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Abstract. Capturing and examining the causal and concurrent relationships of a distributed system is essential to awide range of
distributed systems applications. Many approaches to gathering thisinformation rely on tracefiles of executions. Theinformation
obtained through tracing is limited to those executions observed.

We present a methodology that analyzes the source code of the distributed system. Our analysis considers each process's
source code and produces a single comprehensive graph of the system’s possible behaviors. The graph, termed the partial order
graph (POG), uniquely represents each possible partial order of the system. Causal and concurrent relationships can be extracted
relative either to a particular partial order, which is synonymous to a single execution, or to a collection of partial orders. The
graph provides ameans of reasoning about the system in terms of relationships that will definitely occur, may possible occur, and
will never occur.

Distributed assert statements provide a means to monitor distributed system executions. By constructing the POG prior to
system execution, the causality information provided by the POG enables run-time evaluation of the assert statement without
relying on traces or addition messages.

1. Introduction

Coreto awide range of distributed system challengesis examining the causal and concurrent relationships among
events of an execution. Some examples of these challenges are deadl ock detection [2], debugging [6,11,12], rollback
and recovery [5,9], termination detection [8,20], mutual exclusion violation [1] and global predicate evaluation [3,7,
13,18]. Techniques designed to meet these challengesis an ongoing area of research. Most current techniques make
use of trace files generated during execution. Trace files of an execution provide the information needed to deduce
the causal and concurrent relationshipsfor that particular execution but are limited to the execution from which they
were gathered. Other executions of the systems can define different relationships not present in the trace.

We present a methodology that provides a comprehensive examination of a distributed system. Each possible
partial order is discovered and combined into a single, representative graph. This partial order graph, or POG,
provides a complete view of the system without being tethered to any particular execution. From the POG, causal
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and concurrent relationships can be extracted. The extracted rel ationships can convey a view of the system ranging
from a single execution to all possible executions. We have devel oped a prototype tool based on static analysis of a
system'’s source code to produce the POG for asynchronous communication systems [14,15].

Taylor [19] has developed an agorithm for statically analyzing the synchronous communication of a distributed
program. Synchronous communication occurs when the transmitting process blocks until the message is received
by the destination process. Our research into the static analysis of source code was partially motivated by Taylor’'s
results, but differsin both objectives and outcomes.

Taylor’'s work determines al possible total orders of execution where a single partial order may be embedded in
many total orders. In enumerating the total orders, the concurrency defined by a partial order is not preserved. Our
work uniquely identifies each partial order of the system. From each identified partial order, we preservethe inherent
concurrency.

In Section 2, our system model is presented. Sections 3, 4 and 5 present each step in generating the POG from
source code. Although we intitially present the method in asimplified environment, Section 6 explains how looping
constructs are incorporated. Event relationships are extracted from the POG in Section 7. In Section 8 an example
of the utility of the techniqueis provided. Conclusionsare found in Section 9.

2. Modd

A distributed system consists of afixed number of processesIl = { Py, ..., Pn_1}. Theexecution of adistributed
programisviewed asaset of events E = Ey U ... U En_1 Where E; representsthe events of P;, and an irreflexive
partial order isdefined ontheseevents[10]: —C E x E. The— relationis commonly referred to as happensbefore
or causally precedes. Fore, f € E, e — fif andonly if e has potential causal impact upon f.

Interprocess communication defines the happens before rel ationship among events on different processes. Asyn-
chronous communication [17] occurs when a process places a message “on the network,” and continues execu-
tion. This type of communication, for example, is offered by the transport level datagram service UDP. The des-
tination process blocks until it receives the message, then continues execution. We assume FIFO point-to-point
communication.

In an asynchronous communication regime, the happens before relationship is the smallest relation satisfying the
following three conditions: (1) if e and f are eventsin the same process, and e precedes f, thene — f; (2) if eiis
the transmission of a message and f is the receipt of the same message, thene — f; and (3)if e — fand f — g,
thene — g.

If e — f, e causaly precedes f and f causally succeedse. If e /~ f and f / e, then e and f are causally
unrelated or concurrent, denoted e|| f, and neither can causally affect the other.

One of possibly many partial ordersis defined when a distributed system executes. The potentia for many partial
orders exists from branches in control of execution, from communication delays, and from unpredictable process
execution speeds. Consider the source code of a three process distributed system shown in Fig. 1. The function
async_send(i, msg) transmits msg to P;, and async_recv(j, msg) receives msg from P;.

One of two possible partial ordersis defined when this program executes. The time-space diagrams representing
the two possible partial orders, PO, and POs, are shown in Fig. 2. Set P is the set of possible partial orders of a
distributed system’s execution. For the example system, P = {PO1, PO>}. For any given execution, one partial
order, p € P, is produced.

Thefirst step in generating the POG is to examine the source code and create a flow graph for each process. Each
flow graph enumerates the possible execution paths for that process. Communication analysis of the flow graphs
is used to construct an intermediate graph that represents the causal and concurrent relationships possible in all
executions of the system. An optimized graph, the POG, is derived from the intermediate graph.

A compiler for ANSI start C has been implemented to create a POG from source code. First, the stepsto generate
a POG are presented for source code without looping constructs using the small example pseudo code shown in
Fig. 1 as an example. Looping constructs are then incorporated into the POG generation methodologies and two
more complex program examples are given.
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Py :: Py P
begin begin begin
x=1 if y=3
async_send( 1, x) async_recv(0, x) z=4
x=2 async_recv(2,y) async_send( 1, y)
async_send( 1, x) else end
end async_recv(2,y)
async_recv(0, x)
endif
async_recv(0, x)
end

Fig. 1. A simple 3 process system.
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Fig. 2. Two partial orders.
3. Controal flow graphs

The possible flows of control through each process, P;, in the system are represented by acontrol flow graph FG ;.
Thegraph FG,; = {V;, A;, a; } where V; isthe set of nodes, A; isthe set of arcs, and «; € V; istheroot node of the
graph. Nodes represent computation, communication, or control constructsin the source code. Theroot node, « ;, is
the start of execution of process P;. Arcs represent the flow of execution of a process created from the source code.
If an arc exists from node v to node v, then v’ can be executed immediately following the execution of v. Multiple
paths may exist through F'G; from «;, but al pathswill terminatein asingleleaf node, w; if the program terminates.

Returning to the example source code of Fig. 1, we see that processes Py and P, have a single execution path.
Process Py, containing a selection construct, has two possible execution paths.

A dlight reduction in the complexity of each F'G; is realized through the collapse of consecutive computation
statements into a single representative node, c. We represent communication constructs as ¢ 7, the transmission of a
message to P;, and 7, the receipt of a message from P;. Nodes representing statements in the body of a selection
construct are bounded by an IF node and an ENDIF node. Figure 3 shows the control flow graphs derived from the
example source code.

The nodes of F'G; represent syntactic constructs in the source code of P;. An execution of P; may be viewed as
atraversa of F'G,, from «; tow;. An event created from the execution of a statement in P; correspondsto the locus
of control passing through the node of F'G ; representing that source code statement. In the remaining discussion
of the flow graphs, the symbol representing a node of F'G; is also used to represent the event corresponding to the
execution of the source code associated with that node. Nodes and events will be distinguished by context.

To summarizethe discussion of F'G;, thegraph F'G; representsall possible execution pathsof P;. A path from «;
to w; represents a single, possible execution of P;. The order of events on the o; to w; path indicates the execution
order of those events if the selected path is executed. If both eventsv and v’ are executed in P; such that v — v/,
then apathin FG; will exist fromv to v'.
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Fig. 3. Flow graphsfor a simple 3 process system.

We define an immediate communi cation successor set, ICS(v), for each communication node, v € V;. Nodev’ is
an immediate communication successor of node v if (1) thereexistsapath fromv tov’, (2) v’ € {7,779, w;}, and (3)
there does not exist a communication node v # v’ on the path from v to v’. Immediate communication successor
sets are used in the following construction of the intermediate graph.

4. Intermediate graph

From the flow graphs of the distributed system’s constituent processes, an intermediate graph S is constructed.
This graph represents all possible executions by representing all possible partial orders of the system. Concurrency
as well as causality among the events is preserved. A partial order graph, POG, will be constructed from S by
combining nodes that are both causally equivalent and derived from equivalent partial orders.

We begin by generating concurrent communication states, CCSs, fromtheflow graphs. Each CCSisan ordered N-
tuple, (vo, v1,. .., vN_1), Wherev; € V; iseither o, t7, 17, orw;. If v; € {t7,r7}, it denotesthe next communication
command to be executed in P;. Each CCSisrepresented by anodein S.

Theroot node of S, CCS,, contains the root nodes of each flow graph.

CC% = {Oéo,Oq, .. .,ozN_l}

Successor CCSs are generated using the set of immediate communication successors, ICS(v), for each entry, v, of
the CCS The S graph represents the hierarchy of successor CCSs.
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Fig. 4. Tree S for simple 3 process system.

Causal communication constraints force message receipts to be delayed until their corresponding transmissions
have been processed. Those receives that can not be immediately processed are not “ready.” A “ready” receivein
a CCSis one whose corresponding transmission command occurred in an ancestor CCS. Root nodes of each flow
graph, «;, and message transmission elements, t/, areintrinsically “ready”.

All the communi cation commands of aCCSthat areready to executeare concurrent. Other concurrent rel ationships
may also be present in S aswill be examined in alater section.

A CCSwith no ready elements has no successor states. Theimmediate successor states, | SS(CCS), are determined
from the immediate communication successor sets of the CCS's ready commands. The states in ISS(CCS) will be
children of CCSin S. Thefollowing steps determine |S(CCS):

1 LetR = {v; : v; € CCSandv; isready}.

2. Generate CCS € ISS(CCS) by replacing each v; € R with an element of ICS(v;).

3. Repesating step 2 until al unique CCS s are generated from the ready commands’ successor sets. The number
of successor states of CCSis

[ISYCCY)| = Y, [ ICS(v)|ifv; €R

A CCScontaining no ready commands and one or more receive commands (that are not ready) has no successors
and is an invalid terminal state of the distributed system. A CCS comprised of all w; elementsis a valid terminal
state.

Ready communication eventsin each CCSwill beannotated with aninteger counter whichwill beusedinlater steps
of POG construction. The annotation on each message transmission to P; indicates the number of transmissions to
P; encountered in predecessors of the current CCS. For example, theentry 3t ! indicatesthat this message transmitted
to P, has been preceded by two other messages sent to P;. The number prepended to the transmit events does not
imply the receipt order of messages. Message delivery order is determined by the execution order of receive events
in the current partial order.

A ready receive is prepended with the number taken from the matching transmit. For example, the » 7 € P;
matching the transmit, 3¢, would be prepended with the number 3. While transmissions are numbered sequentially,
numbers associated with receipts may be unordered. Values attached to receipts will be used to distinguish textually
identical receipts that occur in different orders, thus defined by different partial orders. Not only does the numeric
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Fig. 5. Same partial orders.

attachment distinguish between syntactically identical communication commands, it also provides a method of
matching transmissions with corresponding receipts.

Figure 4 shows the S graph derived from the flow graphs of Fig. 3. Appended numbers are shown, and “ready”
events are underlined. Consider theleft partial order in Fig. 4. Thefirst node following the root consists of areceive
in P; that isnot ready and two ready transmissionsthat are sequentially numbered. In the successor node, thereceive
from P, is now ready since the the transmit from P, to P; occurred in an ancestor node. In the right partial order,
thefirst ready receive of P, isareceipt from P,. Referring back to the source code of Fig. 1, the order of receives
in P; differswithinthei f - el se construct.

Receives that are not ready in anode of S are indicators of what can happen next in a process. The ready events
aretheonly eventsthat occur, and they forgethe causal relationshipsamong events on different processes. If only the
ready events of each nodein S are considered, we observe that nodes can contain identical events. In the following
section, the partial order graph of the system is constructed based on these observations.

5. Partial order graph

The construction of the partial order graph, POG, from the S graph is based on the observations outlined in the
previous section. Only ready commandswill be represented in the POG, where in the S graph, all commands were
represented to facilitate the matching of transmits and receives. In some cases, two or more branches of S represent
the same partial order. From the tree S, the POG is constructed by combining branches that represent the same
partial order into a single representative branch containing only ready commands.

Consider the simple S graph shown in Fig. 5 constructed from a four process system. The receives of P, are
not ready. The transmits of each CCSare replaced in the child CCSs with aterminal node of F'G ;. Both leaf node
branches indicate that Py does not complete execution. The two branches shown represent the same partial order.
Receives that are not ready are not part of the partial order.

A POG isadirected graph (N, A, ) where N isthe set of nodes, A isthe set of arcs, andn € N isthe root node
of POG. The nodes of the POG are generated from nodes of S such that the POG nodes represent the transmit and
ready receive commands of the S nodes.

Since only the ready events of an S node need representation in a POG node, a node of the POG may not contain
an element from each P;. The executing process of an event in a node will not be positionally identified asin S.
Instead, subscripts will identify the process executing the command. A transmission entry has the format ¢t / where
cisthe counter, 7 is the process executing the transmit and j is the destination process. A ready receive entry hasthe
format cr] where c is the counter, ¢ is the process executing the receive and j is the sender.

In constructing the POG, it will be necessary to determine if a set of CCS's has equivalent transmit and ready
receivecommunicationentries. Equivalent communicationsarefoundin CCSand CCS if each ready communication
command in one CCS exactly matches (in both prepended value and communicating partner identification) the
positionally corresponding command in the other CCS. Specifically, CCSand CCS have eguivalent communications
if the following conditions are met.

— At least one transmit or ready receive commandisin either CCSor CCS.
—V,;, ifv; = ¢! € CCSwhere y iseither ¢ or r and cx? isready, thenv; = cx? € CCS and cx? isready.
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Fig. 6. Algorithm to create POG from S.

If CCSand CCS have equivalent communication commands, the equivalent communication commands are all
the transmit and ready receive commandsthat occur in CCSand CCS.

We begin by traversing S breath-first and identifying the equivalent nodes. From these nodes, a representative
nodeis created in the POG that islabeled with the equival ent communication commands of the identified nodes. An
algorithm is presented for the POG construction. The following data structures and functions are essentia to that
algorithm.

VisitNodes :: aqueue with entries of the format <POGnode, SnodeSet>. POGnode is areference to a node of the
POG and SnodeSet is a set of S nodes.

SuccSet ;1 aset of S nodes built from the successors of equivalent nodes.

Create_PNode(CommoLabel) :: creates a node of the POG and labels the newly created node with the string
CommoLabel.

ISS(Snode) :: constructs a set of nodesfrom S that are immediate successors of node Snode.

Equiv_Set(SnodeSet) :: extracts from SnodeSet those nodes that have equivalent communication commands and
returns these nodes as a set.

Createl abel (SnodeSet) :: createsalabel from the transmits and ready receives of the equivalent nodesin SnodeSet.
A string label is returned. Note that SnodeSet may only have one entry and the label returned is for the ready
commands of this one node.

The agorithm for creating the POG from S is given in Fig. 6. The construction prunes the tree S so that one
branch of the POG from root to leaf node represents an unique partial order p € P. The resulting POG represents
all partial orders of the system.

The communication behavior of the system directly influences the size of the POG. The width of the graph is
determined by the number of possible partial orders. For each control branch that results in two communication
choices, a new partial order is created thereby producing a branch in the POG. Admittedly, the POG’s width can
grow large, but the graph accurately represents the complexity of the communication.

The worst case performance of the static analysisis exponential in the number of possible concurrent states. For
the worst case, an unlikely system must exist. Assume every node of aflow graph can occur in the same concurrent
state with every node from the other processes' flow graphs. If welet T" be the number of nodes of all the processes
flow graphs, then an upper bound on the number of nodes of one flow graphis O(T'). The worst case bound on the
number of concurrent statesis O(7'V), where IV is the number of processesin the distributed application.
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Although static analysis can have exponential performance, the time spent analyzing does not affect the execution
of thedistributed system. Theanalysisis done prior to execution, and providesinsight into the application’s behavior
that can be leveraged at run-time.

Figure 7 shows the POG representing the example distributed program of Fig. 1, and generated from S of Fig. 4.
Notice that the two partial orders of Fig. 2 are each represented as a path from root to an end node in the POG. In
particular, the left path of the POG represents PO ¢, and the right path of the POG represents PO 5.

6. Looping constructs

Three looping constructs are considered: do- whi | e, whi | e and f or . Each type of loop has one unique entry
point and one unique exit point. When loops are nested, each loop hasit’s own entry and exit point. Each loop in a
process's source codeis represented as a cyclein the process's corresponding flow graph. The cycleis accomplished
with a back edge from the exit point of the loop to the entry point of the loop.

To demonstrate the incorporation of loops into the steps for generating the POG, two distributed programs have
been selected. The first is set partition [4], SETPART, which was chosen for its concise applicability. SETPART
consists of two distributed processes, Py and P, that partition digoint integer sets S and T". Py maintains S and P;
maintains 7'. An element of .S is exchanged with an element of 7" until the elements of .S are less than the elements
of T'. The source code of SETPART is shown in Fig. 8 and the corresponding flow graphs are shown in Fig. 9.

The second program is adistributed sort, DS, which was chosen for its increased size and complexity. A total of
q integers are sorted in ascending order by six processes. The process are connected in a logical ring so that P;’'s
neighborsare P;,_; and P,;. Initially each processis assigned ¢/6 elements. Each process follows the genera
source code as shown with P; in Fig. 10. The corresponding flow graphs are shown in Fig. 11.
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With the possibility of loops in the source code of each process, loops are also possible in S. Additions are
required for detecting the repeated execution of communication commands and representing these repetitions as
cyclesin S. Cyclesoccur in S if

1. asend command isin the body of aloop,
2. asend command and its matching ready receive are each in aloop body, or
3. acombination of (1) and (2).

Following are the steps taken to incorporate loops into S. When a node n is added to S, a check is made to
determineif the state represented by n has already been represented by another node in n’s execution path. Thisis
done by comparing n with its ancestors. First n is compared with itsimmediate predecessor, i.e., parent node. If the
parent does not represent the same state, then the grandparent is compared against n. This continues until either a
node that represents the same state of » is found or the root of S is reached.

Two comparisons are required two determine if node n and its ancestor node n.’ represent the same state. Nodes
n and n’ represent the same state if

— for each entry v, € n, thereexistsv; € n’ that isidentical with the exception of the counter value, and
— for each v; and v} pair, v; and v} correspond to the same node of F'G ;.

If nodesn and n’ represent the same state, then node »’ is possibly the entry point of aloop, and the parent of n
is possibly the exit point of thisloop. The next decision is whether to add a back edge from the parent of n ton ' to
form the loop.

If n/ is the parent of n, then aloop has been detected. A back edge is added from n’ to itself and node n is
removed from S. If n’ is not the parent of n, then n’ must be an ancestor of the parent of n. That is, other nodes are
found between n” and n in S. To identify aloop, the body must be repeated as nodesin S. A loop is detected only
if the nodes from n’ to the parent of n, the loop body, are repeated immediately following node .. A loop detection
results in a back edge inserted from the parent of n to n’ and the removal of n and its descendantsfrom S.

The S graph for SETPART is shown in Fig. 12 and the S graph for DS is shown in Fig. 13. Note that for
SETPART only one cyclic behavior exists where as with DS four loops exist. The details of the algorithms and the
implementation for generating S can befoundin [14].

Loops incorporated into S propagate to the POG. Only the function Equiv Sets() of the agorithm to create the
POG needs modification to handle the back edges of S. Additional tests are needed to determine the equivalency
of S nodes. Suppose CSS and CSS are found to have equivalent communication commands, and the nodes that
represent CSSand CSS aren and n’. Function Equiv_Sets() must check whether both » and n’ have an incoming
back edge or both » and n’ have an outgoing back edge.

If no back edgesarefound, thenn and n’ areequivalent. If only one of the nodesis referenced by aback edge, then
n andn’ are not equivalent. When nodesn and n’ are each pointed to by a back edge, both nodes are entry points of
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loopsin S. Next is to determine whether the loop associated with node n. is equivalent to the loop associated with
noden’'.

Suppose node b is the node that has a back edge to node n. Nodes n and b form a subtree rooted at n, where
the nodes that are descendants of » but not descendants of b comprise the nodes of the subtree. Also suppose node
b’ is the node that has a back edge to node n’, then nodes .’ and &’ also form a subtree. Nodes are compared as
the subtrees are traversed in lock step, starting at the root nodes, in depth first order to determine if the loops are
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P;

integer pid, phase

arrays list, recv_list

pid = 1

read ¢/6 elements into /ist

sort list

for phase = 0 to 5

if phase is even

async_send (i + 1 mod N ,list)
async_recv (i + 1 mod N ,recv_list)
list = merge _sort(list, recv_list, first)

endif
if phase is odd && pid '= 0 && pid '= N-1
async_send (i — 1 mod N ,list)
async_recv (i — 1 mod N ,recv_list)
list = merge _sort(list, recv_list, last)
endif
endfor

merge_sort(list, recv_list, half)

array merge_list
merge_list = merging of recv_list and list
sort merge_list
if half = first

return first half of elements in merge_list
else

return last half of elements in merge_list
endif

Fig. 10. Distributed sort — Generic for all processes.

equivalent.

The current node ¢ of one subtree is compared against current node ¢’ of the other subtree. If the CC'S of node ¢
is equivalent to the CC'S of node ¢, and the number of children of ¢ is equal to the number of children ¢’ then the
traversal continues. If either condition is false, the loops are not equivalent and the traversal stops. If the subtrees
are traversed without falsifying either condition, then the loops are equivalent and nodesn and n ’ are represented by
asingle node in the POG.

If both n and »n’ both have an outgoing back edge, then an addition test is required to determine the equivalence
of the nodes. Let d be the node pointed to by the back edge of n and let d’ be the node pointed to by the back edge
of n’. If d and d’ are equivalent, then so are n and n’. Both n and n’ will be represented by a single node in the
POG. A single back edge will be added from the POG node representing n and n’ to the POG node representing
the equivalent S nodes pointed to by the back edge of n and n’. Figures 14 and 15 show the POGs generated for
SETPART and DS.

7. Event relationships
The POG conveys concurrent and causal relationships for each possible partial order. Some of the concurrent

relationshipsare explicitly represented in each node of the POG where other concurrent and causal relationships can
easily be derived. Consider the nodein level 2 of Fig. 7. The two transmissions, 1t and 2t3, are explicitly shown
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to be concurrent. Specifically, the communication events represented by a node of the POG are concurrent in that
partial order. Other concurrency relationships areimplicit and must be derived from absence of causality.

If a transmission event, ct{ , is an entry of node n of the POG, then the matching receive, cr;, is found in a
descendant node of n. For example, consider again 2t} of level 2. The matching receive, 2r2, is found in the
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left partial order in a descendant node at level 4. The matching receive is also found in the right partial order in a
descendant node at level 3.

The positional relationships between nodes, as well as the event content of nodes, is used to derive relationships
among events. Consider, for example, event 179 in level 3 and event 3r{ in level 5 of the left partial order. The
common subscript indicates that both events are executed on Py, thereby ensuring that a causal relationship exists
between them. Since 17 occurs in an ancestor node of 3r?, we conclude that 1r9 — 3. Deriving the remaining
interprocess rel ationships requires additional reasoning.

A communication transitive path is relevant to a particular partial order and follows the definition of happens
before. A communication transitive path of ¢ + 1 events, from e} to e/, is a series of communication events
e9,..., e} suchthat

— e} — e}t where there does not exist an event e’ that is an event of the path such that e} — ¢’ — ¢j**,
—forey ande;t!, wherek # [, e} and et are atransmit/receive pair (e} being thetransmissionand e/ "' being

the receipt), and

—forey,ej !, where k = [, the next event of the path (if it exists), e} 2, must occur on P;.
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Fig. 13. S for DS.

If €9, e, ez, e}, ¢}, e} isavalid communication transitive path of length 6, eY is a transmission to P, and ey, is
the corresponding receipt, e isatransmissionto F;, and e} is the corresponding receipt, and e} is atransmission to
P; and €? isthe corresponding receipt.

For any two communication events, e and e’, represented in the POG , exactly one of the following relationships
will hold:

— e and ¢’ arein different partial orders;
— e and e’ are concurrently related, e||e’; or
— eand e’ are causally related, either e — e’ ore’ — e.

If node n, representing event e, and node ./, representing event e’, are not on a single path from the root to the
END, then the nodes are contained in different partial orders. The two events can not occur in the same execution
sincethey arein different partial orders. Causal and concurrent relationships do not exist between eventsin different
executions. Therefore, ¢ and e’ are not related: neither through causality nor concurrency.

If, on the other hand, asingle path from the root to the END containsbothn and » /, then the nodes are contained in
the same partial order. Eventse and e’, now from the same execution of the system, are related. If acommunicative
transitive path existsfrome to ¢’, then ¢ — ¢’. If no communicative transitive path exists between the events, then
e||€¢’; the events are concurrent.

Theinformation derived from the POG is not limited to a single execution of the system. Since all partial orders
are represented, questions regarding the possibilities of execution can be answered. For example,
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end

Fig. 14. POG for SETPART.

— Isit possible that e and ¢’ can execute concurrently?

— Isthere asingle event that will always precede event e?
— Which events can have an immediate causal effect on e?
— Can event ¢ have acausal effect onevente’?
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1 2 1 4 3 4
Ity 1t 2t 1t 1t 2t

2 5 4 2 1 4 3
1Ir, ,lr3 ,1r4 ,lr5 2rl ,IJr ,lr3 ,1r4

2 1 4 3 4
L 2,2t3 2t, ,3t5
2 1 4 3
31rl ,ZJr ,2r3 ,21r4
0 3 2 5
2‘[1 3t ,3t3 ,2t4 end
2 5 4
,3r3 ,3r4 ,2r5

These questions indicate the significance of a unified representation of a distributed system. Challenges of
distributed systems that require reasoning about event relationships can be answered with respect to one, any, or all
possible executions.

1 2 1 4 3 0 3 2 5
2t .2t 3t 21, 3t 3t 21, It, 2t 2t 1t

1 0 3
2ro 21, ’3Jr

Fig. 15. POG for DS.

8. Monitoring execution

Reasoning about causal and concurrent relationships is fundamental to monitoring and debugging distributed
systems. Monitoring the execution of adistributed program requiresreasoning about constituent processes’ execution
asasingle collective entity. We have extrapolated the semantics of the assert statement for sequential programsinto
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Fig. 16. Set partition with assert.

the distributed context and devel oped a run-time methodol ogy for monitoring and debugging using distributed assert
statements. The POG is the basis for the efficient evaluation methodol ogy of the distributed assert statement.
The distributed assert has the format

assert(P)

where P is a global predicate that is anchored at a control point of one processes and evaluated when the process
executes the assert. If P is true then the program continues its execution. If P is false, however, the program is
aborted, and a diagnostic message is produced.

Our global predicate is not restricted by the format of the logical comparisons, and variables from different
processes can be compared directly. Both stable and unstable properties can be monitored. A distributed assert
statement monitors a distributed system’s execution, but only a subset of the system execution states are relevant for
evaluation. In particular, the distributed assert presented in this paper monitors the execution having the most recent
causal impact on the assert statement.

The property that is monitored is determined by the predicate. Examples of deadlock detection, mutual exclusion
violation and specific behaviorsof aprogram can befoundin[14]. Distributed assert statements have been devel oped
for the two example programs SETPART and DS as shown in Figs 16 and 17, respectively.

The assert statement in P; of SETPART,

assert(y = max(S) = mn >z A|S|=|S%|ASNT =y)

is evaluated on each exchange of data between the processes. The clauses of the assert predicate compare variables
from both processes. A false eval uationindicates erroneous execution of the program. SETPART s error isidentified
by the assert’s falsifying clause. If y is not equal to max(S); Py did not send the correct value. If max(S) 2 mn;
processing should have stopped on the last exchange, and alikely error is Py’s exchangeloop condition. If mn % z;
either avalue other than the minimum of 7" was chosen, or P, has erroneously altered the variable = since the last
exchange. If the new size of S has changed, P, has not correctly added or removed a value from S since the last
exchange. If the intersection of S and 7" is not equal to y; either S or 7" has not been correctly updated since the
last exchange, and the results of the other clauses help in identifying the incorrect set. For example, suppose the
programmer mistypesasync send(1l, nx)of Py asasync_send(l, x). Theclausey =max(S) evaluatesto
false and identifies an incorrect value sent by Py.

For DS, process P,'s sourcecodeis shown bel ow with thetwo assert statements A 5, and Ao, Two assert statement
could be in any one of the six processes and provide the same meaningful information. Process P, was arbitrarily
selected. Theclause P;.list < P;.recv_list testswhether every element in P;.list islessthan or equal to all elements
of P;.recv_list, and the clause P;.list > P;.recv_list tests whether every element in P;.list is greater than or
equal to al elements P;.recv_list. The clause P;.recv_list = P;1q.list,fori = 2...4, of assert A,, determines
whether process P; received the correct list from its right neighbor P, ;. The clause P;.recv_list = P;_1.list, for
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Fig. 17. P of Distributed Sort with asserts.

1 =1...2, of assert Ay, determines whether process P; received the correct list from its left neighbor P;_;. The
clauses P;.list < P;.recv_list and P;.list > P;.recv_list ensurethat mer ge _sort () correctly sorted and halved
the merged list.

For a distributed assert to be evaluated during run-time, the local state information of the constituent processes
must be shipped to the process executing the assert. Thisisnecessary sincethe assert predicate can comparevariables
from the different processes but the value of these non-local variables are not available in the process executing the
assert.

A brute-force implementation of evaluating distributed assert statements would have each process piggyback its
state information on each of its outgoing messages. This approach would ater every message in the distributed
execution and porportionally increase the execution time of the system [14]. By using the POG, we can reduce the
number of messages piggybacking state information. The amount of reduction varies according to the distribruted
program, but, in general, the reduction is significant. For each partial order, exactly one message in each processis
identified for piggybacking the correct state information.

If event e in P; isthe evaluation of the assert statement, LC P(e, j) where j # i, denotes event e’s latest causally
preceding in P;. We define LCP(e, j) = f if and only if f isan eventin P;, such that f happens before e, and
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there does not exist an event f’ in P; such that f happens before f/ and f’ happens before e. Given a partial order
and an event e, there exist exactly one LC' P event in each process.

The LC P events are the means by which we reduce the number of messages piggybacking state information,
which can be identified from the POG. By using the POG, a distributed assert is evaluated but the methodol ogy
neither generates and analyzes traces, nor adds messages to the origina distributed application. Only the LC'P
messages are increased in size to propagate state information to the assert control point for assertion evaluation [16].

For event ¢, a causal cut through e is the set of events consisting of e and the LC' P event of e of each process for
apartial order . The causal cut through event e, denoted CC'(e), is defined as

CC(e) = {e} U {LCP(e, k)} .
0<k<N
ki

Intuitively, CC'(e) isthe “latest” set of events of a partial order which can have a causal impact upon e. For each
partial order, thereis one causal cut for a given event. The LC P events that comprise the causal cut for one partial
order may differ from the LC' P events that comprise the causal cut for a different partial order.

From each causal cut CC, a global state exists for evaluating a distributed assert statement. If ¢ is the execution
of acausal distributed assert statement in P;, then the causal global state, anchoredon e, is

CGSate(e) = {pre(f) : f € CC(e)}.

The pre( f) denotesthelocal state of P; in which the execution of f isbegun. When the system executes, one of the
possible partial ordersisidentified. The global state corresponding to this partial order can then be used for assertion
evauation.

In[16], it is proved that LCP events are communication events. In particular, for event e of P;, each LCP(ej) isa
send event. Corresponding to each LCP send event is a receive event, denoted LCP’. A causal cut consists of LCP
send events. The LCP and LCP’ events of a partial order comprise the communication events that are sufficient for
delivering the CGState data to the process evaluating the assert. In Figs 14 and 15 the underlined entries indicate
the LCP and LCP’ events.

In[14,15], atwo-pass compiler prototypesystem for enabling the eval uation of acausal distributed assert statement
is presented. This system ensures that when an assert is executed, the relevant components of the causal globa state
areimmediately available at the process executing the assert. From the POG, the causal cuts can be identified prior
to program execution. Our prototype statically analyzes the distributed source code to

— generatethe POG,
— identify the LCP and LCP’ events of the distributed assert statements from the POG, and
— append the necessary causal global state information to the already existing LCP send commands.

9. Conclusions

This paper has presented a methodology for analyzing the communication of a distributed system. Source code
is analyzed to produce a partial order graph, POG, that conveysal possible execution scenarios. In particular, the
POG representsall possible causal relationshipsthat can be forged by executing the system’s processes. Concurrent
relationships are upheld in the POG by not imposing an order on the events where causality does not exists.

Our methodol ogy first produces a graph representing the flow of control through each program of the distributed
system. These flow graphs represent the possible orders of execution of statements in the source code. Each path
through the graph from root to leaf providesthe execution order of events within a single execution of the program.

Theflow graphsof theindividual programs are combined to create a unified representati on of the system, resulting
in an intermediate graph S. The graph S represents all partial orders of execution while preserving concurrency.
However, the graph may contain duplicate nodes that can be combined to produce a more compressed, yet still
accurate, representation of the system.

Thefina resulting graph, the POG, is constructed from the intermediate graph by combining duplicate represen-
tations of the same partial order. The POG is derived from S so that each path from the root node to a leaf node



170 S Smmons et al. / Communication analysis of distributed programs

represents one partial order and each partial order is presented in one path of the POG. The generation of the POG
from C source code has been accomplished with a prototype system.

Causal and concurrent rel ationships can be derived from the POG and thisinformation can aid in solving difficult
distributed system challenges. Distributed assert statements provide ameansto monitor the execution of adistributed
system. By using the causal information contained in the POG, messages can be identified prior to execution
for delivering the state information to the assert’s control point for run-time evaluation. The POG enables the
identification of the latest causally preceding messages relative to the assert’s control point. A prototype two-pass
compiler exists for identifying the latest causally preceding messages and automating the piggybacking of relevant
statement information on these messages. The POG enables this ability.
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