
Scientific Programming 14 (2006) 209–216 209
IOS Press

Styx Grid Services: Lightweight middleware
for efficient scientific workflows

J.D. Blowera, A.B. Harrisonb and K. Hainesa

aReading e-Science Centre, Environmental Systems Science Centre, University of Reading, Reading RG6 6AL, UK
Tel.: +44 (0)118 3788741; E-mail: {jdb,kh}@mail.nerc-essc.ac.uk
bSchool of Computer Science, Cardiff University, Cardiff CF24 3AA, UK
Tel.: +44 (0)29 20876964; E-mail: a.b.harrison@cs.cardiff.ac.uk

Abstract. The service-oriented approach to performing distributed scientific research is potentially very powerful but is not yet
widely used in many scientific fields. This is partly due to the technical difficulties involved in creating services and workflows
and the inefficiency of many workflow systems with regard to handling large datasets. We present the Styx Grid Service, a simple
system that wraps command-line programs and allows them to be run over the Internet exactly as if they were local programs.
Styx Grid Services are very easy to create and use and can be composed into powerful workflows with simple shell scripts or
more sophisticated graphical tools. An important feature of the system is that data can be streamed directly from service to
service, significantly increasing the efficiency of workflows that use large data volumes. The status and progress of Styx Grid
Services can be monitored asynchronously using a mechanism that places very few demands on firewalls. We show how Styx
Grid Services can interoperate with with Web Services and WS-Resources using suitable adapters.

Keywords: Styx, streaming, third-party transfers, WS-RF, Condor, Globus

1. Introduction

The use of service-oriented architectures (SOAs) in
scientific computing is increasing. The principal ad-
vantage of the SOA approach is that scientists can ac-
cess resources such as databases, high-end computing
resources, laboratory equipment and sensor networks
over the Internet without knowledge of the underly-
ing infrastructure. Several independent services can be
combined in a distributed application or workflow to
solve a particular problem. For example, a scientist
might wish to construct a workflow in which several
pieces of data are extracted from databases in different
locations, analyzed using a distributed computing re-
source, then finally visualized on his or her local ma-
chine.

At present, however, there are very few examples
of scientific communities that work routinely in this
way. Part of the reason for this is that the creation of
such services and workflows is beyond the technical
expertise of most scientists, often due to the complexity

of the required middleware [14]. Furthermore, many
workflow systems suffer from inherent limitations that
are important in the scientific domain. These vary from
system to system but commonly include:

– A centralized data flow architecture: all data must
pass through the workflow engine.

– A focus on SOAP and XML as the data transport
format. It is very inefficient to encode anything
other than a small amount of data in XML due
to the processing time required and the inflating
effect of doing so. The use of SOAP attachments
gives a smaller data size than XML but still re-
quires data to be encoded and decoded [13,15,16].

– A notification mechanism that requires the client
to listen on incoming ports or to poll the server
frequently. This is discussed further in Section 2.1
below.

We describe a service type that addresses the above
issues: the Styx Grid Service or SGS. A Styx Grid Ser-
vice is a service that wraps a command-line (i.e. non-

ISSN 1058-9244/06/$17.00  2006 – IOS Press and the authors. All rights reserved

210 J.D. Blower et al. / Styx Grid Services: Lightweight middleware for efficient scientific workflows

graphical) program and allows it to be run remotely.
Styx Grid Services are very easy to create, deploy and
use [8,10,11] and can be composed into workflows us-
ing shell scripts or specialized workflow tools. Work-
flows that are composed from Styx Grid Services work
efficiently with large datasets: data are transported in
their most compact binary form and can be streamed
directly from service to service in a decentralized data
flow architecture. Through the use of wrappers and
brokers, SGSs can interoperate with tools and services
based on Web Services and the Web Services Resource
Framework (WSRF [29]).

The details of how Styx Grid Services are created
and used from a user’s point of view can be found in
previous publications [8,10,11] and the project web-
site [7]. In this paper we shall focus on how the SGS
system enables the creation of efficient scientific work-
flows through the use of direct transfer and streaming
of data.

1.1. Related work

A number of systems are addressing the need to sup-
port data streaming in a variety of domains. In [12], the
authors extend the OSIRIS [26] system to enable data
stream processing in the field of healthcare. The data
stream management sub-system is constructed from a
Peer-to-Peer network of Operators deployed on a vari-
ety of devices including sensors, that accept, transform
and output data streams. Different classes of Opera-
tors perform different transformations (e.g. noise re-
duction). Special Web Service Operators interface to
the outside world allowing data to be stored or rendered
remotely as well as control parameters to be passed into
the network of Operators. The concept of Operators
is similar to the use of pipes in the Styx Grid Services
system.

In [6] the authors address the limitations of business
process modelling techniques in handling data streams.
The research focusses on how to manage state transi-
tions within workflow components based on traditional
request/response style interactions, specifically how to
enable iterative re-execution of a component as a re-
sult of receiving data streams. SGS does not limit it-
self to business process modelling techniques. This
gives the architecture flexibility although it does place
the burden of understanding the behaviour of workflow
components on the workflow designer.

In the context of Grid computing data streaming is
being addressed with regard to several fields includ-
ing geospatial data and astronomical data processing.

The Cactus Computational Toolkit [4] has supported
streaming for a number of years, specifically for re-
mote visualization purposes, including the ability to
stream to multiple clients simultaneously. In [19], the
authors present data streaming services based on the
NaradaBrokering [2] messaging system. Services are
presented that stream GPS data from sensors as well
as services that extend the capabilities of the Open
Geospatial Consortium (OGC) data services to pro-
vide streaming of time-dependent data. The authors
note the inefficiency of SOAP and provide data fil-
ters to transform streamed data. A similar approach
is taken by the UniGrids Streaming Framework [5]:
WSRF is used specifically to control and monitor the
lifetime and parameters of optimized data streams. The
AstroGrid-D [1] project is currently designing a data
stream management system for handling astronomical
data. Again it uses WSRF, and like the NaradaBro-
kering example uses the publish/subscribe pattern for
receiving streams.

Although the SGS system supports many of the fea-
tures of the above systems, it does not aim to support
them all. A key goal of the SGS system is to be very
lightweight and easy to use, requiring the minimum of
dependencies and being as easy as possible for non-
technical users to create and use streaming services.
Later in this paper we shall demonstrate how Styx Grid
Services can interoperate with other frameworks, such
as those based on WSRF, through suitable wrappers
and brokers.

2. Styx Grid Services: Architecture

The basis of the SGS system is the well-established
Styx protocol for distributed systems [25]. Styx is a
key component of the Inferno [17] and Plan 9 [24] op-
erating systems (in Plan 9, Styx is known as “9P”: the
current version of Styx is equivalent to 9P2000). In
Inferno and Plan 9, applications communicate with all
resources using Styx, without knowing whether the re-
sources are local or remote. Styx is essentially a file-
sharing protocol, similar in some ways to NFS. How-
ever, in a Styx system the “files” are not always literal
files on a hard disk. They can represent a block of
RAM or the interface to a program, database or phys-
ical device. Styx can therefore be used as a uniform
interface to access diverse resource types. Whereas in
Remote Procedure Call (RPC)-style Web Services the
resources are accessed through a set of methods, Styx
resources are accessed by reading and writing a set of

J.D. Blower et al. / Styx Grid Services: Lightweight middleware for efficient scientific workflows 211

files, which are organized in a hierarchy of virtual files,
which is known as a namespace.

A Styx Grid Service wraps a command-line exe-
cutable and exposes it to the network as a namespace.
This namespace contains files that represent the input
and output files of the executable and its command-line
arguments. It also contains files that allow the service
to be controlled and monitored. A full description of
the SGS namespace is not given here for reasons of
space: the reader is referred to the SGS website [7] and
previous publications [8,10,11]. A single SGS server
can contain many SGSs and can service multiple clients
simultaneously. The server is configured through an
XML file that defines each wrapped executable in terms
of its inputs, outputs and arguments [11].

All files in the SGS namespace can be refer-
enced by a unique URL. For example, the file that
represents the standard output stream of instance
1 of the the mySGS service can be identified by
styx://<server>:<port>/mySGS/instances/1/outp-
uts/stdout. This is very important for workflows: these
URLs are passed between services in a workflow as
pointers to data, to enable the direct transfer of data
files and streams between services (see Section 2.3).

In some respects, the SGS system is similar to Grid-
dLeS [3]. Both systems “Grid enable” unmodified ex-
ecutables and allow them to be combined to create dis-
tributed applications by redirecting their input and out-
put data over a network. However, whereas SGS wraps
executables in a Java framework, GriddLeS overloads
the normal system-level I/O calls and redirects them
transparently to remote files where necessary. A full
comparison of the systems and their interoperability is
beyond the scope of this paper but would be an inter-
esting topic of future research.

2.1. Asynchronous notification

With long-running services it is desirable for clients
to be able to monitor the progress and status of the re-
mote service. Many notification systems (e.g. WSRF)
employ methods whereby either (i) the client runs a
server process that listens for messages or (ii) the client
polls the server at intervals for updates. Method (i) will
be defeated if the client is behind a stringent firewall
or NAT system and method (ii) can be inefficient, lead-
ing to the client and server exchanging many redundant
messages.

In the SGS system the problem is solved in the fol-
lowing way. The client makes a persistent connection
with the server and reads from a particular file in the

SGS namespace to get a piece of status information.
Having received the reply, the client immediately sends
another message to read from the same file. The server
will not respond to this message until the status infor-
mation has changed. This is permitted by the design of
the Styx protocol, which allows read requests and their
reponses to be decoupled. The use of persistent con-
nections is a key difference between the typical usage
patterns of the Styx and HTTP protocols.

2.2. Data transfers in Styx

It is important to understand how bulk data are trans-
ferred in the Styx protocol. When a client downloads
data from a Styx server it does so in chunks: it sends
read requests for individual chunks of (typically) 8 KB
in size. When the server replies with the data chunk the
client sends another read message and so forth. This
method is to allow a single socket connection to be used
for multiple simultaneous tasks (data transfer, progress
monitoring, etc.) but leads to less efficient bulk transfer
than, for example, HTTP. The throughput of data can
be increased by (i) increasing the chunk size and (ii)
sending multiple read requests without waiting for a
reply. By combining these two methods we have found
it possible to approach HTTP transfer rates, achieving
95% of HTTP throughput in a particular trial [9].

2.3. Direct data streaming

A very important feature of the SGS system is that
it allows workflows to be constructed in which data are
passed directly from service to service in their most
efficient binary form. To explain how this works, let us
consider a workflow of two Styx Grid Services, A and
B, in which output data from A must be sent directly to
B, without passing through the workflow engine:

1. The workflow engine creates a new instance of
service A and starts it.

2. Instead of downloading the output from service
A, the workflow engine immediately obtains a
reference to the output file or stream. This refer-
ence is the URL of the relevant virtual file in the
namespace of service A.

3. The workflow engine creates a new instance of
service B, while service A is still running.

4. Instead of uploading an input file to service B,
the workflow engine uploads the reference to the
output of service A.

212 J.D. Blower et al. / Styx Grid Services: Lightweight middleware for efficient scientific workflows

5. The workflow engine starts service B. Service B
downloads the data from service A and passes it
to the underlying executable, either as a regular
input file or on the standard input stream of the
executable.

There are three important things to note about this
mechanism. Firstly, data are pulled from service B,
not pushed from service A. Secondly, any number of
other services or clients could download the output
from service A giving the effect of forking the data
stream between multiple services. Thirdly, service B
does not distinguish between downloading data from a
static file and downloading data from a stream of live
data: service B does not have to know anything about
the behaviour of service A.

The chunked method of data transfer (Section 2.2)
ensures that there can be no problems with buffer over-
or under-runs due to a slow data consumer being over-
whelmed with data from a fast producer. A data con-
sumer will only request a data chunk when the con-
sumer is ready (preventing over-runs): conversely a
server will not reply to a data request until the data are
available (preventing under-runs).

2.4. Security

SGS servers can be secured in more than one way. A
server can execute as a persistent daemon with its own
user database and authentication protocol and traffic
can be optionally encrypted using SSL (Secure Sock-
ets Layer). Alternatively, the server can be executed
through the Secure Shell (SSH), using the SSH authen-
tication mechanism and secure channels. The use of
SSH and SGS in combination permits the rapid creation
of cross-institutional Grids without requiring heavy-
weight middleware solutions or the opening of a large
number of firewall holes. A discussion of this, and
other security issues, can be found in [11].

2.5. Integration with other Grid resources

The SGS system can be employed as an easy-to-use
front end to Distributed Resource Managers such as
Condor [28], Sun GridEngine [27] and Globus [18].
The SGS server exposes the same namespace in all
cases and so no change to client software is needed. In
these cases, jobs are not run on the SGS server itself,
but on a set of distributed resources such as a cycle-
stealing pool of desktop machines or a compute cluster.
For more details the reader is referred to [11].

3. Workflow case study

In order to illustrate the above concepts we shall de-
scribe a particular data-intensive workflow that is par-
ticularly suited to the SGS approach. In the environ-
mental sciences, computer models of atmospheric and
oceanic circulation are driven and validated by obser-
vations. The science of data assimilation is concerned
with the process of combining these models and obser-
vations in order to increase the predictive skill of the
models. In data assimilation it is important to know
how certain quantities are correlated with each other
and with themselves over time [20]. In the context
of an ocean circulation model, a one-point correlation
map displays how the evolution of a certain quantity,
such as the salinity on the 12◦C isotherm, at a single
point correlates with the evolution of the same quantity
at its neighbouring points in the model. This gives a
characteristic length scale for key physical processes.

In one such investigation [20], we employed a work-
flow of three Styx Grid Services (Fig. 1). The first
service (extract) extracts data from an archive and out-
puts it as a set of timeseries of the quantity in question.
The second service (filter) filters the data by removing
the signal of the seasonal cycle, which would other-
wise dominate the data. The third service (calcCorre-
lation) calculates the one-point correlation map from
the filtered data.

The executables that underlie the SGSs are simple
C programs that read data from their standard input
stream and output data to their standard output stream.
Therefore, if they were running on the same machine,
the whole calculation could be performed by running:

extract <params> | filter | calcCorrelation

where <params> are the parameters of the extraction
process, which do not concern us here. Note that,
through the use of the SGSRun client program (see
Section 4.1 below), the above calculation can be run
as a workflow over a set of distributed services with
exactly the same command line [10]. Each service
deals with approximately 24 MB of binary data, which
is far too large to consider encoding as XML, or even
as SOAP attachments: the resulting workflow would
be very inefficient.

This workflow is particularly suited to a data stream-
ing approach because the downstream services (filter
and calcCorrelation) can begin their work before all
the data is extracted by the extract service. It is not
necessary to construct intermediate files. Close ana-
logues of this process can be found in many scientific
fields such as signal processing.

J.D. Blower et al. / Styx Grid Services: Lightweight middleware for efficient scientific workflows 213

extract

filter

calcCorrelation

workflow
engine

DATA

Fig. 1. The case study workflow of Section 3. The workflow involves the extraction of data from a store, the filtering of the data to remove
low-frequency signals and the calculation of a one-point correlation map. The large arrows represent the ideal path of data, i.e. directly between
the services, that is enabled by the Styx Grid Services architecture. The thin arrows represent control commands that are sent to the services by
the workflow engine. The direct streaming is enabled through the use of references to data streams (Section 2.3).

3.1. Timing tests

The simple workflow of three SGSs can be con-
structed in four different ways. The workflow can either
pass data directly between the services, or the data can
be passed through the workflow engine. Additionally,
the workflow can either execute the service sequen-
tially (i.e. the extract service must complete before the
filter service can start, and so forth) or concurrently, in
which all three services can run simultaneously on a
continuous data stream.

The results of the four different possibilities are
shown in Fig. 2. As expected, the most efficient case
is the one in which data are streamed directly from ser-
vice to service and in which the three services execute
concurrently.

Although the direct data streaming approach is
clearly the most efficient in this case, a similar increase
in efficiency will not always be seen in other workflows.
If, for example, a workflow is dominated by a slow-
running service, the increase in data transfer efficiency
might not have a large effect on the overall execution
time. However, for data-intensive workflows, particu-
larly where the workflow engine (i.e. the client) has a
low-bandwidth connection to the remote services, the
advantage to the direct streaming approach is likely to
be marked. Also, not all services will support stream-
ing: in many cases the services in a workflow will ex-
ecute sequentially. However, Fig. 2 shows that there

is still a distinct advantage to passing the data directly
between sequentially-executing services.

4. Interfaces to Styx Grid Services

The above discussion and results are independent of
the choice of workflow engine. There are many ways
for a client to interact with Styx Grid Services and
create workflows from them.

4.1. Command-line interface

The SGSRun program, which is distributed with the
SGS software, is a generic command-line client pro-
gram for any SGS. It allows remote SGSs to be run
exactly as if they were local programs [10,11]. In-
put/output files are automatically uploaded/downloaded
and command-line parameters are parsed. Through the
SGSRun program, simple workflows can be created
with shell scripts. This is perhaps the easiest way of
creating SGS workflows.

4.2. Graphical workflow tools

In some cases, there are significant advantages in us-
ing more sophisticated graphical tools to interact with
services and create workflows. In particular, graphical
interfaces can provide richer interactivity with the SGS

214 J.D. Blower et al. / Styx Grid Services: Lightweight middleware for efficient scientific workflows

0

50

100

150

200

250

300

1 2 3 4

Workflow

W
al

l c
lo

ck
 t

im
e

(s
)

Fig. 2. Comparison of execution speeds (wall clock time) of four variants of the case study workflow of Fig. 1 and Section 3. Speeds are averaged
over five trials to remove effects of random variations of background network traffic. Error bars represent one standard deviation of the mean. Bar
1: Data are streamed directly between concurrently-executing services. Bar 2: Data are streamed between concurrent services, but the data pass
through the workflow engine. Bar 3: Data are passed directly between services that execute sequentially (one after the other). Bar 4: Sequential
execution of services, data pass through the workflow engine.

server: progress and status can be monitored graphi-
cally, input parameters can be set using graphical con-
trols and the service can be steered [8]. Furthermore,
to provide greater interoperability with other Grid en-
vironments it can be advantageous to wrap SGS in
standards-compliant interfaces using ubiquitous proto-
cols such as HTTP. In the following subsections we
describe current bindings to SGS in other systems.

The Taverna workbench (http://taverna.sf.net) is a
graphical workflow system that was designed for per-
forming in silico experiments in the field of bioinfor-
matics, but it is sufficiently general to be useful to other
communities. We have worked with the Taverna de-
velopers to incorporate support for Styx Grid Services
into the software using the SGS API. Using Taverna,
the user can build workflows by mixing diverse service
types, including Web Services and SGSs.

The Triana workflow system (http://trianacode.org)
is a graphical workflow environment that can interface
with many different service types but cannot currently
interface directly with Styx Grid Services. As a result
we have developed two ways of achieving integration
using Web services which are supported in Triana. The
first mechanism uses a brokered architecture, in which
a separate Web Service is created that accepts SOAP
messages and uses the information therein to commu-
nicate with an SGS server. This is described in more
detail in [8].

The second mechanism uses WSPeer [21], the Peer-
to-Peer oriented Web Service framework that is used by

Triana. WSPeer has a binding to the Styx protocol for
delivering SOAP messages over Styx. This allows the
Styx Grid Service itself to accept SOAP messages that
are written directly to a file in its namespace. When the
SGS is deployed using WSPeer, a WSDL [30] docu-
ment is generated and placed into the SGS namespace
so it can be read by clients. This WSDL document de-
fines service operations that encapsulate the messages
and data to be written to the files in the SGS namespace.
For example, the WSDL will contain an operation for
setting the input to the SGS which might have a signa-
ture such as setStdin(String url). To tell the SGS to
read its input data from a particular URL, a client can
invoke the operation.

4.3. Wrapping SGSs as WS-Resources

The Web Services Resource Framework (WSRF) is
a recent specification which addresses the need to han-
dle network-exposed entities that maintain state across
multiple service invocations. Styx Grid Services fall
into this category because they display stateful charac-
teristics – they are created, have a lifetime, and have
available properties such as the current status of the
wrapped program. WSRF uses the WS-Resource ab-
straction to represent resources that are exposed and
manipulated via a Web Service. A WS-Resource con-
tains a service endpoint and a resource identifier. A
client with a suitable WS-Resource can invoke the ser-
vice at the endpoint specified and decorate the SOAP

J.D. Blower et al. / Styx Grid Services: Lightweight middleware for efficient scientific workflows 215

header of the request with the resource identifier. The
service maps the identifier to some back-end resource –
in our case an SGS instance – and invokes the requested
operation on the resource.

WSPeer supports WSRF and can be used to ex-
pose an SGS as a WS-Resource. This is achieved
by transforming the SGS configuration information
(see Section 2) into ResourceProperties. These are
QName/value pairs of a specified data type that are used
to describe a WS-Resource type in the service WSDL
as an XML schema element. Therefore a service that is
being deployed as a front-end to an SGS will parse this
configuration file for any program specific parameters
and combine this with the standard SGS properties that
are represented in the namespace. These properties are
used to populate an XML schema element which is a
template of the particular SGS type, and is inserted into
the service WSDL. Service clients can read this schema
to determine the available properties of an SGS.

There are a number of synergies between the WSRF
suite of specifications and the properties defined by
an SGS. For example, the time/ directory in the SGS
namespace, which houses files containing data perti-
nent to the lifetime of the service, can be mapped onto
the properties defined in the WS-ResourceLifetime [23]
specification. Likewise the serviceData/ directory of
the SGS namespace contains state data which are eas-
ily mapped to ResourceProperties or can be exposed as
WS-Notification [22] topics that clients can subscribe
to and receive notifications of changes from.

WSPeer is capable of wrapping an SGS as a WS-
Resource in two ways. The first way (brokering) in-
volves creating a WSRF service that receives SOAP
messages over HTTP and translates the information
therein into Styx messages, which it sends to a separate
SGS server (which may be on the same host). The sec-
ond is to use the Styx protocol itself to send and receive
XML. In this case the WSRF service that is exposing
the SGS as WS-Resources is deployed at a Styx end-
point. The ability of WSPeer to use the Styx protocol
directly allows clients that are behind firewalls and NAT
systems to receive WS-Notification messages via the
notification mechanism described in Section 2.1, thus
overcoming the problem of clients needing to provide
an accessible network address to receive notifications.

While it is useful to expose SGS functionality ac-
cording standard specifications, we do not attempt to
wrap the SGS data streams in XML for performance
reasons. For example, an output stream exposed as a
ResourceProperty consists of a URI from which data
can be received. However, the actual data in the stream
is application specific. This approach is similar to that
of many of the systems in Section 1.1 above.

5. Discussion

We have described a new type of Internet service,
the Styx Grid Service (SGS). SGSs wrap command-
line programs and allow them to be run from anywhere
on the Internet exactly as if they were local programs.
SGSs can be combined into workflows using simple
shell scripts or more sophisticated graphical workflow
engines. Data can be streamed directly between SGS
instances, allowing workflows to be maximally effi-
cient. We have shown that Styx Grid Services can
operate as part of a Web Services or WSRF system
through the use of methods including broker services.
Although the SGS system does not support all the fea-
tures of other similar systems (Section 1.1), its key
strength is its lightweight and easy-to-use nature, af-
fording non-technical users the advantages of the work-
flow approach.

The SGS system has some important limitations:

– The entities that are passed between services in a
workflow are files and are not typed. There is no
way for the workflow enactor to tell whether the
type of the output from one service matches the
type of the input of the next service. It is up to the
services themselves to check that their inputs are
valid.

– Although constructs such as loops are supported
by the shell scripting interface (and graphical
workflow tools), the variables used to control these
loops cannot be read directly from the outputs of
SGSs.

– Data transfer rates between services through the
Styx protocol are slower than through HTTP or
GridFTP [8]. The SGS system may therefore not
be optimal for problems that involve very large file
transfers.

An important subject of future research would be to
use the SGS approach to wrap entities such as classes
and functions, rather than whole executables: in this
case, inputs and outputs could be strongly typed and
could also be captured by workflow engines, solving
some of the above problems.

The SGS system has been designed so that services
and workflows are easy to create. It is well within
the reach of most end-users (scientists) to do so with
no help from dedicated technical staff. Problems con-
nected with firewalls and NAT routers are vastly re-
duced compared with other systems, allowing for easy
deployment and use. Large datasets are handled effi-
ciently. We believe that the Styx Grid Services system

216 J.D. Blower et al. / Styx Grid Services: Lightweight middleware for efficient scientific workflows

represents a significant step forward in increasing the
usability and performance of service-oriented systems
and workflows in science.

Acknowledgements

The authors would like to thank Tom Oinn for incor-
porating the SGS framework into Taverna, Vita Nuova
Holdings Ltd. for technical help with the Styx protocol
and three anonymous reviewers for helpful comments.
This work was supported by EPSRC and NERC, grant
refs. GR/S27160/1 and R8/H12/36.

References

[1] The AstroGrid-D project, Online, http://www.gac-grid.de/,
2006.

[2] The NaradaBrokering project, Online, http://www. naradabro-
kering.org/, 2006.

[3] D. Abramson and J. Kommineni, A Flexible IO Scheme for
Grid Workflows, in: 18th International Parallel & Distributed
Processing Symposium, 2004.

[4] G. Allen, W. Benger, T. Dramlitsch, T. Goodale, H.-C. Hege,
G. Lanfermann, A. Merzky, T. Radke, E. Seidel and J. Shalf,
Cactus tools for grid applications, International Journal of
Cluster Computing 4 (2001), 179–188.

[5] K. Benedyczak, A. Nowinski, K.S. Nowinski and P. Bala, Uni-
Grids Streaming Framework. Enabling Streaming for the New
Generation Grid, in: PARA 06: State-of-the-Art in Scientific
and Parallel Computing, 2006.

[6] B. Biörnstad, C. Pautasso and G. Alonso, How to Safely Com-
pose Streaming Services into Business Processes, in: IEEE
International Conference on Services Computing, 2006.

[7] J. Blower, Styx Grid Services, Online, http://www.resc.
rdg.ac.uk/jstyx/sgs, 2006.

[8] J. Blower, K. Haines and E. Llewellin, Data streaming, work-
flow and firewall-friendly Grid Services with Styx, in: Pro-
ceedings of the UK e-Science Meeting, S. Cox and D. Walker,
eds, ISBN 1-904425-53-4, 2005.

[9] J. Blower, K. Haines and A. Santokhee, Composing workflows
in the environmental sciences using Inferno, in: Proceedings
of the UK e-Science Meeting, S. Cox, ed., ISBN 1-904425-21-
6, 2004.

[10] J. Blower, A. Harrison and K. Haines, Styx Grid Services:
Lightweight, easy-to-use middleware for scientific workflows,
Lecture Notes in Computer Science 3993(2006), 996–1003.

[11] J.D. Blower and K. Haines, Building Simple, Easy-to-Use
Grids with Styx Grid Services and SSH, in: 2nd IEEE Interna-
tional Conference on e-Science and Grid Computing, 2006.

[12] G. Brettlecker, H. Schuldt and R. Schatz, Hyperdatabases for
Peer-to-Peer Data Stream Processing, in: IEEE International
Conference on Web Services, 2004.

[13] F. Bustamante, G. Eisenhauer, K. Schwan and P. Widener, Effi-
cient Wire Formats for High Performance Computing, in: Pro-

ceedings of the ACM/IEEE conference on Supercomputing,
2000.

[14] J. Chin and P.V. Coveney, Towards Tractable Toolkits for the
Grid: a Plea for Lightweight, usable middleware, UK e-
Science Technical Report UKeS-2004-01, http://www.nesc.
ac.uk/technical papers/UKeS-2004-01.pdf, 2004.

[15] K. Chiu, M. Govindaraju and R. Bramley, Investigating the
Limits of SOAP Performance for Scientific Computing, in:
Proceedings of 11th IEEE International Symposium on High
Performance Distributed Computing, 2002, 246–254.

[16] D. Davis and M. Parashar, Latency Performance of SOAP Im-
plementations, in: Proceedings of the 2nd IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid, 2002,
407–412.

[17] S. Dorward, R. Pike, D.L. Presotto, D.M. Ritchie, H. Trickey
and P. Winterbottom, The Inferno Operating System, Online:
http://www.vitanuova.com/inferno/papers/bltj.html, 1997.

[18] I. Foster, Globus Toolkit version 4: Software for Service-
Oriented Systems, in: IFIP International Conference on Net-
work and Parallel Computing, Springer-Verlag, Vol. 3779 of
LNCS, 2005, 2–13.

[19] G.C. Fox, M.S. Aktas, G. Aydin, H. Bulut, S. Pallickara,
M. Pierce, A. Sayar, W. Wu and G. Zhai, Distributed Coopera-
tive Laboratories: Networking, Instrumentation and Measure-
ments, Springer, Norwell, MA, chapter Real Time Streaming
Data Grid Applications, 2006, 253–267.

[20] K. Haines, J. Blower, J.-P. Drécourt, C. Liu, A. Vidard, I. Astin
and X. Zhou, Salinity assimilation using S(T): covariance re-
lationships, Monthly Weather Review 134(2006), 759–771.

[21] A. Harrison and I. Taylor, WSPeer – An Interface to Web Ser-
vice Hosting and Invocation, in: HIPS-HPGC Joint Work-
shop on High-Performance Grid Computing and High-Level
Parallel Programming Models, 2005.

[22] OASIS, Web Services Base Notification 1.2 (WS-
BaseNotification), Online, http://docs.oasis-open.org/wsn/
2004/06/wsn-WS-BaseNotification-1.2-draft-03.pdf (2004),
draft 03.

[23] OASIS, Web Services Resource Lifetime 1.2 (WS-
ResourceLifetime), Online, http://docs.oasis-open.org/wsrf/
wsrf-ws resource lifetime-1.2-spec-pr-02.pdf (2005), public
Draft 02.

[24] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thomp-
son, H. Trickey and P. Winterbottom, Plan 9 from Bell Labs,
Online, http://www.cs.bell-labs.com/sys/doc/9.html, 1995.

[25] R. Pike and D.M. Ritchie, The Styx Architecture for Dis-
tributed Systems, Online, http://www.vitanuova.com/inferno
/papers/styx.html, 1999.

[26] C. Schuler, R. Weber, H. Schuldt and H.-J. Schek, Peer-to-
Peer Process Execution with OSIRIS, in: First International
Conference on Service-Oriented Computing (ICSOC), 2003,
483–498

[27] Sun Microsystems, Sun Grid Engine, Online, http://grid en-
gine.sunsource.net/ (2006).

[28] The Condor Project, Condor, Online, http://www.cs.wisc.
edu/condor/ (2006).

[29] The Globus Alliance, The WS-Resource Framework, Online,
http://www.globus.org/wsrf/, 2005.

[30] World Wide Web Consortium, Web Services Description
Language (WSDL) 1.1, Online, http://www.w3.org/TR/wsdl
(2001).

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

