
Scientific Programming 14 (2006) 231–250 231
IOS Press

An approach for the high-level specification
of QoS-aware grid workflows considering
location affinity

Ivona Brandic∗, Sabri Pllana and Siegfried Benkner
Institute of Scientific Computing, University of Vienna, Nordbergstraße 15, 1090 Vienna, Austria

Abstract. Many important scientific and engineering problems may be solved by combining multiple applications in the form of
a Grid workflow. We consider that for the wide acceptance of Grid technology it is important that the user has the possibility
to express requirements on Quality of Service (QoS) at workflow specification time. However, most of the existing workflow
languages lack constructs for QoS specification. In this paper we present an approach for high level workflow specification
that considers a comprehensive set of QoS requirements. Besides performance related QoS, it includes economical, legal and
security aspects. For instance, for security or legal reasons the user may express the location affinity regarding Grid resources
on which certain workflow tasks may be executed. Our QoS-aware workflow system provides support for the whole workflow
life cycle from specification to execution. Workflow is specified graphically, in an intuitive manner, based on a standard visual
modeling language. A set of QoS-aware service-oriented components is provided for workflow planning to support automatic
constraint-based service negotiation and workflow optimization. For reducing the complexity of workflow planning, we introduce
a QoS-aware workflow reduction technique. We illustrate our approach with a real-world workflow for maxillo facial surgery
simulation.

Keywords: Quality of Service (QoS), location affinity, workflow reduction, workflow planning, UML-based Grid workflow
specification

1. Introduction

The emergence of Grid technology is strongly af-
fecting the way in which information processing tasks
are performed. Grid users may specify the tasks that
should be performed at several levels of abstraction that
directly reflect their role within an organization. At the
top level of abstraction the user specifies the tasks that
should be performed on the Grid as a workflow. This
approach has the advantage that the user can map the
problem from his/her domain of interest to a workflow
in a straightforward manner. As a consequence, the
user does not have to be an expert of Grid technology

∗Corresponding author: I. Brandic, Institute of Scientific Comput-
ing, University of Vienna, Nordbergstraße 15, 1090 Vienna, Austria.
Tel.: +43 1 4277 39408; Fax: +43 1 4277 9394; E-mail: brandic@
par.univie.ac.at.

in order to specify the job that should be performed.
Therefore, the workflow paradigm is considered to be
very relevant for the wide acceptance of Grid technol-
ogy.

Currently a significant research effort is invested in
the development of workflow languages for Grid envi-
ronments [42]. However, most of the existing work-
flows are specified in textual form, or are composed
based on a self-defined graphical notation. Moreover,
there is a lack of adequate tool support for workflow
specification, and workflow specification tools are usu-
ally not well integrated with Grid environments. Fur-
thermore, many workflow languages do not provide
language constructs for QoS specification, or provide
only limited QoS support (for instance, only for perfor-
mance and economical related QoS). We believe that
while performance is of paramount importance for time
critical applications, the wide acceptance of Grid tech-

ISSN 1058-9244/06/$17.00 2006 – IOS Press and the authors. All rights reserved

232 I. Brandic et al. / An approach for the high-level specification of QoS-aware grid workflows considering location affinity

nology depends on security and legal aspects as well.
We have experienced that many potential users from
industry hesitate to use Grid technology even if the per-
formance and economical benefits are clear because of
security and legal concerns.

There is a large number of application domains for
Grid workflows, such as life sciences (for instance med-
ical simulation services) and engineering (for instance
vehicle development support), that demand a guaran-
tee that workflow activities are performed within the
specified time, cost, security, and legal constraints.
Therefore, we are developing an XML based language
for QoS-aware Grid workflows (QoWL), by extending
the Business Process Execution Language (BPEL) [27]
with language constructs for specification of QoS con-
straints [8]. A distinctive feature of QoWL is the abil-
ity to account for the user’s preferences regarding the
execution time and price of the activities as well as the
execution location affinity for activities with specific
security and legal constraints. The concept of location
affinity, introduced in this paper, facilitates the realiza-
tion of Virtual Organizations [16]. Furthermore, lo-
cation affinity enables the accounting of security and
legal QoS aspects at workflow specification time. In
order to streamline the process of workflow specifica-
tion, we have extended our graphical editor Teuta [35]
for QoWL. With Teuta the user specifies the workflow
graphically by using the Unified Modeling Language
(UML) [30]. From the UML based workflow represen-
tation Teuta automatically generates the correspond-
ing QoWL representation, which serves as input to the
QoS-aware Grid Workflow Engine (QWE). QWE per-
forms the necessary steps for the QoS-aware workflow
negotiation and execution [9]. During the planning
phase a set of QoS-aware service-oriented components
is provided that supports automatic constraint-based
service negotiation and workflow optimization. Dur-
ing the execution phase, using the information from the
planning phase, workflow activities are executed in the
manner that the specified requirements in terms of QoS
constraints are met.

A prerequisite for QoS-aware workflow execution
are QoS-aware services able to give QoS guarantees.
A QoS-aware service enables clients to inquire and ne-
gotiate about its QoS properties. This kind of support
is provided by Vienna Grid Environment (VGE) ser-
vices [4]. VGE has been utilized within the European
Commission funded GEMSS project which developed
a testbed for six medical simulation and image recon-
struction Grid services [18,3]. We evaluate our ap-
proach by specifying a QoS-aware Grid workflow for
maxillo facial surgery simulation.

The main contributions of this paper include: (1)
development of language support for specification of
security and legal QoS constraints; (2) definition of
a UML based Domain Specific Language (DSL) for
QoS-aware Grid workflows; (3) extension of Teuta for
QoWL, and integration of Teuta with QWE; (4) expla-
nation of an approach for QoS-aware workflow reduc-
tion that simplifies the planning phase; and (5) expla-
nation of basic mechanisms for QoS-aware planning,
negotiation and execution.

The rest of this paper is organized as follows. Sec-
tion 2 presents VGE services which are prerequisites
for QoS-aware Grid workflow execution. Section 3
describes our approach for graphical specification of
QoS-aware Grid workflows. Our implementation is
outlined in Section 4. In addition Section 4 introduces
our approach for QoS-aware Grid workflow reduction
that streamlines the workflow planning process. Sec-
tion 5 demonstrates the application of our approach by
modeling a maxillo facial surgery simulation workflow.
We compare and contrast the work presented in this pa-
per with related work in Section 6. Section 7 presents
our conclusions and describes future work.

2. Preliminaries: Vienna Grid Environment
(VGE)

An important prerequisite for the development of
QoS support for Grid workflows are QoS-aware Grid
services, which are capable of providing service guar-
antees for the specified QoS requirements. The Vi-
enna Grid Environment (VGE) [4] is a service-oriented
Grid infrastructure for the provision of HPC applica-
tions as QoS-aware Grid services. VGE relies on stan-
dard Web Services technologies such as WSDL, SOAP,
WS-Security, Tomcat and Axis. VGE services enclose
native HPC applications, usually parallel MPI codes
running on a cluster, and expose their functionality via
a set of common operations for job execution, job mon-
itoring, data staging and error recovery.

In addition, VGE services may be configured in or-
der to offer QoS guarantees with respect to response
time, price and location affinity. VGE services sup-
port a dynamic QoS negotiation model where clients
may negotiate various QoS guarantees with multiple
service providers [5]. VGE services rely on a generic
QoS module, which usually comprises: an application-
specific performance model, a pricing model, a com-
pute resource manager that supports advance reserva-
tion, and a QoS manager. An application-specific per-

I. Brandic et al. / An approach for the high-level specification of QoS-aware grid workflows considering location affinity 233

Client
Candidate
Service

QoS Request, Request Descriptor

QoS Offer (WSLA)

Confirm QoS Offer

Signed QoS Contract (WSLA)

Fig. 1. QoS negotiation scenario.

formance model usually takes as input a request de-
scriptor, containing input meta data, and a machine
descriptor which specifies the amount of machine re-
sources (e.g. number of processors, main memory, etc.)
that may be provided for an application. Input meta
data indicates the information that describes the input
data of a service. Commonly, meta data is used for the
performance evaluation of a service during the gener-
ation of QoS offers. Payload data denotes input and
output data of a service operation.

The basic QoS negotiation scenario, as shown in
Fig. 1, is based on a request/offer model, where a client
requests offers from services. Upon start of a QoS
negotiation, the client specifies the desired QoS con-
straints (e.g. earliest begin time of a job, latest finish
time) within a QoS request. Furthermore, the client
provides a request descriptor containing input meta
data for a specific service request. For example, in
the case of a finite element method (FEM) simulation,
input meta data in the request descriptor would typi-
cally include the size of the finite-element model or the
number of iterations to be performed.

On the service-side, the input meta data is fed into
an application-specific performance model in order to
obtain an estimate for the required execution time. In
case of parallel MPI applications, the QoS manager,
which controls the QoS negotiation on the service-side,
uses heuristics to determine the number of processors
required to execute a service request within the user-
specified time constraints. The QoS manager then in-
teracts with the compute resource manager to check
whether a reservation of the required machine resources
can be made at the required time. If QoS support for

the price of a service request is required, the QoS man-
ager subsequently invokes the pricing model to check
whether the client’s price constraints can be met. If
all QoS constraints can be fulfilled, a temporary re-
source reservation is made and a corresponding QoS
offer in the form of a Web Service Level Agreement
(WSLA) [38] document is returned to the client (see
Fig. 1). Only when the client, which usually negoti-
ates with multiple service providers to get the best deal,
confirms an offer, a signed QoS contract in the form
of a WSLA is established. Temporary reservations for
offers that are not confirmed by the client expire within
a short time frame.

When a client has successfully negotiated the re-
quired QoS with a service provider and a QoS contract
is in place, the usual job execution phase can be entered,
which comprises the invocation of service operations
for uploading the input data, for starting the job exe-
cution and for downloading the result. In order to sup-
port direct data transfer between services, correspond-
ing push and pull operations are supported as well. The
generic QoS module of VGE enables the provision of
parallel applications as dynamically configurable Grid
services. Depending on the requirements of a client,
an application may be executed on many processors in
short time but for a higher price, or it may be executed
on a few processors with a lower price.

The VGE service provision model and QoS support
have been successfully applied within the European
GEMSS project for the development of six medical
Grid applications [22] which utilize computationally
demanding methods such as parallel FEM simulation,
parallel Computational Fluid Dynamics and parallel
Monte Carlo simulation, realized as remote Grid ser-
vices running on clusters or other parallel computing
platforms.

3. High-level specification of QoS-aware workflows

In this section we first briefly describe the QoWL
language, which is an XML based language for QoS-
aware Grid workflows. Thereafter, we present a UML-
based graphical representation of QoWL.

3.1. Quality of service aware grid workflow language
(QoWL)

QoWL comprises a subset of the Business Process
Execution Language (BPEL) [27] and a set of QoS ex-
tensions that is used for specification of the QoS re-

234 I. Brandic et al. / An approach for the high-level specification of QoS-aware grid workflows considering location affinity

quirements of Grid workflows considering begin time,
response time, price and location affinity. The elements
of our BPEL subset include: Process, Invoke, Copy,
Sequence, Flow, Receive, Reply, Switch, and While.
QoWL elements are used for the specification of QoS
before QoS negotiation and for the expression of QoS
after negotiation.

Figure 2 depicts the structure of a QoWL ele-
ment. A QoWL element is defined as a BPEL ele-
ment extended with a set of QoS constraints. The at-
tributes of the qowl-element, such as name and
portType, are used as defined in the BPEL speci-
fication [27]. The <qos-constraints> element
specifies the QoS constraints of a specific workflow
element. The attribute reqDescVar defines the
variable which specifies the input meta data. Each
<qos-constraints> element may contain several
<qos-constraint> elements. Each element of
type<qos-constraint> specifies a QoS constraint
as a tuple (name, value, weight).

QoS extensions are used to express both the re-
quested QoS constraints of a workflow before the QoS
negotiation (see Fig. 3a) and the offered QoS of a work-
flow after the negotiation with the services (see Fig. 3b).
Please note that offered QoS may differ from the re-
quested one.

3.1.1. Specification of QoS constraints
Figure 3 depicts the abstract workflow before the

QoS negotiation and the concrete workflow after the
QoS negotiation.

Figure 3(a) depicts a fragment of an abstract work-
flow that represents an <invoke> activity. The
<qos-constraint> element named beginTime
specifies the earliest begin time of the workflow exe-
cution. The budget for the activity execution is spec-
ified defining the price <qos-constraint> el-
ement. The weight attribute may be used to bal-
ance the effect of different QoS constraints on the ser-
vice selection process. The weight attribute is speci-
fied for the beginTime, endTime and the price
elements. The <candidate-registry> element
specifies where potential services may be found. The
<candidate-registry> element may be speci-
fied by the user or automatically mapped from the work-
flow engine as predefined option. Generally, candi-
date registries comprise a number of dynamically reg-
istered services. Keywords may be used in order to find
matching services.

The<invoke> elementstartdepicted in Fig. 3(a)
comprises the set of constraints defined within the

<qos-constraints> element (see lines 4–16 in
Fig. 3(a)). The <qos-constraints> element con-
tains one <candidate-registry> element (see
line 5 in Fig. 3(a)). The meta data necessary for
QoS negotiation of that activity is specified using the
startReqDesc variable. The payload data is set
using the startRequest variable.

Additionally, the user may express preferences re-
garding the location of Grid resources where an activity
should be executed, by specifying the Grid site, orga-
nizational, or geographical affinity. For instance, the
QoS constraint geographicAffinity with value
at specifies that the activity should be executed on
Grid resources that are geographically located in Aus-
tria (see lines 14–15 in Fig. 3(a)).

Figure 3(b) depicts a corresponding concrete work-
flow. Now, in the concrete workflow, the <invoke>
elementstart contains instead of the<candidate-
registry> element a wsdl attribute with the end-
point of the selected service (see line 3 in Fig. 3(b)).
The <qos-constraints> element now also con-
tains the wslaVar variable specifying the Service
Level Agreement between the engine and the particular
service. The <qos-constraints> element of the
invoke activity considers the offered QoS of a VGE
service.

3.1.2. Specification of location affinity with QoWL
Most of the existing related work focuses on per-

formance (i.e. activity execution time) and economical
aspects (i.e. activity price) of QoS [41,43]. We believe
that while performance is of paramount importance for
time critical applications, the wide acceptance of Grid
technology strongly depends on security and legal as-
pects. We have experienced that many potential users
from industry hesitate to use Grid technology even if
the performance and economical benefits are clear be-
cause of security and legal concerns [20]. Therefore,
we consider that it would be useful if the user has the
possibility to restrict the location of Grid resources on
which certain activities may be executed. For instance,
for security or legal reasons the user may specify that
an activity should be executed only on Grid resources
that belong to the user’s organization.

Figure 4 depicts how location affinity can be ex-
pressed with QoWL. The user may specify that a cer-
tain workflow activity should be executed on a specific
Grid site, on the Grid resources of a specific organiza-
tion, or on the Grid resources of a specific geographical
region.

I. Brandic et al. / An approach for the high-level specification of QoS-aware grid workflows considering location affinity 235

<qowl-element name=�activityName� portType=�...� wsdl=�...� ...>

...

<qos-constraints reqDescVar=�...�>

<qos-constraint name=�beginTime� value=�...� weight=�...� />

<qos-constraint name=�endTime� value=�...� weight=�...� />

<qos-constraint name=�price� value=�...� weight=�...� />

<qos-constraint name=�geograficAffinity� value=�...� />

...

</qos-constraints>

</qowl-element>

qowl-element represents
any element of our
BPEL subset

QoS extension of
a BPEL element

Fig. 2. The structure of a QoWL element.

1. ...

2. <invoke name="start" portType="appex"

3. operation="start" inputVar="startRequest">

4. <qos-constraints reqDescVar="startReqDesc">

5. <candidate-registry inputVar="queryRequest"

6. ...

7. wsdl="http://kim:9357/registry/reg?wsdl"/>

8. <qos-constraint name="beginTime" weight="0.3"

9. value="18-08-2005 12:00:00,0 MET" />

10. <qos-constraint name="endTime" weight="0.2"

11. value="18-08-2005 14:00:00,0 MET" />

12. <qos-constraint name="price" weight="0.5"

13. value="20.00" />

14. <qos-constraint name="geographicAffinity"

15. value="at" />

16. </qos-constraints>

17. </invoke>

18. ...

(a)

1. ...

2. <invoke name="start" portType="appex"

3. wsdl="http://bridge:9355/SPECT/appex?wsdl"

4. operation="start" inputVar="startRequest">

5. <qos-constraints reqDescVar="startReqDesc"

6. wslaVar="wslaStart">

7. <qos-constraint name="beginTime" weight="0.3"

8. value="18-08-2005 12:13:06,0 MET" />

9. <qos-constraint name="endTime" weight="0.2"

10. value="18-08-2005 13:45:04,0 MET" />

11. <qos-constraint name="price" weight="0.5"

12. value="16.00" />

13. <qos-constraint name="geographicAffinity"

14. value="at" />

15. </qos-constraints>

16. </invoke>

17. ...

(b)

Fig. 3. Examples of abstract and concrete QoWL workflows. (a) An excerpt of an abstract QoWL workflow. (b) An excerpt of a concrete QoWL
workflow.

Commonly Grid site affinity is not specified by the
user, but the Grid environment automatically maps
workflow activities to Grid resources based on the avail-
ability and performance of resources [10]. Usually, the
goal is to minimize workflow execution time. But, in
the case that the user has the information (related to se-
curity or law) which can not be automatically obtained
by the Grid environment, then he can manually map
the activity to a specific Grid site. Such examples are
medical applications with legal restriction considering
electronic transfer of patient specific data [17]. Grid
site preference is specified by using the QoS constraint

named gridSiteAffinity. Figure 4 shows that
activities A3 and A5 encompassed by group G1 should
be on the same Grid site. The reason could be the large
data transfer between the activities A3 and A5 or some
security reasons. The QoWL code of A3, A7 and A11
depicts the specification of the affinity on the language
level (see Fig. 4).

Organization affinity indicates the preference of the
user regarding the location where an activity should be
executed considering resources that belong to a specific
organization. These resources can be geographically
distributed. The user’s preferences may be based on

236 I. Brandic et al. / An approach for the high-level specification of QoS-aware grid workflows considering location affinity

<qowl-element name="A3" ...>
 ...
 <qos-constraints ...>
 ...
 <qos-constraint
 name="gridSiteAffinity"
 value="SID"/>
 </qos-constraints>
</qowl-element>

<qowl-element name="A7" ...>
 ...
 <qos-constraints ...>
 ...
 <qos-constraint
 name="organizationAffinity"
 value="OID"/>
 </qos-constraints>
</qowl-element>

<qowl-element name="A11" ...>
 ...
 <qos-constraints ...>
 ...
 <qos-constraint
 name="geographicAffinity"
 value="GID"/>
 </qos-constraints>
</qowl-element>

Workflow

A1

A3

A2

A5

A7A4

A9

A12

A8A6 A10 A11 A13

A14

A15

G1

G2

G3

Affinity: Grid Site Affinity: Organization

Affinity: Geography

Fig. 4. Specification of location affinity with QoWL.

established trust relationships with other companies.
For instance, a vehicle producing company may wish
to execute certain critical activities on a subset of the
Grid in order to ensure that any relevant information
is not visible for competitors. Organization prefer-
ence is specified by using the QoS constraint named
organizationAffinity. Figure 4 depicts that
activities A7, A8, A10 and A11 encompassed by group
G2 should be executed on resources that belong to the
same organization.

Geographical affinity indicates the preference of the
user regarding the location of activity execution on
Grid resources that belong to a specific geographi-
cal region. Examples of geographical region include:
country, state, or set of states. For instance several
countries which have the same legal conditions for the
electronic transfer of medical data may be eligible for
execution of certain activities. Geographical prefer-
ence is specified by using the QoS constraint named
geographicAffinity. Figure 4 shows that activ-
ities A11, A12, A13 and A14 encompassed by group

G3 should be executed on resources that belong to the
same geographic region.

The agreement on time and cost constraints as well
as location affinity constraints requires a negotiation
process with the candidate services as described in Sec-
tion 4.4.3. The specified location affinity may be in-
tegrated with the available security infrastructure, such
as Web Services Policy [39]. The security and legal re-
lated QoS can be used to support the concept of Virtual
Organization (VO). The concept of VO defines poli-
cies governing access to resources of the organizations
(such as unique authentication, authorization) which
form a specific VO [16]. Location Affinity can be used
to determine which of the available resources of a VO
best satisfies legal and security requirements of a spe-
cific application (e.g. medical application). In addition,
the concept of location affinity permits the user to use
selectively Grid resources of several VO’s. Therefore,
the concept of location affinity can be used supplemen-
tary to the concepts of VO. The location affinities may
be mapped to the security credentials of the particular
VO.

I. Brandic et al. / An approach for the high-level specification of QoS-aware grid workflows considering location affinity 237

In the following section we describe the UML-based
modeling of QoWL elements.

3.2. The definition of a UML-based DSL for
QoS-aware workflows

The UML 2.0 specification [30] provides a large set
of modeling elements and diagrams for modeling vari-
ous types of software and hardware systems. UML has
a modular nature, with the diagram type being the unit
of modularity. From the available 13 UML diagram
types, we use only activity diagrams for modeling Grid
workflows. UML activity diagrams are suitable for
flow modeling of various types of software or hardware
systems. Hierarchical capabilities of UML activity di-
agrams support modeling of systems at arbitrary levels
of detail and complexity. For instance, it is possible
to group a set of activities with the corresponding flow
into a higher-level activity with a well defined input
and output.

In order to enable the modeling of different types
of systems, the UML modeling elements are specified
in an abstract manner without conceptual connection
with a particular domain. However, too generic se-
mantics of UML modeling elements may present an
obstacle for using UML in a specific domain. For this
reason, the UML specification defines the mechanisms
for specializing semantics of modeling elements for a
particular domain. We have defined a Domain Spe-
cific Language (DSL) for QoS-aware Grid workflows
by using the UML extension mechanisms. The UML
may be extended by defining new modeling elements,
stereotypes, based on existing elements, base classes
(i.e. metaclasses). A stereotype is defined as a sub-
class of an existing UML metaclass, with the associated
tagged values (i.e. meta attributes). Stereotypes are
denoted by the stereotype name enclosed in guillemets
<<StereotypeName>>, or by a specific graphic icon.

The benefits of definition of a DSL for the domain
of QoS-aware Grid workflows include: (1) the user is
exposed to only domain-relevant UML modeling ele-
ments, (2) the language concepts have domain-specific
interpretation, and (3) models may be enriched with
information that is used by tools for automatic model
transformation (for instance to XML) or model pro-
cessing (for instance for the purpose of QoS negotia-
tion).

For each element of our XML-based language
QoWL we have defined an element of UML-based
DSL. Fig. 5 depicts an example for defining elements of
our DSL for the domain of QoS-aware Grid workflows.

For the Invoke QoWL element depicted in Fig. 5(a)
the corresponding DSL element is defined by stereo-
typing the UML metaclass Action (see Fig. 5(b)). The
Invoke activity is used for the invocation of services.
The tagged values portType, operation, inputVar and
outputVar may be used for specification of the informa-
tion that is needed for service invocation. The graphi-
cal notation of stereotype Invoke is illustrated with an
example in Fig. 5(c).

Figure 6 depicts the structure of type QTypes, whose
instances are used to specify the tagged value qosCon-
traints. QTypes contains the reqDescVar attribute,
which specifies the meta data that may be used for
performance prediction of the service. Additionally,
QTypes comprises zero or more entities of type QType
that are used for description of specific QoS constraints
(e.g. required execution time). Moreover, QTypes com-
prises zero or more entities of type RegType that may be
used for the specification of registries where potential
services can be found.

The rest of the elements of our UML-based DSL
are defined in an analogous manner. Figure 7 depicts
the complete list of modeling elements of our DSL for
QoS-aware Grid workflows. The first column shows
the names of newly defined UML modeling elements
(such as Process). The second column shows the UML
elements that serve as base classes for customization
(for instance, Activity). Tagged values are shown in the
third column. The fourth column provides the descrip-
tion of DSL elements.

3.3. Graphical representation of QoWL elements with
the UML-based DSL

Basic elements of QoWL are not further decomposed
into other elements. QoWL elements of this kind are:
Invoke, Copy, Receive, and Reply. The graphical rep-
resentation of the element Invoke is depicted in Fig. 5.
Other basic elements of QoWL are represented with
the UML-based DSL in an analogous manner.

Complex elements of QoWL may comprise basic and
complex elements. According to annotation strategies
defined in [9] the QoS of a workflow may be specified
(i) locally for basic activities, (ii) globally for the overall
workflow or (iii) locally for the critical basic or complex
activities. QoWL complex elements are: Sequence,
Flow, Switch, While, and Process. The modeling of
QoWL complex elements with the UML-based DSL is
described in the following.

238 I. Brandic et al. / An approach for the high-level specification of QoS-aware grid workflows considering location affinity

<invoke name="start" portType="appex"

wsdl="http://bridge:9355/SPECT/appex?wsdl"

operation="start" inputVar="startRequest">

<qos-constraints reqDescVar="startReqDesc">

<qos-constraint name="beginTime" weight="0.3"

value="18-08-2005 12:00:00,0 MET"/>

<qos-constraint name="endTime" weight="0.2"

value="18-08-2005 14:00:00,0 MET" />

<qos-constraint name="price" weight="0.5"

value="20.00" />

<qos-constraint name="geographicAffinity"

value="GID" />

</qos-constraints>

</invoke>

(a)

Action
«metaclass»

Invoke
«stereotype»

portType:String
wsdl:String
operation:String
inputVar:String
outputVar:String
qosContraints:QTypes

(b)

{portType = appex,
wsdl = http://bridge:9355/
SPECT/appex?wsdl,
operation = start,
inputVar = startRequest,
qosContstraints = qti:QTypes}

Start
«Invoke»

(c)

Fig. 5. Stereotype Invoke. (a) QoWL. (b) Definition. (c) Usage.

+reqDescVar : String
+qosConstraints : ArrayList
+registries : ArrayList

QTypes

+name : String
+weight : String
+value : String

QType

+inputVar : String
+outputVar : String
+wsdl : String

RegType
10..*

1 0..*

Fig. 6. The structure of QTypes.

3.3.1. The Sequence element
The Sequence element specifies a set of activities that

should be executed sequentially in the predefined order.
Usually, the data dependency determines the execution
order of activities within the sequence.

Figure 8(a) depicts an instance of the Sequence el-
ement. The qti:QTypes attribute defines the QoS con-
straints. Figure 8(b) shows the comprised activities
within the SampleSequence element. Figure 8(c) de-
picts an object qti of type QTypes.

QoS information: The user may specify the QoS
constraints for the Sequence element. Figure 8(c) de-
picts an example of the qti object that comprises four
constraints of type QType namely c1, . . . , c4. The c1
constraint defines the earliest possible begin time of
the execution of the SampleSequence. c2 defines the
latest possible end time of the execution of the Sam-
pleSequence. c3 defines the maximum price whereas
the geographicAffinity constraint specified within c4
defines that all comprised activities of the SampleSe-
quence should be located in Middle Europe. The exe-
cution of comprised activities should comply with the
QoS constraints of Sequence as follows,

–
∑n

i=1 time(Ai) should not exceed the specified
time for Sequence,

–
∑n

i=1 price(Ai) should not exceed the specified
price for Sequence,

– the location affinity is inherited by all comprised
activities.

Let Ai denote the ith activity in the Sequence and n
the number of comprised activities within the Sequence.
The execution time of an activity (Ai) can be calculated
as follows,

time(Ai) = endTime(Ai) − beginTime(Ai). (1)

The geographicAffinity is defined in the down-right
part of Fig. 8(c) (see object c4). Location affinity may
be defined as set of values. For example if MiddleEu-
rope is defined as follows

MiddleEurope = {Austria, Czech Republic,
(2)

Germany, Poland, Slovakia, Switzerland}
the selected services may be located in any of coun-
tries defined in Eq. (2). In the similar way the multi-
ple values for the gridSiteAffinity and for the
organizationalAffinitymay be specified.

In the following Sections 3.3.2 – 3.3.5 we use the ob-
ject qti:QTypes for the association of QoS constraints
to workflow elements. An example of the content of
object qti:QTypes is depicted in Fig. 8(c), and there-
fore, we do not repeat it for the remaining workflow
elements. In the remaining part of this document, it is
presumed that time(Ai) is calculated using the Eq. (1).

3.3.2. The Flow element
The Flow element specifies that a set of activities

may be executed concurrently.

I. Brandic et al. / An approach for the high-level specification of QoS-aware grid workflows considering location affinity 239

Stereotype Base Class Tags Description
Process

«Process»

Activity qosConstraints:QType,

variables:VType

Indicates that Activity represents a

workflow process

Invoke

«Invoke»

Action qosConstraints:QType,

portType:String,

operation:String,

inputVar:String,

outputVar:String,

wsdl:String

Indicates that Action represents the

operation invocation of an external Grid

Service

Copy

«Copy»

Action From:FromType,

To:ToType

Indicates that Action represents the data

value assignment

Sequence

«Sequence»

SequenceNode qosConstraints:QType

Indicates that SequenceNode represents a

series of actions which are executed

sequentially

Flow

«Flow»

StructuredActivityNode qosConstraints:QType

Indicates that StructuredActivityNode

represents a set of actions which may b e

executed concurrently

Receive

«Receive»

AcceptEventAction portType:String,

operation:String,

variable:String,

wsdl:String

Indicates that AcceptEventAction

represents a blocking message receive

Reply
«Reply»

SendSignalAction portType:String,

operation:String,

variable:String,

wsdl:String

Indicates that SendSignalAction represents

the reply message to a message

that was received through a «Receive»

Switch

«Switch»

DecisionNode qosConstraints:QType

Indicates that DecisionNode represents the

conditional execution

While

«While»

LoopNode condition:Boolean Indicates that LoopNode represents a while

loop. The loop body is executed until the

condition is violated.

Fig. 7. Elements of the UML-based DSL for QoS-aware workflows.

SampleSequence
«Sequence»

{qosConstraints =
qti:QTypes}

(a)

A1

A2

A3

SampleSequence
«Sequence»

(b)

c1:QType

name = beginTime

weight = 0.3

value = 18-08-2006

10:00:00,0 MET

c2:QType

name = endTime

weight = 0.1

value = 18-08-2006

12:00:00,0 MET

c3:QType

name = price

weight = 0.6

value = 20 Euro

c4:QType

name = geographicAffinity

value = MiddleEurope

qti:QTypes

(c)

Fig. 8. QoWL element Sequence.

Figure 9(a) depicts an instance of the Flow element.
The qti:QTypes attribute defines the QoS constraints.
Figure 9(b) shows the comprised activities, A1 and

A2, within the Flow element that should be executed
concurrently.

QoS information: The user may specify the QoS

240 I. Brandic et al. / An approach for the high-level specification of QoS-aware grid workflows considering location affinity

«Sequence»

{qosConstraints =
qti:QTypes}

SampleFlow
«Flow»

(a)

A1

SampleFlow
«Flow»

A2

(b)

Fig. 9. QoWL element Flow.

constraints for the Flow element. The execution of
the comprised activities should comply with the QoS
constraints of Flow as follows,

– Max{time(Ai)|i = 1, . . . , n} should not exceed
the specified time for Flow,

–
∑n

i=1 price(Ai) should not exceed the specified
price for Flow,

– the location affinity is inherited by all comprised
activities,

where n is the number of comprised activities within the
Flow, Ai is the ith activity of the Flow, and time(Ai)
is calculated as defined in Eq. (1).

3.3.3. The Switch element
The Switch element specifies that one of the alternate

execution paths is selected based on a condition. The
condition is specified as a Boolean expression.

Figure 10(a) depicts an instance of the Switch ele-
ment. The qti:QTypes attribute defines the QoS con-
straints. Figure 10(b) shows the comprised activities,
A1 and A2, within the Flow element. If the Boolean
case condition evaluates to true, then activity A1 is
executed, otherwise A2.

QoS information: The user may specify the QoS
constraints for the Switch element. The specified QoS
constraints have to be satisfied for each possible exe-
cution path. The execution of the comprised activities
should comply with the QoS constraints of Switch as
follows,

– Max{time(Ai)|i = 1, . . . , k} should not exceed
the specified time for Switch,

– Max{price(Ai)|i = 1, . . . , k} should not exceed
the specified price for Switch,

– the location affinity is inherited by all comprised
activities,

SampleSwitch
«Switch»

{qosConstraints =
qti:QTypes}

(a)

A1

SampleSwitch
«Switch»

A2

[case condition] [otherwise]

(b)

Fig. 10. QoWL element Switch.

SampleWhile
«While»

{condition =
"BooleanExpression"}

(a)

A1

A2

SampleWhile
«While»

(b)

Fig. 11. QoWL element While.

where k is the number of comprised execution paths
within the Switch element, Ai is the ith branch of the
Switch, and time(Ai) is calculated as defined in Eq. (1).

3.3.4. The While element
The While element specifies the iterative execution of

the comprised activities as long as the specified boolean
expression evaluates to true.

Figure 11(a) depicts an instance of the while ele-
ment. The condition attribute specifies the Boolean ex-
pression which is evaluated before each iteration. Fig-
ure 11(b) shows the comprised activities, A1 and A2,
within the While element.

QoS information: Because in the general case it is
difficult to determine exactly the number of iterations
in advance, commonly the performance related QoS
for the While element is not specified. However, based
on historical data (that is data obtained from previous
executions) it is possible to predict the number of it-
erations for specific cases. Also usage of probabilistic

I. Brandic et al. / An approach for the high-level specification of QoS-aware grid workflows considering location affinity 241

SampleProcess
«Process»

{qosConstraints =
qti:QTypes,
variables = vt:VType}

(a)

SampleSwitch

SampleReply

SampleProcess
«Process»

«Switch»

SampleReceive
«Receive»

«Reply»

(b)

Fig. 12. QoWL element Process.

models for the prediction of the number of iterations is
conceivable. Therefore, the performance related QoS
may be specified but in the general case can not be guar-
anteed. The QoS constraints that are related to location
affinity are specified for the While element in the same
manner as for other workflow elements.

3.3.5. The Process element
The Process element specifies the overall workflow.

It comprises all other elements of the workflow.
Figure 12(a) depicts an instance of the Process ele-

ment. The qti:QTypes attribute defines the QoS con-
straints. The vt:VType defines the global variables of
the workflow. Figure 12(b) shows the comprised activ-
ities within the Process element.

QoS information: The user may specify the QoS con-
straints for the Process element. The execution of the
comprised activities should comply with the QoS con-
straints of Process. Generally, process element com-
prises one complex element as a root element (e.g. Se-
quence). The root element may comprise other basic
or complex elements.

4. QoS-aware workflow system

In this section we describe our system that provides
support for the whole workflow life cycle from specifi-
cation to execution.

4.1. Architectural overview

Figure 13 shows the architecture of our system for
QoS-aware Grid workflows. The main components
include: (1) Teuta, which is a UML based graphical
editor for workflow specification; (2) QWE, which is
a QoS-aware workflow engine; and (3) VGE services,
which are QoS-aware Grid services.

A user may specify the workflow with Teuta by com-
posing the predefined elements of UML-based DSL for
QoS-aware workflows (see Section 3.3). Furthermore,
for each workflow element different parameters (such
as execution time, price, location affinity) may be speci-
fied that determine the user’s QoS requirements. There-
after, Teuta verifies whether the specified workflow is
well defined. In the case that the workflow model is
well defined, Teuta generates the corresponding QoWL
representation. The QWE engine interprets the QoWL
workflow, negotiates with available services, applies
the selected workflow planning strategy, selects appro-
priate services and finally executes the specified work-
flow. If the specified tasks need QoS guarantees we
use VGE services, which are able to give certain QoS
guarantees. In other cases (for instance in case that exe-
cution time of the service is negligible) the use of other
non-VGE services may be considered. In the follow-
ing the main architectural components are explained in
more detail.

4.2. Teuta

Teuta is a UML-based graphical editor. It is de-
signed as a platform independent, configurable and ex-
tensible tool. Therefore, it is possible to extend Teuta
with new types of diagrams and modeling elements
for various domains. Examples of usage of Teuta in-
clude performance modeling of high performance pro-
grams [35] and specification of scientific workflows
within the framework of Askalon project [2]. In or-
der to provide tool-support for our approach described
in this paper we have extended Teuta for QoS-aware
workflows and integrated with QWE.

The Teuta architecture is shown on the left-hand side
of Fig. 13. Teuta comprises three main components:
Graphical User Interface (GUI), Model Checker, and
Model Traverser. We illustrate the GUI of Teuta with
examples of real-world workflows in Section 5.

The Model Checker verifies whether the model is
well defined. The rules for model checking are spec-
ified by using our XML-based Model Checking Lan-
guage (MCL). The model checker gets the model de-

242 I. Brandic et al. / An approach for the high-level specification of QoS-aware grid workflows considering location affinity

Other
Non-VGE Services

QoWL

QoS
Executor

QoS
Negotiator

Service Deployer
and Generator

Planner
(static/dynamic)

XML Parser /
Unparser

QWE

Grid Infrastructure

Apache AXISTomcat

QoS-aware
VGE Services

Teuta

Model
Traverser

Model
Checker

GUI

Service
1

... Service
N

Service
N

Service
1

...

Fig. 13. Architecture of the system for QoS-aware Grid workflows.

scription from an MCL file. This MCL file contains
a list of available diagrams, modeling elements and
the set of rules that defines how the elements may be
interconnected.

The Model Traverser provides the possibility to walk
through the model, to visit each modeling element, and
to access its properties (for instance QoS constraints).
We use model traversing for the generation of various
model representations; for instance, a QoWL represen-
tation serves as input for QWE engine (see Fig. 13).

4.3. QWE

The QoWL documents generated by Teuta can be
executed using the QoS-aware Grid Workflow Execu-
tion Engine (QWE). In this section we briefly describe
the main components of QWE. A more comprehensive
description of QWE can be found in [9].

QWE is depicted on the right-hand side of Fig. 13.
The main parts of the QWE engine are: (1) the XML
parser and unparser which generates the intermedi-
ary representation of the QoWL workflow; (2) the QoS
Negotiator queries the registries, generates necessary
QoS requests and receives offers from services; (3)
the Planner component calculates a workflow execu-
tion plan considering the selected workflow planning
strategy (static or dynamic) and the selected workflow
planning technique (Integer Programming, Genetic Al-
gorithm, MCDM, etc.); (4) the Service Deployer and
Generator exposes a QoWL workflow as a Web Ser-
vice and the QoS Executor starts the execution of the
QoWL workflow.

4.4. Planning

The workflows, which are specified using Teuta, are
transformed into a concrete workflow using the Work-
flow Planner component. The aim of this component
is to automate the selection of services in accordance
with the requested QoS. Workflow planning comprises
the following phases: (1) selection of the workflow op-
timization strategy, (2) QoS-aware workflow reduction,
(3) negotiation and (4) the workflow optimization.

4.4.1. Workflow optimization strategy selection
We distinguish between static and dynamic work-

flow planning strategies. The decision whether static or
dynamic planning techniques should be used, depends
on the meta data of the invoked services. If all meta
data required for QoS prediction is known before the
workflow execution, the static planning strategy can
be selected. If the meta data is generated or changed
during workflow execution, the dynamic planning ap-
proach has to be used. Static planning implies the gen-
eration of the concrete workflow before the execution
of the first workflow activity. In the case of the dynamic
planning approach the concrete parts of the workflow
are created for the ready-to-start activities during the
workflow execution. The Meta Data Flow Analyzer
(MDFA) verifies whether the static planning approach
is feasible. We distinguish two types of variables: (1)
the payload variables (PV), such as input data of the in-
voked services, and (2) the meta data variables (MDV),
that describe the service input data (for instance the size
of the input file, matrix size, etc.). The MDFA checks
whether any MDV appears as output of any invoke, re-

I. Brandic et al. / An approach for the high-level specification of QoS-aware grid workflows considering location affinity 243

ceive or copy activity. In this case, only the dynamic
planning approach can be used.

4.4.2. Workflow reduction
The planning for real-world workflows is an NP-hard

problem. But, the task of workflow planning may be
alleviated by reducing the complexity of the workflow.
Commonly, Grid workflows are composed of several
activities where some of them are time intensive, cost
intensive or security relevant. Such activities deter-
mine the QoS of the overall workflow. Other kinds of
activities (e.g. control tasks) that do not significantly
affect the overall QoS may be neglected during the op-
timization phase of the workflow planning. Workflow
reduction can be done in several ways either manually
or automatically. In the first case the user can manu-
ally select services which should be considered for the
workflow planning. In the second case the resource
consuming activities may be detected by considering
all activities which have associated QoS. In the third
case, if for example QoS is assigned only on the global
level, a trial workflow run may be done in order to figure
out which of the specified resources offer/demand QoS.
Thus, resource intensive activities may be detected.

Figure 14(a) depicts the Maxillo Facial Surgery Sim-
ulation (MFSS) workflow [11]. We provide a detailed
description of MFSS in Section 5. Here we use the
MFSS workflow for the illustration of our QoS-aware
workflow reduction method. The process of elimina-
tion of activities without QoS constraints from the plan-
ning process is called QoS-aware workflow reduction.
Workflow reduction is done after workflow specifica-
tion and before QoS negotiation (see Section 4.4.3). In
the case of MFSS the workflow reduction is performed
by eliminating all activities which do not have specified
QoS constraints. Figure 14(b) represents the reduced
QoS model of the MFSS workflow. The QoS model
may be specified for: (1) a single activity (e.g. Up-
loadOperation) which can be basic or complex, (2) the
overall reduced workflow (e.g. activities UploadOper-
ation, StartOperation and DownloadOperation). All
aforementioned activities belong to the complex activ-
ity FEMSequence. The QoS model considers the se-
lected optimization strategy and the aggregation func-
tion.

4.4.3. QoS negotiation
Based on the selected optimization strategy the WF

Negotiator queries the specified registries, generates
necessary requested QoS and receives offered QoS from
services. Figure 15 depicts the negotiation process

and participating components. The WF Planner starts
the negotiation by initializing one or more instances
of WF Negotiator. Each instance is responsible for
the negotiation process of one activity. In the case of
static planning, negotiation starts concurrently for all
activities of the reduced QoS-aware model.

After the initialization of WF Negotiators, each
WF Negotiator supplies each candidate service with a
QoSRequest (QoSReq) and a RequestDescriptor (Re-
qDesc). A QoSReq contains requested QoS, whereas a
ReqDesc contains meta data about input data necessary
for the evaluation of QoS constraints. If the requested
QoS is not specified, the WF Negotiator supplies an
empty QoSReq and the service responses with offered
QoS that is not optimized for any QoS constraint (i.e.
for time or price) (see Fig. 15). If the QoSReq is speci-
fied, each service tries to meet the specified constraints.
For instance if a low price is requested, a service may
run the application on fewer nodes to meet the price
constraint. After collecting all offers each WF Nego-
tiator notifies the WF Planner about received offers.
Thereafter, the WF Planner selects appropriate services
which fit into global or local constraints by applying the
selected optimization strategy. The selected services
are confirmed and the WSLA is generated between ser-
vices and the QWE.

4.4.4. Optimization
For the static planning approach we use lp solve,

which is a mixed-integer linear programming (lp) pack-
age [24]. lp solve is suitable for solution of global op-
timization problems. It can be applied to the planning
of the whole workflow, or to the planning of complex
activities. The optimization process with lp solve in-
volves the association of an ActivityID with each activ-
ity of the reduced workflow, and a serviceID with each
candidate service of an activity. Each QoS-constraint
(e.g. maximum time, maximum price) of an activity
represents an integer programming (IP) constraint. The
outcome of the optimization process with lp solve is an
array that contains the IDs of the selected services. The
order of service IDs within this array corresponds to the
execution order of activities of the reduced workflow.
The interested reader may find a theoretical elaboration
of the IP approach in [9]. Since most of our reduced
workflows have the form of a simple straight-line code,
IP is a more appropriate approach than complex heuris-
tic techniques (e.g. genetic algorithms [25]).

For the dynamic planning approach we use the
Multiple Criteria Decision Making (MCDM) approach
where we select local optima for each activity sepa-

244 I. Brandic et al. / An approach for the high-level specification of QoS-aware grid workflows considering location affinity

(a) (b)

MFSSMetaData ImageLoading

MGSequence IDtoCAD

MGtoCAD

CIDSequence

VMSequence

ViewSequence

CADSequence

DownloadOperation

UploadOperation

StartOperation

CIDFEMSequence <<invoke>>

<<invoke>>

<<invoke>>

UploadOperation

StartOperation

DownloadOperation

QoS Model

QoS Model

QoS Model

"UploadOperation"

"StartOperation"

"DownloadOperation"

QoS Model

FEMSequence

complex activity

FEMSequence

Fig. 14. QoS-aware Grid workflow reduction. (a) MFSS workflow. (b) Reduced form of the MFSS workflow with QoS models of the activities.

[QoSReq], ReqDesc

selected services

service selection

initialisation

acknowledgment
planning acknowledgment

Candidate

Negotiators

offer service x

Services

confirm

WF Planner
WF

Fig. 15. WF Negotiation process.

rately. In case of the dynamic approach, planning,
negotiation and execution processes are invoked in an
iterative fashion.

4.5. Execution

The outcome of the workflow planning phase is a
concrete workflow which is ready for execution. In the
case of static planning approach the workflow execu-
tion phase is started after the completion of workflow
planning phase. But, in the case of dynamic planning

the execution and planning phases are performed for
each activity of the workflow in an alternate fashion.
Figure 16 illustrates the relationship of workflow plan-
ning and execution phases.

Figure 16(a) depicts the relationship between static
workflow planning and workflow execution. Static
workflow planning involves the following steps: Strat-
egy Selection, WF Reduction, WF Negotiation and WF
Optimization. As we described in Section 4.4, for the
static planning approach global constraints (GC), such
as maximum price of the workflow, are specified for the

I. Brandic et al. / An approach for the high-level specification of QoS-aware grid workflows considering location affinity 245

WF Negotiation

WF Reduction

static planning

Strategy selection

[GC satisfied]

WF Optimisation

[GC not

WF Execution

satisfied]

(a)

Strategy selection

m++

WF Reduction

A(m) Negotiation

A(m) Optimisation

A(m) Execution

dynamic planning

(b)

Fig. 16. Workflow execution models: (a) with static planning, (b) with dynamic planning.

whole workflow. If GCs can not be satisfied after the
WF Negotiation and WF Optimization, the workflow is
reduced by excluding the first activity of the workflow.
The excluded activity is optimized separately from the
rest of the workflow by searching for the candidate ser-
vice that offers the best QoS. In the next iteration only
the reduced workflow is considered. However, the user
may annotate each activity with the expected average
runtime in order to increase the chance to find a solu-
tion with fewer iterations. If the GCs are satisfied, the
WF execution may start.

In case the execution of certain activities modifies the
meta data, the dynamic workflow planning is applied
(see Fig. 16(b)). For each activity A(m) the negotiation
and optimization is performed individually before the
execution. After the execution of activity A(m), the
next activity A(m + 1) is considered. This iterative
process of dynamic planning is completed when all
activities of the workflow are executed.

5. Case study

In this section we demonstrate the modeling of QoS-
aware workflows using a real world application for
maxillo facial surgery simulation.

5.1. Maxillo facial surgery simulation

Maxillo facial surgery simulation (MFSS) is one of
the six medical applications that we have used within
the framework of GEMSS project [22]. The applica-
tion facilitates the work of medical practitioners and
provides the pre-operative virtual planning of maxillo-

facial surgery. The application consists of a set of com-
ponents which can run on a local machine or on differ-
ent remote machines. These components may be orga-
nized as a Grid workflow in order to simplify the work
of the end users. Cao et al. [11] describe the specifica-
tion of MFSS workflow using the Triana tool [13], but
QoS requirements are not considered.

MFSS is used for patients with in-born deformations
of the mid-face [11]. The MFSS simulation predicts
the results of the surgery by putting the bone into a
new position using the finite element method. The goal
of the surgery is to achieve pleasant medical and cos-
metic results. The main steps of the simulation are: (1)
Mesh generation is used for the generation of meshes
necessary for the finite element simulation; (2) Mesh
manipulation defines the initial and boundary condi-
tions for the simulation; (3) Finite Element Analysis is
a fully parallel MPI application running on a remote
HPC cluster. The application is exposed as a VGE ser-
vice and can be invoked using standard Web Services
technology. We use QoWL in order to automate the
execution of the MFSS application.

In the following we describe the QoS-aware specifi-
cation of the MFSS workflow.

5.2. Workflow specification

We have used our UML based workflow editor Teuta
(see Section 4.2) for the specification of the MFSS
workflow. The workflow specification process involved
the definition of the flow of workflow activities and
the association of the corresponding properties (such
as QoS related properties). Figure 17 illustrates the
process of specification of MFSS workflow with Teuta.

246 I. Brandic et al. / An approach for the high-level specification of QoS-aware grid workflows considering location affinity

(a) (b)

(c)

Fig. 17. Specification of MFSS workflow with Teuta editor. (a) The root element. (b) The content of the root element. (c) Properties of
StartOperation activity.

The user may combine the predefined UML model-
ing elements, which are available in the Teuta toolbar,
to specify the flow of workflow activities. Figure 17(a)
depicts the MFSSProcess activity, which is an instance
of the process element. A process element is indicated
by the stereotype <<process>>. The MFSSProcess
activity indicates the root of the MFSS workflow. Com-

plex activities, such as process, may comprise a group
of activities. Teuta supports hierarchical modeling, by
representing the body of a complex activity as a sub-
graph. The body of the MFSSProcess activity is de-
picted in Fig.17(b). The UML element InitialNode,
which is represented as a filled black circle, defines the
starting point of a workflow or of a complex activity.

I. Brandic et al. / An approach for the high-level specification of QoS-aware grid workflows considering location affinity 247

We have used the copy element, which is indicated by
the stereotype <<copy>>, to express the data flow.
For instance, MFSSMetaData activity copies the input
data of the workflow to the corresponding activities.
The UML elements Fork and Join, which are repre-
sented as bold horizontal bars, express the split and join
of multiple flow branches respectively. For instance,
after the completion of the ImageLoading activity, the
flow is split into three branches. The UML elements
Fork and Join are mapped to the BPEL element Flow.
The UML element ActivityFinal, which is represented
as a circle surrounding a smaller solid filled circle, in-
dicates the end of the workflow or the end of a complex
activity.

The MFSSProcess activity comprises several com-
plex activities of type sequence, which are indicated
by the stereotype <<sequence>>. For instance, the
body of the FEMSequence activity, placed on the right-
down corner of Fig. 17(b)), is represented in Fig. 17(c).
An invoke element, which is indicated by the stereo-
type <<invoke>>, specifies the invocation of a re-
mote or local service operation. For instance, the activ-
ity UploadOperation invokes the upload operation of
the remote service.

With each workflow element we have associated a
set of properties by using the property panel, which
is located on the right hand side of Teuta GUI (see
Fig. 17(c)). For instance, Fig. 17(c) shows the prop-
erties of the invoke element StartOperation. The top
compartment of the property panel allows the associ-
ation of attributes such as name, portType and opera-
tion. We use the lower three compartments to spec-
ify QoS constraints such as beginTime, endTime, price,
and geographicAffinity.

After the completion of the MFSS workflow specifi-
cation Teuta is able to generate automatically the corre-
sponding QoWL representation, which is used as input
for QWE for workflow execution (see Section 4.1). An
excerpt of QoWL representation of MFSS workflow,
which specifies the StartOperation activity, is depicted
in Fig. 18.

6. Related work

Several projects are contributing to the establish-
ment and improvement of the Grid workflow technol-
ogy, each focusing on a specific research aspect. Re-
cent developments focus on the establishment of the
service oriented infrastructure for Grids by augment-
ing standardized protocols and services [29]. Tri-

ana [13], Askalon [2], JOpera [32], eXeGrid [21] are
developing tools and languages for graphical work-
flow composition. The P-GRADE Portal is exploring
the collaborative Grid workflows [37]. Pegasus [7,14]
and LEAD [34] projects are focused on the develop-
ment of workflow support for large scale Grid appli-
cations (such as galaxy morphology, tomography and
mesoscale meteorology). The aspects of semantic grid
workflows are investigated within the Taverna [40] and
Kepler [6] projects. Gridant [1] presents client-side
workflow management system enabling the clients to
map the process without considerable help from the ser-
vice providers. Rygg et al. [36] demonstrate the usage
of a commercial workflow engine for the composition
of bio-workflows. Work presented in [28] describes
a lightweight system for business workflows that are
based on Web Services related technologies (such as
SOAP, WSDL and BPEL). GridXSLT, an implementa-
tion of the XSLT for distributed Web Service orches-
tration, is described in [23]. Montagnat et al. [26] in-
vestigate data composition patterns for service-based
workflows. Perera et al. [33] propose Web Service
extensions necessary for the proper execution of ser-
vice oriented Grid workflows. Work described in [31]
demonstrates the usage of Grid workflow technologies
for modeling of bioclimatic workflows.

There is not much related work focused on the de-
velopment of a Grid services infrastructure that pro-
vides QoS guarantees. Moreover, not enough attention
is paid to QoS-aware Grid workflows. Cardoso et al.
elaborate theoretical concepts of a QoS-aware work-
flow defining QoS workflow metrics [12]. Zeng et al.
investigate QoS-aware composition of Web Services
using integer programming method [43]. The services
are scheduled using local planning, global planning and
integer programming approaches. Gridbus Project [19]
is addressing the QoS-aware Grid workflows. Recent
developments are following research problems on bud-
get constraint scheduling of workflow applications on
utility Grids based on genetic algorithms [41]. How-
ever, within the framework of Gridbus project work-
flows are specified textually based on XML, which
has been proved as a non-intuitive and error-prone ap-
proach. While time and cost constraints are consid-
ered, there is no support for security and legal QoS con-
straints. In contrast to existing related work, we are de-
veloping a QoS-aware workflow system that supports
time, cost, security, and legal constraints. Moreover,
our system supports the graphical specification of QoS-
aware workflows based on the latest UML standard.

248 I. Brandic et al. / An approach for the high-level specification of QoS-aware grid workflows considering location affinity

...

<invoke inputVar="CID" name="StartOperation" operation="start" portType="ApplicationExecutor">

<qos-constraints ReqDesc="maxilloReqDescVar">

<registry wsdl="http://gescher.univie.ac.at:9357/registry/reg?wsdl" />

<registry wsdl="http://kim.univie.ac.at:9357/registry/reg?wsdl" />

<registry wsdl="http://aurora.tuwien.ac.at:9357/registry/reg?wsdl" />

<qos-constraint name="beginTime" value="2006-02-02T16:00:00.000+02:00" weight="0.3" />

<qos-constraint name="endTime" value="2006-02-02T18:00:00.000+02:00" />

<qos-constraint name="price" value="15" weight="0.7" />

<qos-constraint name="geographicAffinity" value="AT" />

</qos-constraints>

</invoke>

...

Fig. 18. QoWL representation of StartOperation activity.

7. Conclusions and future work

Currently, most of the workflows are specified in
textual form, or are composed based on a self-defined
graphical notation. Moreover, there is a lack of ad-
equate tool support for workflow specification, and
workflow specification tools are usually not well inte-
grated with Grid environments. Furthermore, there is
a large number of application domains for Grid work-
flows, such as life sciences (for instance medical sim-
ulation services) and engineering (for instance vehicle
development support), that demand a guarantee that
workflow activities are performed within the specified
time, cost, security, and legal constraints. We consider
that for the wide acceptance of Grid technology it is
important that specification of tasks to be executed on
the Grid is simple, and that the execution of these tasks
should meet the user’s requirements.

In this paper we have addressed the issue of high-
level specification of QoS-aware Grid workflows. In
order to streamline the process of workflow specifica-
tion we have developed a Domain Specification Lan-
guage (DSL) for QoS-aware Grid workflows based on
UML2.0 standard. Furthermore, we have developed a
system prototype that supports the whole workflow life-
cycle from high-level specification to execution. A set
of QoS-aware service-oriented components is provided
for workflow planning to support automatic constraint-
based service negotiation and workflow optimization.
For improving the efficiency of workflow planning, we
introduced a QoS-aware workflow reduction technique.
Our system allows the specification of a comprehensive
set of QoS requirements, that consider performance,
economical, legal and security aspects.

In addition, we have described the annotation of
workflow activities with QoS information. For each
complex activity (such as sequence or flow) we de-
scribed the implications of the specified QoS for the

execution of comprised activities. Furthermore, QoS-
related aggregation functions are described for each
complex activity. Please note that the overall workflow
may be considered as a complex activity as well. Based
on this QoS information, a QoS-aware Grid Workflow
Engine negotiates with multiple candidate services to
find services that fulfill the specified QoS constraints.
We implemented two preliminary workflow planning
approaches, static and dynamic. We evaluated our ap-
proach by modeling a real-world workflow for maxillo
facial surgery simulation, and showed the hierarchi-
cal modeling capabilities of our approach for modeling
complex activities.

In the future we plan to extend our approach with
workflow adaptivity mechanisms.

Acknowledgments

The work described in this paper was supported by
the Austrian Science Fund as part of Aurora Project
under contract SFBF1102 and by the European Union’s
GEMSS Project under contract IST 2001-37153. We
would like to thank Aleksandar Dimitrov, Gerhard En-
gelbrecht, Rainer Schmidt and Nikolay Terziev for their
contributions to the implementation of VGE. We thank
anonymous reviewers for helpful suggestions.

References

[1] K. Amin, G. von Laszewski, M. Hategan, N. Zaluzec, Sh.
Hampton and A. Rossi, GridAnt: A Client-Controllable Grid
Workflow System, 37th Hawaii International Conference on
System Sciences. Big Island, HI, USA, 2004.

[2] Askalon Project. http://dps.uibk.ac.at/projects/askalon/.
[3] S. Benkner, G. Berti, G. Engelbrecht, J. Fingberg, G. Kohring,

S.E. Middleton and R. Schmidt. GEMSS: Grid Infrastructure
for Medical Service Provision, Journal of Methods of Infor-
mation in Medicine 44 (2005).

I. Brandic et al. / An approach for the high-level specification of QoS-aware grid workflows considering location affinity 249

[4] S. Benkner, I. Brandic, G. Engelbrecht and R. Schmidt. VGE –
A Service-Oriented Grid Environment for On-Demand Super-
computing, Proceedings of the Fifth IEEE/ACM International
Workshop on Grid Computing (Grid 2004), Pittsburgh, PA,
USA, November 2004.

[5] S. Benkner and G. Engelbrecht, Generic QoS Support for
Application Web Services, Proceedings of the International
Symposium on Web Services, CSREA Press, Las Vegas, USA,
June 2005.

[6] C. Berkley, S. Bowers, M. Jones, B. Ludäscher, M. Schild-
hauer and J. Tao, Incorporating Semantics in Scientific Work-
flow Authoring, 17th International Conference on Scientific
and Statistical Database Management, University of Califor-
nia, Santa Barbara, CA, USA, 2005.

[7] J. Blythe, E. Deelman and Y. Gil, Automatically composed
workflows for grid environments, IEEE Intelligent Systems
19(4) (2004), 16–23.

[8] I. Brandic, S. Benkner, G. Engelbrecht and R. Schmidt, To-
wards Quality of Service Support for Grid Workflows, Pro-
ceedings of the European Grid Conference 2005 (EGC2005),
Amsterdam, The Netherlands, February 2005.

[9] I. Brandic, S. Benkner, G. Engelbrecht and R. Schmidt, QoS
Support for Time-Critical Grid Workflow Applications, Pro-
ceedings 1st IEEE International Conference on eScience and
Grid Computing, Melbourne, Australia, December 2005.

[10] I. Brandic, S. Pllana and S. Benkner, High-level Composition
of QoS-aware Grid Workflows: An Approach that Consid-
ers Location Affinity, Workshop on Workflows in Support of
Large-Scale Science (works06). In conjunction with HPDC06,
Paris, France, 2006.

[11] J. Cao, G. Berti, J. Fingberg and J.G. Schmidt, Implementa-
tion of Grid-enabled Medical Simulation Applications using
Workflow Techniques, The Second International Workshop on
Grid and Cooperative Computing, Shanghai, China, 2003.

[12] J. Cardoso, Quality of Service and Semantic Composition of
Workflows, Ph.D. Dissertation. Department of Computer Sci-
ence. 2002, University of Georgia: Athens, GA, USA, 215.

[13] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robin-
son, M. Shields, I. Taylor and I. Wang, Programming Scientific
and Distributed Workflow with Triana Services, In Grid Work-
flow 2004 Special Issue of Concurrency and Computation:
Practice and Experience, 2005.

[14] E. Deelman, G. Singh, M.-H. Su et al., Pegasus: A framework
for mapping complex scientific workflows onto distributed
systems, Scientific Programming 13(3) (2005), 219–237.

[15] T. Fahringer, S. Pllana and A. Villazon, AGWL: Abstract Grid
Workflow Language, International Conference on Computa-
tional Science, Programming Paradigms for Grids and Meta-
computing Systems. Krakow, Poland, June 2004.

[16] I. Foster, C. Kesselman and S. Tuecke, The anatomy of the
grid – enabling scalable virtual organizations, The Interna-
tional Journal of High Performance Computing Applications
15(3) (2001), 200–222.

[17] GEMSS Consortium, Report on COTS Security Technolo-
gies and Authorisation Services. Deliverable D2.2c. GEMSS
Project, European Commission Framework V Project No. IST-
2001-37153. February 2004.

[18] The GEMSS Project: Grid-Enabled Medical Simulation Ser-
vices, EU IST Project, IST-2001-37153, http://www.gemss.
de/.

[19] The Gridbus Project. http://www.gridbus.org/.
[20] J.A.M. Herveg, F. Crazzolara, S.E. Middleton, D. Marvin and

Y. Poullet, GEMSS: Privacy and Security for a Medical Grid,
HealthGRID 2006, Clermont-Ferrand, France, 2004.

[21] A. Hoheisel, User Tools and Languages for Graph-based Grid
Workflows, In: Special Issue of Concurrency and Computa-
tion: Practice and Experience, Wiley, 2004.

[22] D.M. Jones, J.W. Fenner, G. Berti, F. Kruggel, R.A. Mehrem,
W. Backfrieder, R. Moore and A. Geltmeier, The GEMSS
Grid: An evolving HPC Environment for Medical Applica-
tions, HealthGrid 2004, Clermont-Ferrand, France, 2004.

[23] P.M. Kelly, P.D. Coddington and A.L. Wendelborn, Dis-
tributed, Parallel Web Service Orchestration Using XSLT, First
International Conference on e-Science and Grid Computing
Melbourne, Australia, December 2005.

[24] The lp solve Project http://lpsolve.sourceforge.net/5.1 2006.
[25] Z. Michalewicz, Genetic Algorithms + Data Structures =

Evolution Programs, Springer-Verlag, 1996.
[26] J. Montagnat, T. Glatard and D. Lingrand, Data Composition

Patterns in Service-Based Workflows, Workshop on Workflows
in Support of Large-Scale Science (works06). In conjunction
with HPDC06, Paris, France, 2006.

[27] OASIS, Web Services Business Process Execution Language
(WSBPEL) 2.0, 2006.

[28] J. Oberleitner, F. Rosenberg and S. Dustdar, A Lightweight
Model-driven Orchestration Engine for e-Services, 6th VLDB
Workshop on Technologies for E-Services, colocated with
VLDB Trondheim, Norway, 2005.

[29] Open Grid Services Architecture. http://www.globus.org/
ogsa/.

[30] Object Management Group (OMG), UML 2.0 Superstructure
Specification. http://www.omg.org, August 2005.

[31] J.S. Pahwa, R.J. White, A.C. Jones et al., Accessing Biodiver-
sity Resources in Computational Environments from Workflow
Applications, Workshop on Workflows in Support of Large-
Scale Science (works06). In conjunction with HPDC06, Paris,
France, 2006.

[32] C. Pautasso, JOpera: Visual Composition of Grid Services,
In: ERCIM News No. 59, October 2004.

[33] S. Perera and D. Gannon, Enabling Web Service Extensions for
Scientific Workflows, Workshop on Workflows in Support of
Large-Scale Science (works06). In conjunction with HPDC06,
Paris, France, 2006.

[34] B. Plale, D. Gannon, D.A. Reed, S.J. Graves, K. Droegemeier,
B. Wilhelmson and M. Ramamurthy, Towards Dynamically
Adaptive Weather Analysis and Forecasting in LEAD, 5th In-
ternational Conference on Computational Science, Atlanta,
GA, USA, 2005.

[35] S. Pllana and T. Fahringer, Performance Prophet: A Perfor-
mance Modeling and Prediction Tool for Parallel and Dis-
tributed Programs, In the 2005 International Conference on
Parallel Processing (ICPP 2005 Workshops), Oslo, Norway,
June 2005. IEEE Computer Society.

[36] A. Rygg, S. Mann, P. Roe and O. Wong, Bio-Workflows with
BizTalk: Using a Commercial Workflow Engine for eScience,
Proceedings 1st IEEE International Conference on eScience
and Grid Computing, Melbourne, Australia, December 2005.

[37] G. Sipos, G.J. Lewis, P. Kacsuk and V.N. Alexandrov,
Workflow-Oriented Collaborative Grid Portals, Proceedings
of the European Grid Conference 2005 (EGC2005), Amster-
dam, The Netherlands, February 2005.

[38] Web Service Level Agreement. http://www.research.ibm.
com/wsla/WSLASpecV1-20030128.pdf.

[39] Web Services Policy (WS-Policy). http://ifr.sap.com/ws-
policy/index.html.

[40] K. Wolstencroft, T. Oinn, C. Goble, J. Ferris, Ch. Wroe,
P. Lord, K. Glover and R. Stevens, Panoply of Utilities in
Taverna, Proceedings 1st IEEE International Conference on

250 I. Brandic et al. / An approach for the high-level specification of QoS-aware grid workflows considering location affinity

eScience and Grid Computing, Melbourne, Australia, Decem-
ber, 2005.

[41] J. Yu and R. Buyya, A Budget Constraint Scheduling of Work-
flow Applications on Utility Grids using Genetic Algorithms,
Workshop on Workflows in Support of Large-Scale Science
(works06). In conjunction with HPDC06, Paris, France, 2006.

[42] J. Yu and R. Buyya, A Taxonomy of Workflow Management
Systems for Grid Computing, Technical Report, GRIDS-TR-

2005-1, Grid Computing and Distributed Systems Labora-
tory, University of Melbourne, Australia, March 10, 2005.
http://www.gridbus.org/reports/GridWorkflowTaxonomy.pdf.

[43] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J.
Kalagnanam and H. Chang, QoS-aware middleware for web
services composition, IEEE Transactions on Software Engi-
neering 30(5) (May 2004), 311–327.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

