appendix. The
matrix GFT is carried out as shown in Algorithm 5, and the vector GFT is carried out analogously.

Algorithm 5 Fast matrix GFT variants v = 1, 2 for D4.

for j = 0, m − 1 do
for i = 0, m − 1 do

Âi,j = fgftv(Ai,j)
end for

end for
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Fig. 11. Comparison between the different GFT implementations.

5. Results

In order to evaluate our implementations we have carried out several numerical experiments. These tests were done
on a Sun Fire 15k server using the Sun WorkShop 6.2 compiler. Compiler flags were -fast -xarch=v8plusb
-dalign -xc99=%all -xO3. The reported timings are obtained as the fastest result of ten consecutive runs,
in order to avoid random effects. We have chosen maximum problem sizes in the order of 10000 unknowns, which
is quite large on this platform.

The first study focuses on the serial performance of the GFT operation. Particularly, we are interested in comparing
the flexible Vanilla implementations with the Fast versions. The second study examines the use of the GFT for
solving dense equivariant systems. Third, we investigate the parallel performance of our GFT implementation. The
group D4 is used for all performance results, but the Vanilla algorithms have also been tested for other groups.

5.1. Different implementations of the generalized Fourier transform

Figure 11 shows the serial performance of the different implementations described in Section 4. The best
performing version is Fast 1 and the worst is Vanilla 1. We note that even though Fast 1 uses more arithmetic
operations than Fast 2, it still performs better. We believe that the reason for this is that the aggressive reuse of
temporary variables in the Fast 2 algorithm, as shown in the Appendix, makes it impossible for the superscalar
processor to pipeline the computations [31].

The bad performance of the Matrix Multiplication variant indicates that the cost of using intermediate, temporary
storage is high. An interesting result is that Vanilla 2 variant performs quite well. This general purpose variants
perform almost as well as the Fast 2 group specific implementation.

5.2. Solving equivariant systems

The execution time for solving a D4-equivariant system Ax = b using the GFT, was compared to that of direct
solution of the system. For each m ∈ {64, 128, 256, 512, 1024} a randomly generated equivariant system Ax = b,
with A ∈ Cn×n, n = 8m, was solved using the symmetry-exploiting method on one hand and direct solution on
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Fig. 13. Time consumption of the different steps of the GFT-based approach.

the other. For the symmetry-exploiting case, the Fast 1 algorithm was used for the GFT. We have measured the time
taken to compute Â = gft(A), b̂ = gft(b), and x = igft(x̂) and for solving Âx̂ = b̂, and we compare the sum of
these times to the time used to solve Ax = b directly. In both cases LAPACK routines were used when solving
the systems. Figure 12 shows a comparison between the times used by the two methods. The time complexity is
actually O(n3) in both cases, but the constant is much lower for the GFT approach.
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The O(n3) growth of the GFT-based approach is seen more clearly in Fig. 13, where the time taken by each step
of the symmetry-exploiting method is shown. The most time consuming part of the GFT method is the solution
of the transformed, block diagonal system. Compared to this time, the times for the GFT operations are almost
insignificant. In particular the GFT of b and the IGFT of x̂ take approximately 0.005% of the total time, and can
therefore not be distinguished in the graph.

5.3. Parallelism and speedup

The performance of an OpenMP parallelization of the GFT approach was also examined. The test program was set
to perform in parallel the computation of gft(A) ∈ Cm×mG with m = 3072 orbits and G = D4. This corresponds
to an n × n matrix with n = 24576. We computed Â = gft(A), using 1, 2, 4, 8, 16 and 24 CPUs. Figure 14 shows
the relative speedup, calculated by dividing the time for one CPU by each of the times measured. The results show
that this application is well suited for shared memory parallelism, and we think that the reason for this is that the
GFT of different orbits are independent.

6. Conclusions

We have presented the design of a GFT-based symmetry-exploiting software. The basic idea is to transform a
dense equivariant system of equations to a corresponding system in Fourier space, which can be solved much cheaper.
Major design goals have been to facilitate efficient equation solving in Fourier space and to simplify the various
mappings involved, including the GFT. Our results show that the GFT-based approach is very efficient compared to
a direct approach. We have also shown that the matrix GFT is well suited for shared memory parallelism.

We would like to explicitly draw the attention to our design philosophy, since it has a broader applicability than
just symmetry-exploitation. Most importantly, our software is based closely upon the mathematical abstractions,
which makes the software flexible and easy to understand [2]. We have verified the flexibility by extending the
software to support other groups as well. In this context, we stress the role of the “vanilla strategy.” By supplying a
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general-purpose GFT routine, a useful software is obtained. If, however, the vanilla version is not fast enough, it is
possible to add special-purpose, fast routines. It is well-known that it is much easier to verify an optimized routine
once a first version is in place [27]. Our point, however, is that the vanilla routine supplied by the framework should
be optimized as far as possible while still being general.

Regarding the interesting topic of fast GFTs, we would like to make two observations. First, for the applications
we are interested in, the most time consuming part is the system solving in Fourier space, and therefore we think
that an optimized vanilla version is often good enough. Second, an interesting point is noted in Section 5.1. The
performance of the Fast 1 and Fast 2 illustrate the fact that it is not only the number of arithmetical operations that is
important. The underlying computer architecture, memory accesses, possibility of pipe-lining and so forth are also
important factors that determine the performance of an algorithm. It would be an interesting challenge to develop
fast GFT algorithms that take issues such as these into account.

For future work, we will address more groups and applications. One application that we have studied is the
Black–Scholes equations [8] discretized with radial basis functions [11] on a square. By suitable transformations,
the equations are transformed into the heat equation, leading to a dense D 4-equivariant space discretization matrix.
Even though time discretization and boundary treatment destroy equivariance, techniques similar to those presented
in [9] can be used to obtain promising results [17,18].
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Appendix: The Fast algorithms

The exact implementations of the Fast 1 and Fast 2 algorithms are given in Algorithms 6 and 7, respectively. The
elements of D4 are enumerated in the following order: e, a, a2, a3, b, ab, a2b, a3b. Thus, u(0) should be interpreted
as u(e), u(1) as u(a), etc. In Fourier space, û(0) refers to û(R0), etc.

Algorithm 6 Fast 1 computation of û = fgft1(u)

t1 = u(0) + u(2)
t2 = u(1) + u(3)
t3 = u(4) + u(6)
t4 = u(5) + u(7)
t5 = u(0) − u(2)
t6 = u(1) − u(3)
t7 = u(4) − u(6)
t8 = u(5) − u(7)
t9 = t1 + t2
t10 = t1 − t2
t11 = t3 + t4
t12 = t3 − t4
û(0)0,0 = t9 + t11
û(1)0,0 = t9 − t11
û(2)0,0 = t10 + t12
û(3)0,0 = t10 − t12
û(4)0,0 = t5 − t7
û(4)1,0 = −t6 − t8
û(4)0,1 = t6 − t8
û(4)1,1 = t5 + t7
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Algorithm 7 Fast 2 computation of û = fgft2(u)

û(3)0,0 = u(0) + u(2)
t1 = u(4) + u(6)
t2 = u(1) + u(3)
t3 = u(5) − u(7)

û(1)0,0 = û(3)0,0 + t2
û(3)0,0 = û(3)0,0 − t2
t4 = t1 + t3
t1 = t1 − t3
û(0)0,0 = û(1)0,0 + t4
û(2)0,0 = û(3)0,0 + t1
û(3)0,0 = t1
û(4)1,1 = u(0) − u(2)
t5 = u(1) − u(3)
t6 = u(4) − u(6)

û(4)0,1 = u(7) − u(5)

û(0)0,0 = û(4)1,1 − t6
û(4)1,1 = û(4)1,1 + t6
û(4)1,0 = û(4)0,1 − t5
û(4)0,1 = t5
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