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Abstract Object-oriented platforms developed for the numerical solution of PDEs must combine flexibility and reusability, in
order to ease the integration of new functionalities and algorithms. While designing similar frameworks, a built-in support for
high performance should be provided and enforced transparently, especially in parallel simulations. The paper presents solutions
developed to effectively tackle these and other more specific problems (data handling and storage, implementation of physical
models and numerical methods) that have arisen in the development of COOLFIuiD, an environment for PDE solvers. Particular
attention is devoted to describe a data storage facility, highly suitable for both serial and parallel computing, and to discuss the
application of two design patterns, Perspective and M ethod-Command-Strategy, that support extensibility and run-time flexibility
in the implementation of physical models and generic numerical algorithms respectively.

1. Introduction

COOLFIuiD (Computational Object-Oriented Library for Fluid Dynamics) [13] is a framework originally de-
veloped to solve fluid-dynamics related PDEs (Partial Differential Equations) on unstructured grids by means of
state-of -art numerical techniques.

Similarly to many other scientific platforms, such as DiffPack [4], Overture [10], ELEMD [16], MOUSE [24] and
OpenFoam [25], COOLHuiD isimplemented in C++, in order to take advantage of both classical object-oriented
(O0) techniques|[15,20,21] and generic templ ate-based programming [ 1,22,23]. Effort hasbeendevotedin searching
and implementing long term architectural solutions, in order to allow both run-timeflexibility and high performance,
as required by the target applications.

In particular, while designing the kernel interfaces and components of COOLFIuiD, no strict a priori assumption
has been made on the kind of PDE solving agorithms and discretization techniques to support. Consequently, a
multitude of numerical solvers for unstructured grids can be implemented within the platform. This algorithm-
independent design policy marksin fact a sound difference between COOLFIuiD and the majority of other available
OO frameworks for Computational Fluid Dynamics (CFD), which are usually tailored towards specific space
discretization schemes (e.g. Finite Volume for [24,25], Finite Volume and Finite Difference on block structured
meshes for [10], cell-vertex schemesfor [16], etc.).
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Fig. 1. Multi-layer architecture of COOLFIuiD.

1.1. COOLFIuiD architecture

COOLHuiD consists of acollection of dynamically linked libraries and application codes, organized in amultiple
layer structure, as shown in Fig. 1. Two kinds of libraries are identifiable: kernel libraries and modules (plug-ins).
The former supply basic functionalities, data structure and abstract interfaces, without actually implementing any
scientific algorithm, while the latter add effective simulation capabilities. The framework was devel oped according
to a plug-in policy, based on the self-registration [3,13] and self-configuration techniques [13], which alow new
components or even third party extensionsto be integrated at run-time, while only the APl has been exposed to the
developers. From top to bottom of the COOL FluiD architecture, onefinds, progressively, morefunctional layers: the
kernel defines the interfaces, the modulesimplement them and the application codes can select and |oad on demand
the libraries needed for an actual simulation. This multi-layer structure guarantees flexibility and modularity at the
highest design level and helps managing the devel opment process, since the layers automatically reflect different
implementation levels.

1.2. Outline

Designing a framework for generic PDE solvers is not atrivia task by itself and additional complexity comes
in our case from planning to deal efficiently with arbitrary numerical algorithms and discretization schemes with
different data structures.

According to a simplified but sufficiently complete conceptual view, we can consider a numerical solver for
PDESs to be made by a limited number of independent building blocks: some mesh-related data, typically numerics-
dependent, that represent a discretized view in terms of both geometry and solution of the computational domain; an
equation set describing the physical phenomenato study; a group of interacting numerical algorithms to solve the
PDEs on the given discretized domain.

We can thereforeidentify threeissues of fundamental importancefor devel oping an environment for solving PDES:

— handling and storage of bulk serial and distributed data;
— implementation of a physical model;
— implementation of a numerical method.
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I'n our opinion, agood OO design should be ableto tackl e these three aspects orthogonal ly, independently from one
another as much as possible, in order to minimize coupling and maximize the reusability of the single components.
To this aim, a clear separation between physics and numerics should be enforced, the first being the description of
the properties, congtitutive relations and quantities that characterize the equation system, the second providing the
mathematical tools (algorithms, algebraic and differential operators) to discretize and solve those equations.

Thisarticle will focus on analyzing each one of the three above-mentioned problemsin a separate Sections (2, 3,
4), and on presenting corresponding possibly effective solutions, as they were implemented in COOLFuiD. Some
illustrative Examples (3.1, 4.1) will also be given in order to show the concrete applicability of the proposed ideas.

2. Datahandling and storage

PDE-driven simulations typically involve a considerable amount of data related to the discretization of the
computational domain, such as coordinates, state variables, geometric entities, etc., al grouped inside container
objects (arrays, lists .. . .) onwhich numerical actionsare performed. Additional complexity appearswhen computing
on unstructured grids, as in the case of COOLFIuiD, since different numerical methods can require the storage and
usage of different kinds of connectivity information. As aresult, genericity in both quantity and types of data must
be addressed.

Moreover, in a scalable and safe design of the data handling, framework components should be able to share data
without violating encapsulation.

In a high performance environment, developers of new modules should be allowed to elect newly defined data
types to be stored, handled efficiently, and shared in parallel communication. Ideally, local and distributed data
should be treated uniformly from the developer’s point of view, and support for different communication strategies
(message passing and shared memory) should be offered.

2.1. Data storage

In COOLFuiD, al datawhose size scales with the problem complexity are encapsulated by aMeshDat a object,
that, in particular, aggregates and offers safe access to a number of underlying instances of Dat aSt or age.

tenpl ate <cl ass TAG> cl ass DataStorage {};

DataStorageis defined as atemplate empty class parameterized with alightweight tag policy, TAG which is meant
to specify the actual parallel implementation or communication type (e.g. LOCAL, MPI , PVM SHM:

class LOCAL {}; // serial conmunication

cl ass MPI {}; /1 WMPI-based parallel comrunication
class PYM {}; /! PVM based parallel conmunication
class SHM {}; // shared menory conmuni cation

Asexplained in [12], these tags do not appear explicitly in the code, but they are aliased at compile time to more
general concepts, such as GLOBAL for intra-communication or REMOTE for inter-communication, according to the
available models and the user’s preferences:

#i f def HAVE_MPI

t ypedef MPI GLOBAL;
#el i f HAVE_PVM

t ypedef PVM GLOBAL;
#el se

t ypedef LOCAL GLOBAL;
#endi f

#i f def HAVE_SHM
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t ypedef SHM REMOTE;
#el se

t ypedef LOCAL REMOTE;
#endi f

In COOLFuiD, aparallel layer is defined with the task of concealing implementation details that rely upon specific
parallel paradigms. Tothisaim, only the aliased tags are used outside the parallel layer, i.e. in the numerical modules
of the framework.

To make DataStorage instantiable, explicit template specializations [20,22] must be defined, one for each native
tag class.

2.1.1. Local data storage
The class definition of Dat aSt or ageLocal isreported:

tenmpl at e<>
cl ass Dat aSt orage<LOCAL> : public DataStoragel nternal <Evector>{};

DataStorage defines the underlying storage type and inherits the interface of the parent class Dat aSt or agel n-
ternal:

tenmpl ate <tenpl ate <class T> cl ass STYPE>
cl ass Dat aSt or agel nternal {
publi c:
/1l Creates and initializes a storage
tenpl ate <cl ass T> Dat aHandl el nt er nal <STYPE, T> createData
(string name, CFuint size, Tinit = T()
t hrow (St or ageExi st sExcepti on);

/1 Deletes a storage and frees its nmenory

/1 Returns the nunber of deleted storages

tenpl ate <class T> CFuint del eteData(stri ng nane)
t hrow (NoSuchsSt or ageExcepti on);

/1l Gets an existing storage
tenpl ate <cl ass T> Dat aHandl el nt er nal <STYPE, T> get Data
(string nane) throw (NoSuchSt or ageExcepti on);

private:
/1l map that stores the pointers to arrays of data
std:: map<string, void*> m dataStorage;

b

DataStoragel nternal is parameterized with the storage type, STYPE, and the derived DataStoragel_ocal specifies
thelattertobean Evect or [11], which offersanimproved and moreefficientimplementationof st d: : vect or [6,
20,21]. Inparticular, Evect or supportshack insertion/deletion of elementsin constant timeand on-the-fly memory
allocation to accommodate new entries with minimal overhead.

DataStoragel nternal behaves as an archive where arrays of data with a certain type and size are registered under
a user-chosen name in an associative container like a st d: : map [20,21]. Pointers to the arrays in question are
statically casted to voi dx, in order to let coexist different types in the same instance of DataStoragelnternal. No
built-in garbage collection or deletion policies based on some sort of reference counting are automatically provided
by DataStoragelnternal. Thisfact impliesthat data created with cr eat eDat a() must be consistently deleted with
anexplicit call todel et eDat a(): ad-hoc setup and unsetup Conmands fulfill this task in each numerical module
(see4d.l).

Exceptions are thrown if client code attempts to register twice data with the same name or to delete unavailable
data. Inany case, just beforethe end of the simulation, ageneral clean-upis performed by MeshDataand al the till
reachable entriesin al the instantiated DataStorages are removed.
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2.1.2. MPI data storage

DataStorage, which is a proxy for DataStoragel nternal, provides a uniform, user-friendly interface to create and
manage arrays of generic datatypes, that are meant to be shared among different numerical components. Moreover,
DataStorage offers the same interface to treat both local and distributed data uniformly, even though the actual
implementation of its member functions depends on the tag class. In casethe MPI tagisused, Dat aSt or ageMPI
is defined as follows:

t enpl at e<> cl ass Dat aSt or age<MPl > {

public:
/1 constructor accepting a MPI comuni cat or
Dat aSt or age (MPl _Conmm contruni cat or);

/1l Creates and initializes a storage
tenpl ate <cl ass T> Dat aHandl e<MPI , T> creat eDat a
(string name, CFuint size, Tinit = T()

t hr ow (St or ageExi st sExcepti on);

/1 Deletes a storage and frees its nenory

/1 Returns the nunber of deleted storages

templ ate <cl ass T> CFui nt del et eData(stri ng nane)
t hr ow (NoSuchSt or ageExcepti on);

/1l Gets an existing storage
tenpl ate <cl ass T> Dat aHandl e<MPI , T> get Dat a
(string nane) throw (NoSuchSt or ageExcepti on);

private:

/1 map that stores the pointers to arrays of data
std:: map<string, voi d*> m dataStorage;

MPlI _Comm m _conmuni cator; // communi cat or

b

DataStorageM Pl does not derive from DataStoragelnternal, but provides its own implementation of the same
interface, so that the actual differences between one DataStorage or another remain completely invisible to the
client code. The main difference between DataStorageMPl and DataStoragelnternal is given by the presence
of a communicator, needed by Par Vect or MPI , which is the container type for the data to be registered in
DataStorageMPI.

2.2. Data handle

Onceregisteredin either alocal or MPI DataStorage, data can be accessed through asmart pointer, Dat aHandl e,
that ensures safety by preventing data array from being accidentally deleted. It also provides inlinable acces-
sor/mutator functionsfor the individual array entries and offers some additional functionalities. We present the class
definition of DataHandle and its partial template specializations when the tag classis set to LOCAL or MPI :

tenpl ate <class TAG class T> class DataHandl e {};

tenpl ate <class T> cl ass Dat aHandl e<LOCAL, T> :
publ i ¢ Dat aHandl el nt er nal <Evector, T> {
t ypedef Dat aHandl el nt er nal <Evect or, T> Based ass;
typedef typenane BaseC ass:: StorageType StorageType;
publi c:
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}s

/1 constructors
Dat aHandl e(St or ageType *const ptr) : BaseC ass(ptr) {}
/1 overl oaded and copy constructors, assignnment operator

/1 begin and end the synchronization

voi d begi nSync() {}
voi d endSync() {}

/1 add non updat abl e ghost points
CFui nt addChost Poi nt (CFui nt gl obal I D) {}

/1 add | ocal point and return the index of the new point
CFui nt addLocal Poi nt (CFui nt gl obal | D)
{return BaseC ass:: mptr->increase();}

/1 reserve size capacity
voi d reserve(CFui nt n) {BaseC ass:: mptr->reserve(n);}

/1 build table of ghost points to use during synchronization
voi d buil dSyncMap() {}

/1 get the global size of the underlying data array
CFui nt get d obal Si ze() const {return BaseC ass:: mptr->size();}

tenpl ate <class T> cl ass Dat aHandl e<MPl, T> :

publ i ¢ Dat aHandl el nt er nal <Par Vect or MPI , T> {
t ypedef Dat aHandl el nt er nal <Par Vect or MPI , T> Based ass;
typedef typenanme BaseC ass:: StorageType StorageType;

publi c:

/1 constructors

Dat aHandl e(St or ageType *const ptr) : BaseC ass(ptr){}

Dat aHandl e(voi d* ptr) : Based ass((Par Vect or MPI <T>*) ptr){}
/1 overl oaded and copy constructors, assignment operator

/1 begin and end the synchronization
voi d begi nSync() {BaseC ass:: m ptr->begi nSync(); }
voi d endSync() {Based ass:: m ptr->endSync(); }

/1 add a non-updat abl e ghost poi nt
CFui nt addGhost Poi nt (CFui nt gl obal | D);

/1 add | ocal point and return the index of the new point
CFui nt addLocal Poi nt (CFui nt gl obal | D);

/1 reserve size capacity
voi d reserve(CFui nt n) {BaseC ass:: mptr->reserve(n);}

/1 build table of ghost points to use during synchronization
voi d buil dSyncMap() {BaseC ass:: m ptr->buil dGhost Map(); }
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/1 get the global size of the underlying data array
CFui nt getd obal Si ze() const
{return BaseC ass:: mptr->get d obal Si ze(); }

};

DataHandleM Pl declaresfunctionsthat deal with the synchronizationand handling of databel ongingtothe overlap
region. The actual synchronization and communication is delegated to the acquainted parallel vector, ParVectorMPI,
in which al MPI calls are encapsulated. As shown above, the same functions must be implemented aso in the
DataHandlel ocal in order to allow all the code to compile even without having MPI, that is when the GLOBAL tag
isaliased to LOCAL. For sake of completeness, we report the definition of Dat aHandl el nt er nal , from which
both the above presented DataHandl es derive:

tenpl at e<t enpl ate <cl ass T> class STYPE, class T>
cl ass Dat aHandl el nternal {
public:

typedef STYPE<T> StorageType;

/1 constructor
Dat aHandl el nt er nal (St or ageType *const ptr) : mptr(ptr){}
/1 copy constructors, assignnent operator

/1 overloadi ng of subscripting operator
T& operator[] (Cruint idx) {return (*mptr)[idx];}

/1 overl oadi ng of operator ()
T& operator() (CFuint i, CrFuint j, CFuint stride)
{return (*this)[i*stride+j];}

/1
pr ot ect ed:
St orageType* mptr; // pointer to the array to be handl ed

1
2.3. Current and future applications

The parallel implementation of data handling and storage that has been described so far is currently available only
for standard MPI [14], even though the use of other librariesfor message passing communication like PVM [8] could
beeasily integrated. Inthelatter case, anew set of template specializations(Dat aHandl ePVM Dat aSt or agePVM
and Par Vect or PVM with specific PVM bindings would be required, with no implications on the client code of
DataStorage, that would keep on dealing with LOCAL and GLOBAL data.

The described scheme allows the user to combine different tagged models within the same run: a LOCAL
(seridl) and a GLOBAL (MPI) model coexist in a parallel multi-processors SPMD (Single Program Multiple Data)
COOLFIuiD simulation.

The MeshData object aggregates two instances of DataStorage, one for LOCAL data and one for GLOBAL data.
The former includes not only data that are created by numerical modules and that are not meant to be shared among
different processors, but also alocal representation of some distributed data. An example is given by storages of
St at e and Node objects, which represent solution state vectors and geometric coordinates, i.e. the degrees of
freedom of the computational grid. Statesand Nodesare both proxies[7] for tiny arraysof floats, onwhich convenient
symbolic mathematical operations can be performed efficiently using the Expression Templates technique [9,22,
23]. The raw memory of these tiny arrays, which are interfaced by States (or Nodes) objects, belongs to a single
GLOBAL preallocated unidimensiona ParVectorMPI of floats, on which synchronization and communication are
performed. During the computation, the synchronization and communication processes involve only a relatively
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Fig. 2. Cell-wise mesh partitioning that shows updatable and ghost states in the overlap region.

small fraction of data, namely only the updatable and non updatable States and Nodes which belong to the overlap
region in each process. The size of the overlap region is determined by the needs of the selected space discretization
algorithm. The mesh is partitioned on a cell base by means of a polymorphic MeshPartitioner object: a self-rolled
random partitioner and wrappersfor METISand ParMETISlibraries[18] are currently available. The overlap region
is normally chosen to include all the vertex neighbors of the local cells attached to the partition boundary in each
process, asit isillustrated by Fig. 2. This choice allows numerical agorithmsto work solely on LOCAL datawhich
already include the full computational stencil, without needing parallel communication, except at the end of each
physical time step, or pseudo time step, when synchronization of remote data is needed and so is access to the
GLOBAL data storage.

The next challenge for COOLFIuiD isto deal with MPMD (Multiple Program Multiple Data) schemesin loosely
coupled multi-physicsapplications, such as Aeroel asticity, where the equations of Fluid Dynamicsare solved weakly
coupled with the Elasticity eguations and the computational mesh is deformed accordingly.

At the time of the writing of this paper, hybrid parallel simulations are being investigated. As a preliminary step,
intra-simulation communication will be based on shared memory, which correspondsto the already mentioned SHM
tag in the COOLFIuiD terminology, and inter-simulation communication will be tackled with the already available
MPI implementation. The final goal is to perform multi-physics computations in which both intra-communication
among processes (processors) associated to a certain group (corresponding to a simulation on a certain domain,
physics and numerics) and inter-communication among different groups will be handled by MPI (or PVYM or an
hybrid of the two).

In order to alow the coexistence of shared memory and MPlI communication, an additional DataStorage for
REMOTE data will be added in MeshData and additional DataStorageSHM, DataHandleSHM and ParVectorSHM
will be implemented. Furthermore, the concept of groups needs to be introduced in the design.

2.4. Performanceissues and results

The scheme and implementation that have been presented so far do not allow run-time selection of the parallel
models or paradigms, but thisis not really a limitation, since compile time selection offers a much better support
for aggressive optimization (e.g. inlining) and high performance, helping to avoid any run-time overhead that
could otherwise very likely compromise the overall efficiency. In order to make a realistic quantitative exampleto
demonstrate this, we have tested a polymorphic DataHandlelnternal with virtual accessor and mutator functions for
the overloaded [] and () operators. Asaresult of this simple experiment, an increase of global computational time of
approximately 15% has been observed in all testcases, due to the high call frequency of those tiny virtual functions,
that otherwise could have been easily inlined by any available C++ compiler. Therefore, the idea of supporting
run-time selection of parallel models has been discarded.
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Fig. 3. Speed up results for two numerical simulations, one performed with FV and the other one with RD methods, and comparison with the
ideal linear behaviour.

The performance of the numerical solversimplemented in COOLFIuiD rely heavily upon DataHandles, since al
mesh data are accessed through them. Sinceall accessor/mutator functionsdefined in DataHandles areinlinable (the
profiler confirmsthis), efficiency is guaranteed. If we compare the direct usage of raw data and the usage through
the DataHandle interface, the only price to pay is asingle pointer indirection.

It's therefore not surprising that a good performanceis achieved in our computations, as demonstrated by Fig. 3,
wherethe speedup results of two simulations are presented. Thefirst testcaseisan implicit hypersonic Navier-Stokes
computation on a Double Ellipsoid geometry (1972384 cells, 344315 nodes) with cell-centered Finite Volume (FV).
The second one is an implicit transonic Euler simulation on a F15 geometry (3558667 cells, 621636 nodes) with
cell-vertex Residua Distribution Schemes (RDS). All the computations have been performed on a cluster of Intel
Pentium 4 machineswith 2.8 or 3.4 GHz, 2 Gb of RAM, and MPI wall time has been used for thetiming. Theresults
show an almost perfect linear speed-up for the FV testcase and a close to linear speed-up for the RDS one. This
different behaviour, in our opinion, can be explained by two reasons. First, thesize of the overlapregion, that includes
al the vertex neighbors of the nodes on the partition boundary, is currently overestimated in a cell-vertex method
like RDS. This leads to some useless additional work in both numerical computation and parallel communication
that can impact on the overall efficiency, especialy if we consider that in relatively small problemsthe overlap size
can become comparable with the local size of the “updatable” mesh in each processor, asit isin our case. Second,
the currently available space discretization algorithm for computing the residual and its perturbationson the partition
boundaries is face-based in FV and can simply ignore useless faces, while in RDS it is cell-based and takes into
account also vertices that should in fact be neglected. This clearly suggests that a further optimization of the RDS
implementation is needed.

3. Implementation of physical models

Scientists and researchersin thefield of Fluid Dynamicsdeal regularly with complex systems of PDES expressing
conservation laws that can be formulated as

U
aa—tJrv-FchVFV:S (1)
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where U (state vector of unknown variables), F'¢ (convective fluxes), F'¥ (viscous fluxes), S (source or reaction
term) depend on the chosen physical model. The latter can be seen as a composition of entities, e.g., transport
coefficients, thermodynamic properties and quantitiesthat contribute to define the mathematical description of some
physical phenomena. It should be noticed that one can look at the same physicsthrough different formulations of the
corresponding equations, which involve the use of different sets of variables, transformations, or other adaptations
tailored, e.g., towards a specific numerical method.

Moreover, inaframework for solving PDEswhich supportsdifferent numerical techniquesand run-timeloading of
components, the modul eswhere algorithms are implemented shoul d be asindependent as possible from the modules
dealing with the physics description. Therefore, when new physical models or numerical componentsareintegrated,
the need for modifications on the kernel, where most of the key abstractions are defined, should be avoided. Ideally,
it should be possible to build more complex models by simply extending and reusing available ones, or solving
the same equations by means of different numerical techniques, without requiring changes in the existing abstract
interfaces and without establishing a high level direct coupling between physics and agorithms. Widely used OO
CFD platforms like the ones described in [4,25] lack these last features, since the implementation of the physics
is directly tangled to the numerical solver, in particular to the space discretization. This is surely a reasonable
down-to-earth solution, it is probably efficient, but it does not promote enough reusability and interchangeability
between physics and numerics. The Per spect i ve pattern, that will now be described, proposes, in our opinion, a
structural way for overcoming the above mentioned pitfalls and for facilitating dynamical incremental changes and
codereuse.

3.1. Perspective pattern

Trying to define a single abstract interface for a generic physical model would be quite a demanding task and
it would probably lead to a non maintainable solution, especially if we keep in mind our concern with run-time
flexibility. In COOLFIuiD, this hypothetical hard-to-define interface is therefore broken into a limited granularity
of independent Perspective objects [13], each one offering a different view of the same physics, according to the
specific needs of different numerical algorithms. To make an example, convective, diffusive, inertial, reaction or
source terms of the equations can all be Perspectives with a certain abstract interface. Moreover, if one implements
a new numerical scheme that needs to make use of an available physical model, but that requires something not
foreseen a priori and, therefore, not offered by the available interfaces, a new Perspective can be created, without
requiring a modification of the existing ones.

Figure 4 shows the Object Modeling Technique (OMT) [7] class diagram of a Perspective pattern applied to a
generic physical model. The base Physi cal Model definesavery general abstract interface. Concr et eMbdel
derivesfromit, implementsthe virtual methods of the parent class and defines another interface to which the concrete
Perspective objects (and only those) are statically bound. This other interface offers data and functionalities which
aretypical of acertain physics, but invariant to all its possible Perspectives.

The resulting pattern lets the numerical client code make use of the physica model through an abstract layer,
dynamically enlargeable if required, given by a number of Perspective objects, while al their collaborations with
the ConcreteModel are completely hidden. The pattern reflects the composition-based Adapter described in[7], but
with a single shared Adaptee object, namely Concr et eMbdel , and multiple abstract Targets (called Perspectives
here), each one with a number of derived classes (Adapters). Thefact that several objects may be defined to describe
the same physics may look like adisadvantage, but, in our experience, improves reusability, allows much more easily
to decouple physics from numerics and gives better support to a run-time plug-in policy.

Unlike in other OO CFD platforms|[5,25] where no clear distinction between numerical algorithms and physical
descriptionis provided and where a close form of reliance (inheritance) binds the equation model and the scheme, in
COOLFuiD, physicsis completely independent and unaware of numerical methods (space and time discretizations,
linear system solving, etc.). However, a design that is based on Perspective objects does not even prevent from
having numerical objects, such as Strategies or Commands in 4.1, with static binding to the actual physics, e.g. in
the case of some special schemes or boundary conditions. In the latter case, the use of Perspectives can still help to
limit dependencies, improve reusability and avoid excessive sub-classing.

Some code examples are now presented in order to show the concrete applicability of the described pattern and
its suitability to implement complex physical models.
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Fig. 4. Perspective pattern applied to a Physical Model.

3.1.1. Physical model object
At first, the interface of the base Physi cal Model isdefined:

cl ass Physi cal Mbdel {

publi c:
/1 enunerated variables used to define equation termtypes
enum Term D { CONVECTI ON, DI FFUSI ON, REACTI ON, DI SPERSI ON} ;

Physi cal Model (string nane); // constructor
vi rtual ~Physi cal Model (); /! destructor

virtual void setUp() = O;
virtual int getD nension() const = O;
virtual int getNbEquations() const =

/lset up private data
[l geonetric di nension
0; //nunber of equations

/] accessor-mutator function returning the BaseTerm
/1 corresponding to the given Term D
Saf ePt r<BaseTernr get Term(Termi D t) {return mtMap. find(t);}

pr ot ect ed:
/1 registers the Term D and a pointer to the
/'l correspondi ng pol ynor phi ¢ BaseTer m obj ect
void registerTermTermiDt, BaseTerm bt) {mtMap.insert(t,bt);}
private:
/1 mappi ng between Term D and a pol ynorphi c physical term
Map<Term D, Saf ePtr<BaseTernr > mt Map;
b

A polymorphic BaseTer mobject and a corresponding enumerated variable are assigned to each independent
physical term of the equation (convection, diffusion, reaction, dispersion, inertia, etc.) and they are registered in
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an associative container, such as a st d::map. BaseTerm manages a number of unidimensional arrays of floats
(Real Vect or ), where some physi cs-dependent data (thermodynamic quantities, transport coefficients, parameters
useful for calculating fluxes, eigenvectors, eigenvalues etc.) are stored and continuously recomputed during the
simulation. Saf ePt r isawrapper class around a bare pointer that provides safe copy, prevents accidental deletion

and does not imply ownership.

cl ass BaseTerm {
public:
/'l decl arations of constructor, virtual destructor

/1 sets the maxi mum nunber of physical data arrays:
/1 this size nust be set by the nunerical solver

/! because it depends on the conputational stencil
voi d set NbDat aArrays(CFui nt naxSi ze);

/1 get the size of each array of tenporary physical data
virtual CFuint getDataSi ze() const = 0;

/1 finds the array of data corresponding to the given
/1 degree of freedom (state vector)
Saf ePt r <Real Vect or > get Physi cal Dat a(St at e* st at e);

b

In order not to affect thetotal memory requirements of the computati on, the maximum number of the above mentioned
physical data arrays is determined by the numerical method and scales with the number of degrees of freedom in
one or more geometric entities (cells, faces, etc.), depending on the required computational stencil. To make an
example, for a cell-vertex based a gorithm (Finite Element, Residual Distribution, etc.), the total number of physical
data arrays that are stored in BaseTerm is the maximum number of quadrature pointsin acell. The size and the

content of these arrays will be defined by the classes deriving from BaseTerm.

A template compositor object is defined for each possible combination of physical equation terms (Convection,
Diffusion, ConvectionDiffusion, etc.). It derives from PhysicalModel and aggregates generic policies [1], i.e.

subclasses of BaseTerms. Let's for instance consider a ConvectionDiffusion compositor:

templ ate <cl ass CT, class DT>
cl ass ConvectionDiffusion : public Physical Model {
public:

/1 constructor, virtual destructor,

/1 overridden parent class pure virtual nethods
pr ot ect ed:

std::auto_ptr<Cr> mconvTerm // convective term
std::auto_ptr<DT> mdiffTerm // diffusive term

b
The constructor implementationis

tenpl ate <class CT, class DT>
Convecti onDi f f usi on<CT, DT>: : Convecti onDi f f usi on(stri ng nane) :
Physi cal Model (nane),
m_convTer mnew CT(CT: : get Ter nNane())),
m di f f Ter m(new DT(DT: : get Ter mNang()))
{
/1 register all the equation terns and their Typel Ds
regi st er Ter mPhysi cal Model : : CONVECTI ON, m convTer m get ());
regi st er Ter mPhysi cal Model : : Dl FFUSI ON, m di f f Ter m get ());

}
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The equation terms aggregated by the compositor are registered in the parent class and each one of them is made
accessi ble polymorphically through the get Ter m() method defined in PhysicalModel.

3.1.2. Navier-Sokes model
We consider now the case of a Navier-Stokes model. We implement the convective term Eul er Ter mand the
diffusiveterm NSTer masfollows:

class Eul erTerm: public BaseTerm {
public:
/1 constructor, virtual destructor, etc.
/1 enunerated variables: density, pressure, enthal py, etc.
enum { RHC=0, P=1, H=2, E=3, A=4, T=5,
V=6, VX=7, VY=8, VZ=9};

/1 number of the enunerated vari abl es

virtual CFuint getDataSi ze() const {return 10;}
CFreal getMachlnf() const {return m machlnf;}
CFreal getTenmpRef() const {return mtenpRef;}
CFreal getPressRef() const{return m pRef;}
static string getTernNane() {return "Euler";}

/1 get library to conpute thernodynanic quantities
Saf ePt r <TDLi br ary> get Ther rodynam cLi brary() const
{return mtdlibrary;}

private:
CFreal mtempRef; //free streamtenperature
CFreal m pRef; //free stream pressure

CFreal mmachlnf; //free stream Mach nunber
std::auto_ptr<TDLi brary> mtdLibrary; // library

b

class NSTerm: public BaseTerm {

public:
/1 constructor, virtual destructor, etc.
/1l dynam c viscosity, thernmal conductivity
enum { MJ=0, LAMBDA=1};

/1 nunmber of the enunerated variabl es

virtual CFuint getDataSi ze() const {return 2;}

CFreal getPrandtl () const {return mPrandtl;}

CFreal getReynol dslnf() const {return m Reynol dsInf;}
static string getTernName() {return "NS";}

/1 get library to conpute transport properties
Saf ePt r <TPLi br ary> get Transport PropertyLi brary() const
{return mtpLibrary;}

private:
CFreal m Reynoldsinf; // reference reynol ds nunmber
CFreal m Prandtl; /1l Prandtl nunber

std::auto_ptr<TPLi brary> mtpLibrary; // library
1
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Besides providing accessors methods for useful parameters and libraries computing physical quantities (i.e. ther-
modynamicsor transport properties), EulerTerm and NSTerm define the size and, by means of enumerated variables,
the entries for the arrays of physical data that are stored in BaseTer mand that have been previously introduced.
It is now possible to define an instantiable Navi er St okesMbdel , i.e. what is called Concr et eModel inthe
Perspective pattern:

cl ass Navi er St okesMbdel : public ConvectionDiffusion
<Eul er Term NSTernm> {
public:
/1 constructor, virtual destructor
virtual CFuint getD nension() const; /1 georretric di nension

virtual CFuint get NbEquations() const; //nunmber of equations
virtual CFuint setUp() const; //set up data

b

NavierStokesModel can exploit the knowledge of both its concrete convective and diffusive termsto compute, for
instance, adimensionalizing coefficients.

3.1.3. Veriable sets

Numerical algorithms are not direct clients of the ConcreteModel. As explained previously, the latter is used
through alayer of polymorphic Perspective objects, whose collaborations are statically bound to the ConcreteM odel
and therefore potentially very efficient. A variable set, Var Set , is a Perspective that decouples the usage of a
physical model from the knowledge of the used variables. This, for instance, allowsthe client codeto solve equations
formulatedin conservativevariables, to performintermediate algorithmic steps and to updatein other ones (primitive,
characteristic, etc.). Figure 5 shows two variable sets, Convecti veVar Set and Di f f usi veVar Set , from
which Eul er Var Set and Navi er St okesVar Set respectively derive and whose class definitions follow:

cl ass ConvectiveVar Set {
public:
/!l constructor, virtual destructor, etc.

virtual void setUp()=0; //set up private data

/1 set physical data starting froma state vector
virtual void setPhysical Data(const State& state,
Real Vect or & dat a)=0;

/] set state vector starting from physical data
virtual void setFronPhysical Dat a(const Real Vector & dat a,
St at e& st at e)=0;

virtual void setJacobians(...)=0; /] set jacobians matrices
virtual void splitJacob(...)=0; [Isplit the jacobian

virtual void setEigenSysten(...)=0; //set the eigenval ues/vectors
virtual void setEigenValues(...)=0; //set the eigenval ues

virtual void conmputeFlux(...)=0;//conmpute the convective fl ux

b

class DiffusiveVarSet ({
publi c:
/1 constructor, virtual destructor, etc.
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virtual void setUp()=0; //set up private data

/1 set physical data starting froma state vector
virtual void setPhysical Data(const State& state,
Real Vect or & dat a)=0;

/1 set state vector starting from physical data
virtual void setFronPhysi cal Dat a(const Real Vect or & dat a,
St at e& st at )=0;

virtual void getWakDiffMat(...)=0; //set the diffusive matrix
virtual void computeFl ux(...)=0; //conmpute the diffusive flux

b

Among al the methods declared in the above two class definitions, particular attention is due to
set Physi cal Dat a() anditsdua set Fr onPhysi cal Dat a(): theformer takes a given state vector (unknown
variables) and sets the corresponding physical dependent data, whose entry pattern is defined by the the subclasses
of BaseTerm; the latter does the opposite. Inthe case of the EulerTerm, for instance, if we assumethat St at e holds
primary variables (pressure, velocity components, temperature)

6:[Pavzavyv‘/z;T] (2)

set Physi cal Dat a() will compute an array of physical quantities (density, pressure, total enthalpy, total internal
energy, sound speed, temperature, vel ocity module and components)

@ = [RHO, P, H,E, A, T,V,V,,V,, V.| &)

from ¢’ by means of thermodynamic relations. « will be then reused to compute eigenval ues, fluxes etc. A key point
for theflexibility of the designisthat each VarSet has acquaintance of the corresponding physical equation term (see
Fig. 5), but not of the resulting ConcreteModel: this allows the developer to compose progressively more complex
models with full reuse of the individual equation terms.

class Eul erVarSet : public ConvectiveVarSet ({
public:

/1 constructor, virtual destructor,

/1 overridden parent virtual methods
pr ot ect ed:

Saf ePt r <Eul er Ter n» m nodel ;

b

cl ass Navi er St okesVar Set : public DiffusiveVarSet {
public:
/1 constructor, virtual destructor,
/1 overridden parent virtual methods
pr ot ect ed:
Saf ePt r <NSTer n> m nodel ;

};

Somefunctionalitiesassociated to a VarSet areindependent on the variablesin which one needsto work: advective
fluxes, for instance, can always be computed once that physical data like pressure, enthalpy, velocity are known,
because their formulation is always the same due to the conservation property.

However, as a counter example, the Euler equations can be written in conservative, symmetrizing, entropy,
characteristic (. . .) variables and each one of this formulation defines different jacobian matrices for the convective
fluxes. TheVarSet abstractionis particularly useful in these more complex cases, since we can | et variable-dependent
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Fig. 5. Example of perspective pattern applied to the Navier-Stokes Model.

subclasses of EulerVarSet implement the jacobian matrices, according to the chosen formulation. Thereforeyou can
have Eul er Cons(conservative), Eul er Char (characteristic), Eul er Sy mm(symmetrizing), etc.

It is helpful to have derived classes for the NavierStokesVarSet too, since, for instance, the transport properties
can be computed differently in chemically reactive or non reactive flows, in loca thermal equilibrium (LTE) or
non equilibrium (NE). The method conput eFl ux() that calculates the diffusive flux is a template method [7]
in NavierStokesVarSet and delegates the computation of the transport properties to subclasses, which have more
specific knowledge. Some possible subclasses are Navi er St okesCons (non reactive conservative variables),
Navi er St okesLTEPvt (pressure, velocity, temperature variables for LTE), Navi er St okesNERi vt (den-
sities of chemical species, velocity, temperature variables for NE) etc. Another polymorphic Perspective is the
Vari abl eTr ansf or mer . This alows the client code to apply linear matrix transformations (90U /9V) between
variables and to compute one set of variable from another (e.g. Euler primitive from Euler conservative and vice-
versa). The combined use of VarSets and VariableTransformers gives the freedom to use different variables to
update the solution, compute or distributed the residual, linearize jacobians, without requiring any modification in
the client numerical algorithms that work with dynamically bound Perspective objects, completely unaware of the
actua physics.

The support for variable independent algorithms which is offered by COOLFluiD represents an important feature
that none of other well known CFD platforms such as [4,25] have.

3.1.4. Turbulent k-e multi-species model

To verify the extensibility and soundness of the Perspective pattern, we can show an application to a more
challenging case: a multi-species chemically reactive turbulent k-= model. The compositor object is now a
ConvectionDi f fusi onReact i on and ConcreteModel will aggregate three terms. Eul er Tur bKETer m
Tur bKEDI f f Ter mand Tur bKESour ceTer m The following classes can therefore be defined:

cl ass Eul er TurbKETerm : public Eul er Term {

public:
/1 turbulent kinetic energy, viscous dissipation
enum {K=11, EPS=12};

/1 first species
CFui nt start Speci es() const {Eul er Term : get Dat aSi ze() + 2};

/'l number of species
CFui nt get NoSpeci es() const {return m nbSpecies;}

/1 total size of the physical data array, including
/1 the entries declared by the parent class



A. Lani et al. / Reusable object-oriented solutions for numerical simulation of PDEs 127

virtual CFuint getDataSi ze() const
{return start Species() + m nbSpeci es;}

/1 free streamturbul ent kinetic energy
CFreal getKref() const {return mkRef;}

/1 free stream viscous dissipation
CFreal getEpsRef() const {return m epsRef;}
static string get TermNane() {return "Eul er Tur bKE"; }

/1 private data ...

b
cl ass TurbKEDi ffTerm: public NSTerm {
public:
/1 turbul ent dynam c viscosity
enum { MJUT=3};

virtual CFuint getDataSi ze() const
{return NSTerm :getDataSi ze() + 1;}

/1 sonme coefficients

CFreal get Al pha() const {return m al pha;}

CFreal getBeta() const {return mbeta;}

static string getTernNane() {return "TurbKED ff";}
/1 private data

s

cl ass Tur bKESourceTerm: public BaseTerm {
public:
/1 pairs of forward/backward reaction rates
/1 corresponding to each chenical reaction are
/1 stored in the physical data array
virtual CFuint getDataSi ze() const
{return m nbReactions*2;}

/1 some useful coefficients
Saf ePt r <Real Vect or > get Coef fs() const {return mcoeffs;}
static string get TernNane() {return "Tur bKESource";}

/1 private data

1
cl ass Tur bKEMbdel : public ConvectionDiffusi onReaction

<Eul er Tur bKETer m Tur bKEDI ff Term Tur bKESour ceTer n® {
public:

/1 constructor, virtual destructor
virtual CFuint getD nension() const;
virtual CFuint get NbEquations() const;
virtual CFuint setUp() const;
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It can be noticed that full reuse of existing termsis achieved. The dataset is simply extended to accommodate the
new model. The same reusability and flexibility applies also to the Var Set s and Var i abl eTr ansf or ner s.
Inparticular, Eul er KEVar Set derivesfrom EulerVarSet, acquaints EulerTurbK ETerm, calls the parent method to
compute thefirst five flux components and implements two additional ones for k& and ¢ plus all the partial densities
fluxes. Similarly, Tur bKEDI f f Var Set inherits from Navi er St okesVar Set , acquaints TurbKEDiff Term,
and simply extendsthe implementation of the fluxes and computesthe turbulent transport properties. Additionally, a
Tur bKESour ceVar Set , that pointsto TurbK ESourceTerm, and that implements a variabl e dependent behaviour
for the reaction source term, needs al so to be implemented.

4. Implementation of numerical methods

The solution of PDESs requires the implementation of different numerical techniques that deal with time or space
discretizations, linear system solving, mesh adaptation a gorithms, error estimation, mesh generation, etc.

Inatypical OO design, e.g. like the ones proposed by [5,10,16,24], each one of these simulation stepsis enclosed
in separate object (or polymorphic hierarchies of objects) and different patternsare applied to makethem al interact.

It would be advantageous to have just a single pattern, extraordinarily reusable, that alows the developer to
encapsulate different numerical methods uniformly, and lets him/her focus more on the algorithm itself than on
its aready well-defined surrounding. This pattern should ease the integration of new agorithms, but also the
implementation of different versions or parts of the same ones, while looking for optimal solutions and/or tuning for
run-time performance.

One of the main achievements of COOLFIuiD, as opposed to other similar OO environments, lies in having
developed a uniform high level structural solution, potentially able to encapsulate and tackle efficiently awide range
of numerical algorithms. the compound Method-Command-Strategy pattern.

4.1. Method-Command-Strategy pattern

TheMethod-Command-Strategy (MCS) pattern[13,17] providesauniformway toimplement numerical algorithms
and to compose them according to the specific needs. As sketched in Fig. 6, BaseMet hod defines an abstract
interface for a specific type of algorithm (e.g. MeshCreator, SpaceMethod, ConvergenceMethod, ErrorEstimator,
LinearSystemSolver). Concr et eMet hod implements the virtual functions of the corresponding parent class by
delegating tasks to ad-hoc Conmands [1,7] that share a tuple, Concr et eMet hodDat a, aggregating multiple
polymorphic receivers (St r at egi es). Three levels of abstraction and flexibility can be identified in this pattern:
BaseMet hod, Command and St r at egi es can al be overridden, alowing one to implement the same task,
at the corresponding level, in different ways. This kind of behavioral modularity allows the developers to easily
re-implement or tune components (Methods, Commands or Strategies), and gives them the freedom to move code
from onelayer to another, according to convenience, taste or profiling-drivenindications. Thefast-path code, critical
for the overall performance, can be wrapped inside Commands or Strategies and it can be substituted with more
efficient implementations without implying changesin the upper layer.

Moreover, while freedom is | eft to define the abstract interface of anew polymorphic BaseM ethod or Strategy, the
interface of a Command consists of only three actions:

virtual void setup(); /1 setup private data
virtual void unsetup(); // unsetup private data
virtual void execute(); // execute the action

In COOLFIuiD, managing the collaboration between different numerical methods is eased by the fact that
Commands can create their own local or distributed data and share them with other Commands defined within other
Methods, by making use of the Dat aSt or age facility, whose details are presented in Section 2.1.

Moreover, Perspective objects, as described in 3.1, can be used within the MCS pattern, at the Strategy-level, as
part of the Concr et eMet hodDat a, in order to bind a numerical algorithm to the physics polymorphically.



A. Lani et al. / Reusable object-oriented solutions for numerical simulation of PDEs 129

BaseMethod
action1()
action2() ConcreteMethodData
| getStrategyA()
Zﬁ > getStrategyB()
ConcreteMethod getStrategyC()
A
actionl() oO—F[-.. ’
actionl->execute() | Concrete
action2() —*| StrategyA <]—{ StrategyA
Concrete
—| StrategyB —<]—{
Command Action1 StrategyB
execute() < execute() ] C t
oncrete
—>| StrategyC —<]—{ StrategyC
Command Action2
execute() B execute() N

Fig. 6. OMT diagram of a MCS pattern.

Thiscollaboration between M CS and Perspective patternsisan effective solution to minimizethe coupling between
physics and numerics. It makes possible, for instance, to employ a certain space method to discretize equations
related to different physical models, but also to apply different space methods that require completely different
data-structuresto discretize asingle set of equations.

Interchangeability of Methods, Commands and Strategies can be facilitated and maximized by making them
self-registering and self-configurable objects [3,13]: this gives users and devel opersfull control on each of them.

4.1.1. Self-registering objects

Theself-registration technique[3,13] automatizesthe creation of polymorphic objectsand reducesimplementation
and compilation dependencies. A generic Concr et eCbj of polymorphic type BaseQhj can be registered by
simply instantiating the corresponding Obj ect Pr ovi der inthe implementation file:

oj ect Provi der <BaseCbj, Concret eObj > nyProvi der (" obj Nane");

The string "objName", accepted by the provider constructor, can then be used as akey to ask a singleton template
Fact ory [7] [13] to create the corresponding polymorphic object:

BaseCbj * obj = Fact ory<BaseOhj >:: get Provi der (" obj Nanme")- >cr eat e();

4.1.2. Sdf-configurable objects
In COOLFluiD, objects can be self-configurable [13], i.e. they can create and set their own data. An object is
made self configurable, by deriving it from a parent class Conf i gObj ect and by adding acall to

addConfi gOpti on(" Opti onKey", "opti on description", &configData);

inits constructor for each configurable data member configData. In particular, Opt i onKey isthe configuration key
string, used to map the value of configData. Thistechnique allows the user to input whatever kind of data (including
analytical functions) from file, environmental variables or command line options. We consider, as a basic example,
what could appear in a configuration file for a concrete SpaceM ethod object:

SpaceMet hod = MySM # name of the concrete SpaceMet hod
MySM Set UpCom = MySet Up # name of the setup Comand

MySM Dat a. Strat egyA = MWA # nane of the strategy of type A
MySM Dat a. StrategyB = MyB # name of the strategy of type B
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Fig. 7. MCS pattern applied to a Finite Volume module.

some possible applications.

4.1.3. Example of SpaceMethod: FiniteVolume
We define the interface of a SpaceMet hod, that takes care of the spatia discretization of the given set of PDES,

according to a specified numerical scheme, on a chosen mesh:

cl ass SpaceMet hod :

public:
SpaceMet hod(stri ng nane);

vi rtual
vi rtual
vi rtual

// initialize the solution
void initializeSol ution(CFbool

vi rtual

/1 conmpute the space part of the residual
voi d conput eSpaceResi dual (CFr eal

vi rtual

/1 conmpute the tinme dependent part of the residual

~ SpaceMet hod();
voi d set Met hod() =
voi d unset Met hod()

/1 jacobian matrix

vi rtual

vi rt ual

voi d appl yBC() = 0;

0;

public Method {

/1
/1
/1
/1

voi d conput eTi neResi dual (CFr eal

Vi rtual
setup the mnet hod
unsetup t he nethod

constructor

MySM is the self-configuration value for SpaceMethod, which is the configuration key for the homonymous
polymorphic object. MySM is also the self-registration key for the concrete space method class, My SpaceMet hod,
that will then beinstantiated and will configureitself with the specified setup Command, named MySetUp, and data.
The latter includes two polymorphic strategies, whose selected instances are called MyA and MyB.

A deeper analysis of the MCS pattern and more implementation details are provided in [17]. Next we consider

destruct or

i sRestart) = 0;

and jacobian nmatrix

factor=1.0) = 0;

and

factor=1.0) = O;

/1 apply boundary conditions
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As shown in the sample code above, SpaceM ethod inherits from a non instantiable Met hod object that provides
configuration functionalities meant to be reused by all its children, namely all the possible BaseMet hods inFig. 6.
Figure 7 shows a simplified class diagram of the cell center Fi ni t e Vol une (FV) module. Cel | Cent er FVM
is a concrete instance of SpaceMethod. Specific Commands, Cel | Cent er FVMCom are associated to actions
like setup and unsetup (creation and destruction of data needed by the employed scheme), application of boundary
conditions, computation of the residual and jacobian contributionsto the system matrix, if required by implicit time

stepping:

class Cell CenterFVYM : public SpaceMet hod {

publi c:
typedef Sel f Regi st Pt r <Command<Cel | Cent er FVMDat a> > FVMCom
/'l constructor, destructor, overridden virtual functions

private:
// data to share between FVMCom conmands
std::auto_ptr<Cel | Cent er FVNMDat a> m dat a;

std:: pai r<FVMCom stri ng> m set up; /1 setup Command
std:: pai r<FVMCom stri ng> munsetup; // unsetup Command

/1 Commands conputing the residual/jacobian
std:: pai r<FVMCom stri ng> m conput eSpaceRHS; // space part
std:: pai r<FVMCom string> m conputeTi meRHS; // time part

/1 Commands that initialize the solution in the donmain
std::vector<FVMCon> minits;
std::vector<string> minitsStr; // init Comands nanes

/1 Commands that computes the boundary conditions (bc)
st d: : vect or <FVMCon> m bcs;
std::vector<string> mbcsStr; // bc Comrands nanes

b

All self-registering polymorphic objects, including Commands, are aggregated by Sel f Regi st Pt r s, i.e. smart
pointers with intrusive reference counting [1] that keep ownership on them. In order to take full profit of self-
registration and self-configurationfeatures, all Concr et eMet hods, including Cell CenterFV M, hold the Command
names (second entry in the std::pair tuples), which are used as keys for the polymorphic creation and configuration
of the Commands themselves. Let’s consider the constructor of CellCenterFVM:

Cel | Center FVM : Cel | Cent er FYMst ri ng nane) :
SpaceMet hod(nane), m dat a(new Cel | Cent er FVMVDat a())

{
m setupStr = "StdSetup"; // default nane
addConfi gOpti on(" Set upCont', " Set up", &m set up. second);
m unSetupStr = "StdUnSetup"; // default nane
addConfi gOpti on(" UnSet upCont', " UnSet up", &n unSet up. second);
m_conput eSpaceRHSStr = "FVMCCRhs"; // default nane
addConfi gOpti on(" Comput eRHS", " Conpute space residual ",
&m conput eSpaceRHS. second);
/1
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All the Command names are set to a default that can be overridden by the user in the COOLFIuiD input file: these
will cause the object requested by the user to be instantiated, if available. Let’s analyze the following fragment of
an input configuration file:

SpaceMet hod = Cel | Cent er FVM

Cel | Cent er FYM Set upCom = Least Squar eP1Set up

Cel | Cent er FYM UnSet upCom = Least Squar eP1UnSet up
Cel | Cent er FYM Conput eRHS = Numlacob

This asks to create the SpaceM ethod corresponding to the name Cell CenterFVM and to select setup and unsetup
Commands specific for a second order scheme based on least square reconstruction, which requires the allocation
of many more data (cell limiters, cell gradients, weights etc.) than a first order one. Likewise, the Command with
name NumJacob will be used to compute the residual and jacobian contributions instead of the default one, called
FVMCCRhs.

All FVMComs are parameterized with a policy class [1], Cel | Cent er FVMDat a, which groups together all
the Strategy objects needed by the Commands to fulfill their job: Fl uxSplitter, the flux splitting scheme,
Pol yRec, the polynomial reconstructor, some Perspectives, i.e. Var Set s and Var i abl eTr ansf or mer s (see
3.1), that provide the binding to the physics.

class Cell Center FVMData : public ConfigQOhject {
public:
[l constructor, destructor, configuration functions

/1 convective, diffusive flux, source term conputers

Saf ePtr<Fl uxSplitter> get Fl uxSplitter() const;

Saf ePt r<Di f f usi veFl uxConput er > get Di f f Fl uxConput er () const ;
Saf ePt r <Conput eSour ceTer m> get Sour ceTer mConput er () const;

/1 solution and update convective variable sets
Saf ePt r <Convecti veVar Set > get Sol uti onVar () const;
Saf ePt r <Convecti veVar Set > get Updat eVar () const;

/1 update diffusive var set
Saf ePtr<Di ff usi veVar Set > get Di ffusi veVar() const;

/1 pol ynom al reconstructor
Saf ePt r <Pol yReconst ruct or > get Pol yReconstruct or () const;

/1 vectorial transformer fromupdate to solution variables
Saf ePt r <Var Set Tr ansf or ner > get Updat eToSol uti onVecTrans() const;

/] other accessors/mnutators ...
private:

std:: pair<Sel fRegi stPtr<FluxSplitter>, string> mfluSplitter;
st d: : pai r<Sel f Regi st Pt r<Pol yReconstructor>, string> m polyRec;
/1 the sane for all the other objects ...

};

Since CellCenterFVMData is also a self-configurable object, this implies that the user can select the concrete
Strategies by name at run-time (e.g. Roe, AUSM, LaxFriedrichs as FluxSplitter, Constant or LeastSquare as PolyRe-
costructor, etc.), while the developer can implement and register new ones without needing to modify the client
code.

Other subclasses of SpaceMethod, suchasFi nit e El enent (FE) or Resi dual Di stri buti on(RD), are
implemented in asimilar way.



Fig. 8. MCS pattern applied to two interacting modules: a Backward Euler convergence method and a Petsc linear system solver.
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4.1.4. Collaboration between two methods: ConvergenceMethod and Linear SystemSol ver
We consider now an example of interaction between two different numerical methods. Figure 8 shows the
collaboration between two abstract methods: Conver genceMet hod, responsible of the iterative procedure, and

Li near Syst enfSol ver.

In this case, Backwar dEul er,
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an implicit convergence method, delegates poly-

morphically the solution of the resulting linear system to Pet scLSS, which interfaces the PETSc library [2].
Backwar dEul er makes use of Commands for the setup, unsetup and solution update, while Pet scLSS let
Commands implement the setup, unsetup and solution of the linear system.

The class definition of ConvergenceMethod is the following:

cl ass ConvergenceMet hod :

public:

// constructor,

vi rtual
vi rtual
vi rtual

/1l Sets

voi d takeStep() =
voi d set Met hod()
voi d unset Met hod()

virtual destructor,

public Method {

col | aborat or net hods (SpaceMet hod,

configuration nmethods
; /1l Take one tinestep

= 0; /1 Sets up private data
= 0; // Cears up private data

Li near Syst enfsol ver)

voi d set Col | abor at or (Mul ti Met hodHandl e<SpaceMet hod> spaceM d);
voi d set Col | aborat or (Mul ti Met hodHandl e<Li near Syst enfSol ver > | ss);

pr ot ect ed:

/1 Synchroni zes the states and conputes the normof the residual

voi d synchAndConput eRes(CFbool

pr ot ect ed:
/1 Space Method used to conpute spati al

// dat a

conput eResi dual );

Mul ti Met hodHandl e<SpaceMet hod> m spaceM d;

di scretization

/1 Linear Systentol ver used to solve the |linear system (if any)
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Mul ti Met hodHandl e<Li near Syst enSol ver > m | ss;
1

Inthe codeabove, Mul t i Met hodHandl e isalightweight proxy object that hidesthe knowledge of multiplicity:
it controls the access to one or more underlying Methods with the same polymorphic type and dispatches specified
actionson all of them sequentially, similarly to what astd::for _.each functionwould do[20]. The purposeof accessing
Method obj ects through MultiMethodHandlesis to offer transparent support for weakly coupled simulations, where,
in the same process, two or more different linear systems are assembled by one or more SpaceM ethods and must be
solved one after the other.

SpaceMethod (SM) and LinearSystemSolver (L SS) are the collaborator Methods: a concrete ConvergenceM ethod
uses them polymorphically via MultiMethodHandles, without knowledge of their concrete type or their actual
number.

As aresult, concrete collaborator Methods are completely interchangeable with other ones with the same poly-
morphic type.

When running in parallel, in the function synchAndConput eRes|() the global storage of state vectors and
nodal coordinates are accessed via Dat aHandl e and asked to synchronize the underlying parallel array:

voi d Conver genceMet hod: : synchAndConput eRes(CFbool comput eResi dual )
{
/1 handle to the gl obal storage of states
Dat aHandl e<GLOBAL, CFreal > statedata = MeshDat a: : get | nst ance()- >
get d obal Dat a()- >get Dat a<CFr eal >(" st at edat a");

/1 handle to the gl obal storage of nodes
Dat aHandl e<G.OBAL, CFr eal > nodedat a = MeshDat a: : get | nst ance()- >
get d obal Dat a()- >get Dat a<CFr eal >(" nodedat a");

/1 after each update phase states and nodes
/1l have to be synchronized

st at edat a- >begi nSync();

nodedat a- >begi nSync();

if (conmputeResidual) {...} [// conputation of the residual

st at edat a- >endSync();
nodedat a- >endSync();

Inaparalel ssimulation, the norm of the residual is calculated with a collective operation, between the beginning
and the end of the synchronization process, in order to overlap communication and computation and maximize the
efficiency of the operation. When running serialy, the implementation of synchAndConput eRes() remains
unchanged, but in fact the callsto begi nSync() and endSync () have no effect.

We consider now BackwardEuler, a subclass of the ConvergenceM ethod:

cl ass Backwar dEul er : public ConvergenceMet hod {
public:
/lconstructor, virtual destructor, configuration nethods
t ypedef Sel f Regi st Pt r <Cormand<BwdEul er Dat a> > BwdEul er Com

voi d takeStep(); /1 Take one tinestep
voi d set Met hod(); /1 Sets up private data
voi d unset Method(); // Clears up private data
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private:

// data shared by BwdEul er Conmands

std::auto_ptr<BwdEul er Dat a> m dat a;

st d: : pai r<BwdEul er Com stri ng> m set up; /] set up

st d: : pai r<BwdEul er Com stri ng> m unSet up; /1 unsetup

st d: : pai r<BwdEul er Com stri ng> m updateSol ; // update sol ution
1

A different Command and its name are associated to each one of the pure virtual functions declared by the parent
ConvergenceMethod. We report here the implementation of t akeSt ep(), where the polymorphic usage of the
collaborators (SM and L SS) and of the solution updating Command is shown.

voi d BwdEul er: : t akeSt ep()
{
/1 conmpute residual and jacobian contributions for
/1 the spatial and tinme dependent term of the equations
m spaceM d. appl y(mem f un(&SpaceMet hod: : conput eSpaceResi dual ));
m spaceM d. appl y(mem f un(&SpaceMet hod: : conput eTi meResi dual ));

/1 solve the resulting linear system
m | ss. appl y(mem f un(&Li near Syst enfsol ver : : sol veSys));

m updat eSol . first->execute(); // update the solution

/1 synchroni ze nodes and states, conpute the internediate residual
Conver genceMet hod: : synchAndConput eRes(t r ue);

The code is readable, concise, independent from the actual type and number of SM or LSS, extremely flexible,
since each part of the agorithm (Commands or Methods) can be replaced at run-time without any performance
overhead. In fact, the frequency of virtual calls in question is exceptionally low and, therefore, does not have an
impact on the run-time speed.

The class definitions of the parent LSS and of its subclass PetscL SS are the following:

cl ass Linear Systenfsol ver : public Method {

publi c:
/lconstructor, virtual destructor, configuration nethods
virtual void sol veSys() = 0; /1 solve the linear system

virtual void setMthod() = O; /1 setup private data
virtual void unsetMethod() = 0; // clear up private data

/1l create a block accunulator with ad-hoc internal storage
virtual Bl ockAccumul at or* creat eBl ockAccunul at or
(int nbRows, int nbCols, int subBl ockSize) const = O;

/1 accessor/mutator for local to global LSS index nmapping
Saf ePt r <LSSI dxMappi ng> get Local Tod obal Mappi ng()
{return & | ocal Tod obal ;}

/1l get the systemmatrix
virtual SafePtr<LSSMatrix> getMatrix() const = O;
private:
/1 idx mapping fromlocal to LSS gl obal
LSSI dxMappi ng m | ocal ToG obal ;

b
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cl ass PetscLSS : public LinearSystentol ver {
publi c:
//constructor, virtual destructor, configuration nethods
t ypedef Sel f Regi st Pt r <Command<Pet scLSSDat a> > Pet scLSSCom

voi d set Met hod(); /1 setup private data
voi d unset Method(); // clears up private data
voi d sol veSys(); /1 solve the linear system

/1 create a block accunulator with ad-hoc internal storage
Bl ockAccumul at or* creat eBl ockAccunul at or () const;

/1 get the systemmatrix
Saf ePtr<LSSMat ri x> get Mat ri x() const
{return &m dat a->get Matri x(); }

private:
/1/The data to share between Pet scLSSCom Conmands
std::auto_ptr<PetscLSSDat a> m dat a;
st d:: pai r<Pet scLSSCom stri ng> m set up; /1 setup Command
std:: pai r<Pet scLSSCom string> munSetup; // unsetup Conmand
std:: pai r<Pet scLSSCom string> m sol veSys; // sol ver Conmand
b

PetscL SS delegates tasks to specific Commands, PetscL SSCom, sharing some data (Pet scLSSDat a), such as
referencesto the (parallel) Petsc matrix and the (parallel) Petsc vectorsinvolved in the solution of the linear system:

cl ass Pet scLSSDat a {
publi c:
/lconstructor, destructor, configuration methods

Pet scVect or & get Sol Vec() {return m xVec;} //Petsc solution array
Pet scVect or & get RhsVec() {return m bVec;} //Petsc rhs array

Pet scMatri x& getMatri x() {return maMat;} //Petsc matrix

PC& get Precondi tioner() {return mpc;} //Petsc preconditioner
KSP& get KSP() {return mksp;} //Petsc Krylov sol ver

/1l accessors to various Petsc paraneters, private data, etc.

b

Only the PetscL SSCom can make direct use of PETSc [2] objects like PC or KSP, that are aggregated by
PetscL SSData. The knowledge of a specific LSS, PetscL SS, in this case, is not assumed anywherein the numerical
modules, thanks to the use of abstractions such as LSSMat ri x, Bl ockAccunul at or and LSSI dxMappi ng.
LSSMat ri x isthe parent system matrix from which PetscMatrix derives. Bl ockAccunul at or bundles blocks
of valuesto be inserted in the matrix. LSSI dxMappi ng stores a mapping from the local numbering to an optimal
L SS-dependent global one.

As represented in Fig. 8, all the involved Commands have acquaintance of MeshData, which provides access
to DataStorage and DataHandles, and can therefore use and modify bulk data, qualified by name and type, as
explained in 2.1. In other words, while, on one hand, each ConcreteMethodData, such as PetscL SSData and
BackwardEulerData, allows intra-Method sharing of ConcreteM ethod-dependent data among Commands, on the
other hand, MeshData s the vehicle for inter-Method data exchange.

The following sample code should help clarifying the last statement in the case of two Commands, namely
Updat eSol in BackwardEuler and Sol veSys in PetscL SS:
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voi d Updat eSol : : execut e()
{
/1 get the local state vectors and rhs from MeshDat a
Dat aHandl e<LOCAL, St at e*> st ates = MeshDat a: : get | nst ance()- >
get Local Dat a()- >get Dat a<St at e*>("st at es");

Dat aHandl e<LOCAL, CFreal > rhs = MeshDat a: : get | nst ance()- >
get Local Dat a()- >get Dat a<CFr eal >("r hs");

/1 conmpute the solution update ...

}

voi d Sol veSys: : execute()
{
/1 get the local state vectors and rhs from MeshDat a
Dat aHandl e<LOCAL, St at e*> st ates = MeshDat a: : get | nst ance()- >
get Local Dat a()- >get Dat a<St at e*>(" st at es");

Dat aHandl e<LOCAL, CFreal > rhs = MeshDat a: : get | nst ance()- >
get Local Dat a()- >get Dat a<CFr eal >("r hs");

/1 get the nethod data shared by all PetsclLSS Comrands
Pet scMatri x& mat = get Dat aPtr (). get Mat ri x();

Pet scVect or & rhsVec = get Dat aPtr (). get RhsVect or ();

Pet scVect or & sol Vec = get Dat aPtr (). get Sol Vect or ();

KSP& ksp = get Dat aPtr (). get KSP();

/1 performfinal assenbly and ask PETSc to sol ve the system

Data stored in MeshData are alowed to cross the Method scope and can be used in Commands belonging to
different Methods. The keys for the data exchange are the storage name and type, that must both match in al the
method Commands that need the same data.

In parallel simulations, nothing changes, since the Commandsimplementing numerical algorithmswork only with
LOCAL data, as they would do in a serial run. Functions that demand access to the GLOBAL storage and perform
some parallel action, like the above mentioned synchAndConput eRes (), are exceptional.

Furthermore, the exampl e of the collaboration between ConvergenceM ethod and L SS demonstratesthe suitability
of the MCS pattern to interface existing libraries, PETSc in this case, without exposing any detail of their actual
implementation to their clients.

The Trilinos package [19] has also been successfully integrated in COOLFluiD by means of the MCS pattern.
While the class definitions of the corresponding concrete linear system solver Method and the related Commands
are basically similar to the Petsc’s ones, the interface of TrilinosL SSData is defined as follows:

class TrilinosLSSData {

public:
/1 map for the individual 1Ds of the unknowns
Epetra_Map* get EpetraMap() {return m map;}

TrilinosVector* getSol Vec() {return &m xVec;} //solution vector
TrilinosVector* getRhsVec() {return &m bVec;} //rhs vector
TrilinosMatrix* getMatrix() {return &m aMat;} //systemmatrix
Azt ecOO* get KSP() {return & ksp;} // Aztec Kryl ov sol ver
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/1 various options and paraneters to control convergence
/1 and tune the solver to satisfy the user needs ...

};

To summarize, the application of the MCS pattern hel psto encapsul ate not only each numerical algorithm but also
its collaborations with other algorithms. This contributes to enforce the multi-component-oriented character of the
COOLFHuiD framework, where each component can be replaced by another one with the same polymorphic type,
without affecting the client code.

5. Conclusions

In the available literature related to OO simulation of PDEs, to the knowledge of the authors, it's difficult to
find design solutions that can offer, at least in principle, a flexibility in the serial and parallel data handling, a
run-timeinterchangeability between physics and numerics and a structural support to encapsul ate generic numerical
algorithmsin aflexible and reusable way, comparable with the ones presented in this article. Asamatter of fact, the
proposed design and implementation ideas don’t necessarily need to be employed within COOLFluiD, but they can
be reused independently and in other scientific computing contexts, even unrelated to the solution of PDES.

The flexible and reusable design solutions presented in this paper have allowed COOLFIuiD to enlargeits target
applications beyond the scope of solely Computational Fluid Dynamics. Several components have already been
integrated in the framework: explicit (Runge-Kutta) and implicit (Newton, Crank-Nicholson, Three Point Backward)
time stepping, different spatial discretizations (FV, RD, Space-Time RD, FE), different physical models (Euler,
Navier-Stokes, ideal Magneto Hydro Dynamics, Linear Elasticity, Heat transfer, etc.), different linear system solvers
wrappers (PETSc [2], Trilinos[19]), aparalld flexible data-structure supporting the use of hybrid meshes, etc.

The implementation of many other functionalitiesis underway: Aero-Thermo-Chemical models, incompressible
plasma flows, error estimation, mesh movement and adaptation, loosely coupled fluid-structure interaction.
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