
Scientific Programming 14 (2006) 217–230 217
IOS Press

Scheduling scientific workflow applications
with deadline and budget constraints using
genetic algorithms

Jia Yu∗ and Rajkumar Buyya
Grid Computing and Distributed Systems (GRIDS) Laboratory, Department of Computer Science and Software
Engineering, The University of Melbourne, VIC 3010 Australia
E-mail: {jiayu, raj}@csse.unimelb.edu.au

Abstract. Grid technologies have progressed towards a service-oriented paradigm that enables a new way of service provisioning
based on utility computing models, which are capable of supporting diverse computing services. It facilitates scientific applications
to take advantage of computing resources distributed world wide to enhance the capability and performance. Many scientific
applications in areas such as bioinformatics and astronomy require workflow processing in which tasks are executed based on their
control or data dependencies. Scheduling such interdependent tasks on utility Grid environments need to consider users’ QoS
requirements. In this paper, we present a genetic algorithm approach to address scheduling optimization problems in workflow
applications, based on two QoS constraints, deadline and budget.

Keywords: Grid workflow, workflow scheduling, utility Grids, deadline constrained scheduling, budget constrained scheduling

1. Introduction

Utility computing [28] has emerged as a new ser-
vice provisioning model [7] and is capable of support-
ing diverse computing services such as servers, stor-
age, network and applications for e-Business and e-
Science over a global network. For utility computing
based services, users consume the services when they
need to, and pay only for what they use. With econ-
omy incentive, utility computing encourages organiza-
tions to offer their specialized applications and other
computing utilities as services so that other individu-
als/organizations can access these resources remotely.
Therefore, it facilitates individuals/organizations to de-
velop their own core activities without maintaining and
developing fundamental infrastructure. In the recent
past, providing utility computing services has been re-
inforced by service-oriented Grid computing [2,10],

∗Corresponding author.

that creates an infrastructure for enabling users to con-
sume services transparently over a secure, shared, scal-
able, sustainable and standard world-wide network en-
vironment.

Table 1 shows some differences between community
Grids and utility Grids in terms of availability, Quality
of Services (QoS) and pricing. In utility Grids, users
can make a reservation with a service provider in ad-
vance to ensure the service availability, and users can
also negotiate with service providers on service level
agreements for required QoS. Compared with utility
Grids, service availability and QoS in community Grids
may not be guaranteed. However, community Grids
provide free access, whereas users need to pay for ser-
vice access in utility Grids. In general, the service pric-
ing is based on the QoS level and current market supply
and demand.

Many Grid applications in areas such as bioinfor-
matics and astronomy require workflow processing in
which tasks are executed based on their control or
data dependencies. As a result, a number of Grid

ISSN 1058-9244/06/$17.00  2006 – IOS Press and the authors. All rights reserved

218 J. Yu and R. Buyya / Scheduling scientific workflow applications with deadline and budget constraints

Table 1
Community Grids vs. Utility Grids

Community Grids Utility Grids

Availability Best effort Advanced reservation

QoS Best effort Contract/SLA
Pricing Not considered or free access Usage, QoS level, Market supply and demand

workflow management systems [6,8,14,16,19,21,26,
30] with scheduling algorithms have been developed.
They facilitate the execution of workflow applications
and minimize their execution time on Grids. However,
to impose a workflow paradigm on utility Grids, exe-
cution cost must also be considered when scheduling
tasks on resources. The price of a utility service is
mainly determined by its QoS level such as the process-
ing speed of the service. Typically, service providers
charge higher prices for higher QoS. Users may not
always need to complete workflows earlier than they
require. They sometimes may prefer to use cheaper
services with a lower QoS that is sufficient to meet their
requirements.

Given this motivation, we focus on developing work-
flow scheduling based on user’s QoS constraints. Un-
like the time optimization scheduling problem in which
only execution time needs to be considered,constrained
workflow execution optimization problems are required
to consider many factors such as time, monetary cost,
reliability and security. It may not be feasible to de-
velop a simple heuristic to solve such complex prob-
lems. Therefore, we investigate metaheuristics capable
of being applied to complex domains. In this paper, we
propose a genetic algorithm based scheduling heuristic
to solve performance optimization problems based on
two typical QoS constraints, deadline and budget, for
the workflow execution on “pay-per-use” services.

The remainder of the paper is organized as follows.
We introduce the problem overview in Section 2 includ-
ing problem definition and performance estimation ap-
proaches. Our proposed genetic algorithm based work-
flow scheduling approach is presented in Section 3. Ex-
perimental details and simulation results are presented
in Section 4. We introduce related work in Section 5.
Finally, we conclude the paper with directions for fur-
ther work in Section 6.

2. Problem overview

2.1. Problem description

In our approach, we model a workflow application
as a Directed Acyclic Graph (DAG). Let Γ be the finite

set of tasks Ti(1 � i � n). Let Λ be the set of directed
arcs of the form (Ti, Tj) where Ti is called a parent
task of Tj , and Tj the child task of Ti. We assume that
a child task cannot be executed until all of its parent
tasks have been completed.

Let m be the total number of services available.
There is a set of services Sj

i (1 � i � n, 1 � j �
mi, mi � m), capable of executing the task Ti, but
each task can only be assigned for execution on one
of these services. Services have varied processing ca-
pability delivered at different prices. We denote tj

i as
the sum of the processing time and data transmission
time, and cj

i as the sum of the service price and data
transmission cost for processing Ti on service Sj

i .
Let B be the cost constraint (budget) and D be the

time constraint (deadline) specified by the users for
workflow execution. The budget constrained schedul-
ing problem is to map every Ti onto a suitable Sj

i to
minimize the execution time of the workflow and com-
plete it within B. The deadline constrained scheduling
problem is to map every Ti onto a suitable Sj

i to mini-
mize the execution cost of the workflow and complete
it within D.

2.2. Performance estimation

Performance estimation is crucial to generate an ac-
curate schedule for advance reservations. Different per-
formance estimation approaches can be applied to dif-
ferent types of utility service. We classify existing util-
ity services as either resource services or application
services.

Resource services provide hardware resources such
as computing processors, network resources, storage
and memory, as a service for remote clients. To submit
tasks to resource services, the scheduler needs to de-
termine the number of resources and duration required
to run tasks on the discovered services. The perfor-
mance estimation for resource services can be achieved
by using existing performance estimation techniques
(e.g. analytical modeling [20], empirical and historical
data [18,24]) to predict task execution time on every
discovered resource service.

Application services allow remote clients to use their
specialized applications. Unlike resource services, an

J. Yu and R. Buyya / Scheduling scientific workflow applications with deadline and budget constraints 219

application service is capable of providing estimated
service times based on the metadata of users’ service
requests [1]. As a result, the task execution time can
be obtained by the application providers.

3. Proposed scheduling approaches

Workflow scheduling focuses on mapping and man-
aging the execution of inter-dependent tasks on diverse
utility services. In general, the problem of mapping
tasks on distributed services belongs to a class of prob-
lems known as “NP hard problem”. For such prob-
lems, no known algorithms are able to generate the op-
timal solution within polynomial time. Although the
workflow scheduling problem can be solved by using
exhaustive search, the complexity of the methods for
solving it is very large.

Genetic algorithms (GAs) [12] provide robust search
techniques that allow a high-quality solution to be de-
rived from a large search space in polynomial time, by
applying the principle of evolution. A genetic algo-
rithm combines the exploitation of best solutions from
past searches with the exploration of new regions of
the solution space. Any solution in the search space
of the problem is represented by an individual (chro-
mosomes). A genetic algorithm maintains a popula-
tion of individuals that evolves over generations. The
quality of an individual in the population is determined
by a fitness-function. The fitness value indicates how
good the individual is compared to others in the pop-
ulation. A typical genetic algorithm consists of the
following steps: (1) create an initial population con-
sisting of randomly generated solutions. (2) generate
new offspring by applying genetic operators, namely
selection, crossover and mutation, one after the other.
(3) evaluate the fitness value of each individual in the
population. (4) repeat steps 2 and 3 until the algorithm
converges.

In order to using genetic algorithms concept to solve
the workflow scheduling problem, we need to deter-
mine the representation of individual in the population,
the fitness function and genetic operations. The details
of our approach are presented in following subsections.

3.1. Problem representation

For the workflow scheduling problem, a feasible so-
lution is required to meet the following conditions: (1)
A task can only be started after all its predecessors have
completed. (2) Every task appears once and only once

in the schedule. (3) Each task must be allocated to one
available time slot of a service capable of executing the
task.

Each individual in the population represents a feasi-
ble solution to the problem, and consists of a vector of
task assignments. Each task assignment includes four
elements: taskID, serviceID, startTime, and endTime.
taskID and serviceID identify to which service each
task is assigned. startTime and endTime indicate the
time frame allocated on the service for the task execu-
tion. However, involving time frames during the ge-
netic operation may lead to a very complicated situa-
tion, because any change made to a task could require
adjusting the values of startTime and endTime of its
successive tasks. Therefore, we simplify the operation
strings used for genetic manipulation by ignoring the
time frames. The operation strings encode only the ser-
vice allocation for each task and the order of tasks allo-
cated on each service. After crossover and mutations,
a time slot assignment method is applied to transfer an
operation string to a feasible schedule.

In a workflow, the execution order of interdependent
tasks is controlled by their dependencies, meaning that
a task is always executed after its immediate parent
tasks. However, many independent tasks, for instance
T3 and T4 in the example workflow shown in Fig. 1
may compete for the same time slot on a service. Dif-
ferent execution priorities of such parallel tasks within
the workflow may impact the performance of workflow
execution significantly. For this reason, the solution
representation strings are required to show the order
of task assignments on each service in addition to ser-
vice allocation of each task. We use a 2D string to
represent a schedule as illustrated in Fig. 1. One di-
mension represents the numbers of services while the
other dimension shows the order of tasks on each ser-
vice. Two-dimensional strings are then converted into a
one-dimensional string for genetic manipulations. The
number in brackets in the one-dimensional string rep-
resents the identity number of the service on which the
task is allocated.

3.2. Fitness function

A fitness function is used to measure the quality of
the individuals in the population according to the given
optimization objective. As the goal of the scheduling
is to minimize the performance based on two factors,
time and monetary cost, the fitness function separates
evaluation into two parts: cost-fitness and time-fitness.
Both functions use two binary variables, α and β. If

220 J. Yu and R. Buyya / Scheduling scientific workflow applications with deadline and budget constraints

T0 T1 T2

T3 T4

T5 T6

T7

T0 T1 T2

T3 T4

T5 T6

T7

Workflow

S1

S2

S3

S4

time

Schedule

T0 T2 T7

T1

T3 T5

T4 T6

T0(1)-T2(1)-T7(1)-T1(2)-T3(3)-T5(3)-T4(4)-T6(4)

S1:T0-T2-T7
S2:T1
S3:T3-T5
S4:T4-T6

Two-dimensional strings

One-dimensional string

Fig. 1. Illustration of problem encoding.

Before crossover

Crossover

After crossover

S1:T0-T2-T7
S2:T1
S3:T3-T5
S4:T4-T6

parent1

S1: T0-T1
S7: T2-T7
S8: T3
S9: T4-T6
S10:T5

parent2

T0(1)-T2(1)-T7(1)-T1(2)-T3(3)-T5(3)-T4(4)-T6(4)

T0(1)-T1(1)-T2(7)-T7(7)-T3(8)-T4(9)-T6(9)-T5(10)

Randomly select crossover window

S1: T0-T2-T1
S4: T4-T6
S7: T7
S8: T3
S10:T5

S1: T0-T7
S2: T1
S3: T3-T5
S7: T2
S9:T4-T6

offspring1 offspring2

Fig. 2. Illustration of crossover operation.

users specify a budget constraint, then α = 1 and β =
0. If users specify a deadline, then α = 0 and β = 1.

For the budget constrained scheduling, the cost-
fitness component encourages the formation of the so-
lutions that satisfy the budget constraint. For the dead-
line constrained scheduling, it encourages the genetic
algorithm to choose individuals with less cost. The cost
fitness function of an individual I is defined by:

Fcos t(I) =
c(I)

Bα × maxCost(1−α)
,

where c(I) is the sum of the task execution cost and
data transmission cost of I and c(I) =

∑
Ti∈I ck

i , 1 �
k � mi, maxCost is the most expensive solution of the
current population, and B is the budget of the workflow.

For the budget constrained scheduling, the time-
fitness component is designed to encourage the genetic
algorithm to choose individuals with earliest comple-
tion time from the current population. For the deadline
constrained scheduling, it encourages the formation of
individuals that satisfy the deadline constraint. The
time fitness function of an individual I is defined by:

Ftime(I) =
t(I)

Dβ × maxTime(1−β)
,

where t(I) is the completion time of I , maxTime is the
largest completion time of the current population, and
D is the deadline of the workflow.

The final fitness function combines two parts and it
is expressed as:

J. Yu and R. Buyya / Scheduling scientific workflow applications with deadline and budget constraints 221

T0(1)-T2(1)-T1(1)-T4(4)-T6(4)-T7(7)-T3(6)-T5(10)
swap

T1(1)-T2(1)-T0(1)-T4(4)-T6(4)-T7(7)-T3(6)-T5(10)

Before mutation

After mutation

Fig. 3. Illustration of swapping mutation operation.

T0(1)-T2(1)-T1(1)-T4(4)-T6(4)-T7(7)-T3(8)-T5(10)

T0(1)-T1(1)-T2(2)-T4(4)-T6(4)-T7(7)-T3(8)-T5(10)

Before mutation

After mutation

S1 S5
S2 S6 S7

S3 S8
S10

S4 S9

Service Type

Task

ACBCBAAA

T7T6T5T4T3T2T1T0

Service Type

Task

ACBCBAAA

T7T6T5T4T3T2T1T0

A B C

Fig. 4. Illustration of replacing mutation operation.

F (I) =




α × Fcos t(I) + β × Ftime(I),
if Fcos t(I) > 1 or Ftime(I) > 1

(Fcos t(I)β × Ftime(I)α,
otherwise

3.3. Genetic operators

Genetic operations manipulate individuals in the cur-
rent population and generate new individuals. We de-
velop two genetic operators, crossover and mutation,
for the scheduling problems.

3.3.1. Crossover
Crossovers are used to create new individuals on the

current population by combining of rearranging parts of
the existing individuals. The idea behind the crossover
is that it may result in an even better individual by
combining two fittest individuals [13]. As illustrated
in Fig. 2, the crossover operator is implemented as fol-
lows: (1) Two parents are chosen at random in the cur-
rent population. (2) Two random points are selected
from the schedule order of the first parent. (3) All
tasks between these two points are chosen as succes-
sive crossover points. (4) The locations of all tasks of
the crossover points between parent1 and parent2 are
exchanged. (5) Two new offspring are generated by
combining task assignments taken from two parents.
In this example, offspring1 inherits task assignments of
T0, T2, T4 and T6 from parent1, and the task assign-
ments of the rest tasks are taken from parent2.

3.3.2. Mutation
In genetic algorithms, mutations occasionally occur

in order to allow a certain children to obtain features
that are not possessed by either parent. It helps a ge-
netic algorithm to explore a new and better genetic ma-
terial than previously considered. We have developed
two types of mutation, namely swapping mutation and
replacing mutation, in order to promote further explo-
ration of the search space. The mutation operators are
applied to the chosen individuals with a certain proba-
bility.

Swapping mutation aims to change the execution or-
der of tasks in an individual that compete for a same
time slot. It is implemented as follows: (1) A service in
the individual is randomly selected. (2) The positions
of two randomly selected independent tasks on the ser-
vice are swapped. An example of swapping mutation
is shown in Fig. 3. After the mutation, the time slot
initially assigned to T0 is occupied by T1.

Replacing mutation aims to re-allocate an alternative
service to a task in an individual. It is implemented as
follows: (1) A task is randomly selected in the indi-
vidual. (2) An alternative service which is capable of
executing the task is randomly selected to replace the
current task allocation.

An example of replacing mutation is shown in Fig. 4.
Given the heterogeneous nature of execution environ-
ments required by workflow tasks, we classify process-
ing services into groups. Each service group provides a

222 J. Yu and R. Buyya / Scheduling scientific workflow applications with deadline and budget constraints

a. Balanced-structure application b. Unbalanced-structure application

Fig. 5. Small portion of workflow applications.

T9 T12

Branch

T1 T6

T7

T5

T10
T8

T2 T3

T4

T11

T13

Simple task

Synchronization task

Fig. 6. Workflow task partitioning.

certain type of service that satisfies the execution con-
dition of a task in the workflow. In the example, dif-
ferent tasks in the workflow require different types of
services and all services are grouped together to sup-
port service type A, B, and C. For example, T0, T3 and
T4 require services of type A, B and C respectively. In
the example, task T2 is selected for mutation and T2 is
supported by services of type A. The mutation process
randomly selects S2 in the service group of type A and
re-allocates it to T2.

4. Experiments

4.1. Methodology

In order to evaluate the proposed approach, we im-
plemented the algorithm described in Section 3 and
compared it with a set of non-GA heuristics for two
different types of workflow applications on a simulated

Grid testbed. The details of the workflow applications,
non-GA heuristics, simulation environment and exper-
imental setting are presented in the following subsec-
tions.

4.1.1. Workflow applications
Given that different workflow applications may have

different impact on the performance of the scheduling
algorithms, we have developed a task graph genera-
tor which can automatically generate a workflow based
on the specified workflow structures, the range of task
workload and the I/O data. Since the execution require-
ments for tasks in scientific workflows are heteroge-
neous, we use the service type attribute to represent dif-
ferent types of services. The range of service types in
the workflow can be specified. The width and depth of
the workflow can also be adjusted in order to generate
different sizes of workflows.

According to several Grid workflow projects [15,
17,32], workflow application structures can be catego-
rized as either balanced structure or unbalanced struc-
ture. Examples of balanced structure are neuro-science
workflows [34] and EMAN refinement workflows [15],
while the examples of unbalanced structure are protein
annotation workflows [4] and Montage workflows [17].
Figure 5 shows two workflow structures, balanced-
structure application and unbalanced-structure appli-
cation, used in our experiments. As shown in Fig. 5(a),
the balanced-structure application consists of several
parallel pipelines, which require the same types of
services but process different data sets. As shown
in Fig. 5(b), the structure of the unbalanced-structure
application is more complex. Unlike the balanced-
structure application, many parallel tasks in the unbal-
anced structure require different types of services, and
their workload and I/O data varies significantly.

J. Yu and R. Buyya / Scheduling scientific workflow applications with deadline and budget constraints 223

Workflow
System

GIS

Grid
Service

1.register(service type)

1. register

4. AvailableSlotQuery(duration)

Grid
Service

2. query(type A)

3.service list

 5. slots

6. makeReservation(task)

Fig. 7. Simulation environnent.

4.1.2. Non-GA heuristics
In order to evaluate the genetic algorithm (GA) we

also implemented two other non-GA heuristics, namely
Greedy Cost – Time Distribution (TD) and Greedy
Time - Cost Distribution (CD). The CD approach is
aimed at solving the budget constrained problem while
the TD is designed to solve the deadline constrained
problem.

Greedy Time-Cost Distribution (CD)
The CD heuristic distributes portions of the overall

budget to each task in the workflow based on its av-
erage estimated execution cost. During the workflow
execution, CD attempts to allocate a fastest service to
each task among the services, which are able to com-
plete the task execution within its planned budget. The
actual costs of allocated tasks and their planned costs
are also computed successively at runtime. If the ag-
gregated actual cost is less than the aggregated planned
cost, the scheduler uses the unspent aggregated budget
to schedule the current task.

Greedy Cost-Time Distribution (TD)
The TD heuristic distributes the overall deadline over

single workflow tasks. The deadline assignment is
based on our previous work [31]. In order to produce
an efficient schedule, TD partitions workflow tasks into
branches and synchronization tasks as shown in Fig. 6.
A synchronization task is a task with more than one
parent task or child task, while a branch is a set of
interdependent simple tasks that are executed sequen-
tially between two synchronization tasks. Firstly sub-
deadlines are assigned to task partitions. The overall
deadline is divided over task partitions in proportion
to their approximate transmission time and processing
time. The cumulative assigned sub-deadlines of any
independent path between two synchronization tasks
must be same. For example, the deadline assigned
to {T8, T9} is the same as {T7} in Fig. 6. Similarly,

sub-deadlines assigned to {T2, T3, T4}, {T5, T6}, and
{{T7}, {T10}, {T12, T13}} are same. The sub-deadline
of each task partition is then divided into their tasks
based on its approximate execution time and transition
time. At the runtime, a task is scheduled on a ser-
vice, which is able to complete it within its assigned
sub-deadline at the lowest cost.

4.1.3. Simulation environment
We use GridSim [25] to simulate a Grid environment

for our experiments. Figure 7 shows the simulation en-
vironment, in which simulated services are discovered
by querying the GridSim Index Service (GIS). Every
service is able to handle a free slot query, reservation
request and commitment.

In our experiments, we simulated 15 types of ser-
vices with various price rates, each of which was sup-
ported by 10 service providers with various processing
capability. The topology of the system is such that all
services are connected to one another, and the available
network bandwidths between services are 100 Mbps,
200 Mbps, 512 Mbps and 1024 Mbps. The processing
cost and transmission cost are inversely proportional to
the processing time and transmission time respectively.

4.1.4. Experimental setting
In order to evaluate algorithms on reasonable bud-

get and deadline constraints we also implemented a
time optimization algorithm, Heterogeneous-Earliest-
Finish Time (HEFT) [27], and a cost optimization al-
gorithm, Greedy Cost (GC). The HEFT algorithm is a
list scheduling algorithm which attempts to schedule
interdependent tasks at minimum execution time on a
heterogeneous environment. The GC approach is to
minimize workflow execution cost by assigning tasks
to services of lowest cost. The deadline and budget
we used for the experiments are based on the results
of these two algorithms. Let CGC and CHEFT be the
total monetary cost produced by GC and HEFT re-

224 J. Yu and R. Buyya / Scheduling scientific workflow applications with deadline and budget constraints

 0.6

 0.8

 1

 1.2

 1.4

HML

E
xe

cu
tio

n
C

os
t /

 B
ud

ge
t

User Budget

Unbalanced Structure (Execution Cost)

GA
CD

GA+CD

a. Execution cost of three budget constrained approaches.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

HML

E
xe

cu
tio

n
T

im
e

/ S
ho

rt
es

t T
im

e

User Budget

Unbalanced Structure (Execution Time)

GA
CD

GA+CD

b. Execution time of three budget constrained approaches.

Fig. 8. Execution cost and time using three approaches for scheduling the unbalanced-structure application.

spectively, and TGC and THEFT be their correspond-
ing total execution time. Deadline D is defined by
D = THEFT + k × (TGC − THEFT) and budget B
is defined B = GGC + k × (CHEFT − GGC). The
value of k varies between 0, 0.5 and 1 to evaluate the
algorithm performance at tight/low, medium and high
constraints.

The following parameter settings are the default con-
figuration used for producing results of the genetic al-
gorithm: population size of 10, swapping mutation and

replacing mutation probability of 0.5, a generation limit
of 100.

4.2. Results

We compare the genetic algorithms with the CD and
TD heuristics on the two workflow applications, bal-
anced and unbalanced. We run the genetic algorithm
starting with an initial population consisting of ran-
domly generated solutions. We also investigate the af-

J. Yu and R. Buyya / Scheduling scientific workflow applications with deadline and budget constraints 225

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

HML

E
xe

cu
tio

n
C

os
t /

 B
ud

ge
t

User Budget

Balanced Structure (Execution Cost)

GA
CD

GA+CD

a. Execution cost of three budget constrained approaches.

 5

 10

 15

 20

HML

E
xe

cu
tio

n
T

im
e

/ S
ho

rt
es

t T
im

e

User Budget

Balanced Structure (Execution Time)

GA
CD

GA+CD

b. Execution time of three budget constrained approaches.

Fig. 9. Execution cost and time using three approaches for scheduling the balanced-structure application.

fect of running the genetic algorithm by starting with
an initial population consisting of a solution produced
by one of the simple heuristics together with other ran-
domly generated solutions. The results generated by
the CD and TD heuristics are denoted as CD and TD
respectively, and the results generated by the GA with a
completely random initial population is denoted by GA,
while the results generated by GA which include an
initial individual produced by the CD and TD heuristics
are denoted as GA+CD and GA+TD respectively.

In order to show the results more clearly, we normal-

ize the execution time and cost. Let Cvalue and Tvalue

be the execution time and the monetary cost generated
by the algorithms in the experiments respectively. For
the case of budget constrained problems, we normalize
the execution cost by usingCvalue/B, and the execution
time by using Tvalue/THEFT. After normalization, the
values of the execution cost should be no greater than
one, if the algorithms meet their budget constraints.
Therefore, we can easily recognize whether the algo-
rithms achieve the budget constraints. By using the
normalized execution time value, we can also easily

226 J. Yu and R. Buyya / Scheduling scientific workflow applications with deadline and budget constraints

recognize whether the algorithms produce an optimal
solution when the budget is high. In the same way, we
also normalized execution time and the execution cost
for the deadline constraint case by using Tvalue/D and
Cvalue/CGC respectively.

4.2.1. Cost optimization within a set deadline
A comparison of the execution time and cost re-

sults of the three scheduling methods for schedul-
ing the unbalanced-structure application and balanced-
structure application with low, medium and high bud-
get constraints respectively is shown in Figs 8 and 9.
We can see that both GA and CD approaches cannot
satisfy the low budget constraint, and GA produces the
worst results. However, the results are improved if we
combine GA and CD together by putting the solution
produced by CD into the initial population of the GA.
At the medium budget constraint, the GA performs bet-
ter than CD for the unbalanced structure application,
whereas CD performs better for the balanced structure
application. This is because the decision of the task as-
signment for CD is based only on its local budget con-
straint and does not consider task dependencies. Tasks
in the unbalanced-structure application are highly het-
erogeneous, have different workload and I/O data, and
many are required to be executed in parallel. These
parallel tasks are also required to run on various ser-
vices with various price rates. Many tasks could be
completed at earliest time using more expensive ser-
vices based on their local budget, but its child tasks can-
not start execution until other parallel tasks have been
completed. Therefore, the schedule generated by CD
is not very efficient for a complex unbalanced-structure
application. This also shows that it is important to con-
sider other parallel task dependencies when assigning
a local budget to a task. For the balanced-structure
application, parallel tasks are similar and hence ob-
tain same local budgets which allow them to be com-
pleted at the same speed. Therefore, CD can perform
better for the balanced-structure application than the
unbalanced-structure application. However, its bud-
get constraint distribution problem for the unbalanced-
structure application can be released when the budget
is very high. At the high budget value, CD performs
better than the GA. Moreover, by combining the two
approaches, GA+CD can achieve the same time op-
timization result as produced by the HEFT algorithm,
but it can produce a solution with a lower cost.

4.2.2. Time optimization within a set budget
Figures 10 and 11 compare the execution time and

cost of using three scheduling approaches for schedul-
ing the unbalanced-structure application and balanced
structure application with low, medium and high dead-
line constraints respectively. We can see that it is hard
for both GA and TD to successfully meet the low dead-
line individually. As same as shown in the budget con-
straint case, GA+TD can improve the results. Unlike
CD, TD performs better than GA for the unbalanced
structure application as the deadline increases, since
it distributes the overall deadline between tasks based
on both task workload and parallel task dependencies.
For the balanced- structure application, the results pro-
duced by GA and TD with a medium deadline are sim-
ilar. At high deadline, TD performs slightly better
than the GA, but the results are much improved for the
unbalanced-structure application by using GA to con-
tinue search the better solution based on that of TD.
With a high deadline, the execution costs of GA+TD
are closed to the cheapest costs returned by the Greedy
Cost approach, but it can produce faster solution for the
unbalanced structure application.

4.2.3. Effect of the number of generations
We also observe the performance of the GA when

the number of generation cycles is altered. Figure 12(a)
shows that the execution cost is significantly reduced
to the specified budget as the number of generations is
increased from 1 to 5. Consequently, the execution time
shown in Fig. 12(b) increases during these generation
cycles; this is because individuals which process slower
are selected in order to decrease the execution cost.
However, once the GA has found the individuals which
are able to complete the execution within the budget, it
starts to improve the performance, and execution time
is decreased for successive generations.

5. Related work

Many heuristics have been investigated by several
projects for scheduling workflows on Grids. The
heuristics can be classified as either task level or work-
flow level. Task level heuristics make scheduling de-
cisions based only on the information about a task
or a set of independent tasks, while workflow level
heuristics take into account the information of the en-
tire workflow. Min-Min, Max-Min and Sufferage are
three major task level heuristics employed for schedul-
ing workflows on Grids. They have been used by

J. Yu and R. Buyya / Scheduling scientific workflow applications with deadline and budget constraints 227

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

HML

E
xe

cu
tio

n
T

im
e

/ D
ea

dl
in

e

User Deadline

Unbalanced Structure (Execution Time)

GA
TD

GA+TD

a. Execution time of three deadline constrained approaches.

 1

 2

 3

 4

 5

 6

HML

E
xe

cu
tio

n
C

os
t /

 C
he

ap
es

t C
os

t

User Deadline

Unbalanced Structure (Execution Cost)

GA
TD

GA+TD

b. Execution cost of three deadline constrained approaches.

Fig. 10. Execution cost and time using three approaches for scheduling the unbalanced-structure application.

Mandal et al. [15] to schedule EMAN bio-imaging
applications. Blythe et al. [3] developed a workflow
level scheduling algorithm based on Greedy Random-
ized Adaptive Search Procedure (GRASP) [9] and com-
pared it with Min-Min in compute- and data-intensive
scenarios. Another two workflow level heuristics have
been employed by the ASKALON project [22,32].
One is based on Genetic Algorithms and the other
is a Heterogeneous-Earliest-Finish-Time (HEFT) al-
gorithm [27]. Sakellariou and Zhao [23] developed
a low-cost rescheduling policy. It intends to reduce
the overhead produced by rescheduling by conducting
rescheduling only when the delay of a task execution
impacts on the entire workflow execution. However,

these works only attempt to minimize workflow execu-
tion time and do not consider users’ budget constraints.

Several works have been proposed to address
scheduling problems based on users’ budget con-
straints. Nimrod-G [5] schedules independent tasks for
parameter-sweep applications to meet users’ budget. A
market-based workflow management system [11] lo-
cates an optimal bid based on the budget of the cur-
rent task in the workflow. More recently, Tsiakkouri
et al. [29] developed scheduling approaches, LOSS and
GAIN, to adjust a schedule which is generated by a
time optimized heuristic and a cost optimized heuristic
to meet users’ budget constraints respectively. In con-
trast, we focus on using genetic algorithms to solve the

228 J. Yu and R. Buyya / Scheduling scientific workflow applications with deadline and budget constraints

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

HML

E
xe

cu
tio

n
T

im
e

/ D
ea

dl
in

e

User Deadline

Balanced Structure (Execution Time)

GA
TD

GA+TD

a. Execution time of three deadline constrained approaches.

 1

 2

 3

 4

 5

 6

 7

 8

HML

E
xe

cu
tio

n
C

os
t /

 C
he

ap
es

t C
os

t

User Deadline

Balanced Structure (Execution Cost)

GA
TD

GA+TD

b. Execution cost of three deadline constrained approaches.

Fig. 11. Execution cost and time using three approaches for scheduling the balanced-structure application.

problems of scheduling inter-dependent tasks based on
the budget and deadline of entire workflow.

Using the genetic algorithm approach to schedule
tasks in homogenous multiprocessor systems has been
presented in many literature such as [13,33,35,36]. The
proposed approach in this paper intends to introduce a
new type of genetic algorithm for large heterogeneous
environments for which the existing genetic operations
algorithms cannot be directly applied.

6. Conclusion and future work

Utility Grids enable users to consume utility services
transparently over a secure, shared, scalable and stan-

dard world-wide network environment. Users are re-
quired to pay for access to services based on their usage
and the level of QoS required for this network environ-
ment to be commercially sustainable. Therefore, work-
flow execution cost must be considered during schedul-
ing. In this paper, we have proposed a genetic algo-
rithm approach for scheduling workflow applications
by either minimizing the monetary cost while meeting
users’ deadline constraint, or minimizing the execution
time while meeting users’ budget constraints. Com-
pared with most existing genetic algorithms, the pro-
posed approach targets heterogeneous and reservation
based service-oriented environments for solving budget
and deadline constrained optimization problems.

J. Yu and R. Buyya / Scheduling scientific workflow applications with deadline and budget constraints 229

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 20 40 60 80 100

E
xe

cu
tio

n
C

os
t(

G
$)

Number of Generations

Budget

a. Execution cost.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 20 40 60 80 100

E
xe

cu
tio

n
T

im
e(

H
ou

rs
)

Number of Generations

b. Execution time.

Fig. 12. Evolution of execution time and cost during 100 generations.

We evaluate our approach by comparing it with
two other heuristics, on both balanced and unbalanced
workflow structures. The results show that the genetic
algorithm is better for handling a complex workflow
structure. The genetic algorithm can also significantly
improve the results returned by other heuristics by em-
ploying these heuristic results as individuals in its initial
population.

We will be further enhancing our scheduling algo-
rithm by supporting different service negotiation mod-
els and dynamic data-driven workflow models. We will
also study how the genetic algorithm approach can be
applied for scheduling workflows based on other QoS
constraints such as reliability and security.

Acknowledgments

We would like to thank Hussein Gibbins, Krishna
Nadiminti and Chee Shin Yeo for their comments on
this paper. We thank Anthony Sulistio for his support
with the use of GridSim. This work is partially sup-
ported through an Australian Research Council (ARC)
Discovery Project grant.

References

[1] S. Benkner et al., GEMSS: Grid-infrastructure for Medical
Service Provision, In HealthGrid 2004 Conference, 29th–30th

Jan. 2004, Clermont-Ferrand, France.

230 J. Yu and R. Buyya / Scheduling scientific workflow applications with deadline and budget constraints

[2] S. Benkner et al., VGE - A Service-Oriented Grid Environment
for On-Demand Supercomputing, In the Fifth IEEE/ACM In-
ternational Workshop on Grid Computing (Grid 2004), Pitts-
burgh, PA, USA, November 2004.

[3] J. Blythe et al., Task Scheduling Strategies for Workflow-based
Applications in Grids, In IEEE International Symposium on
Cluster Computing and Grid (CCGrid), 2005.

[4] A. O’Brien, S. Newhouse and J. Darlington, Mapping of Sci-
entific Workflow within the e-Protein project to Distributed
Resources, In UK e-Science All Hands Meeting, Nottingham,
UK, Sep. 2004.

[5] R. Buyya, J. Giddy and D. Abramson, An Evaluation of
Economy-based Resource Trading and Scheduling on Com-
putational Power Grids for Parameter Sweep Applications, In
2nd Workshop on Active Middleware Services (AMS 2000),
Kluwer Academic Press, August 1, 2000, Pittsburgh, USA.

[6] E. Deelman et al., Mapping abstract complex workflows onto
grid environments, Journal of Grid Computing 1 (2003), 25–
39.

[7] T. Eilam et al., A utility computing framework to develop
utility systems, IBM System Journal 43(1) (2004), 97–120.

[8] T. Fahringer et al, ASKALON: a tool set for cluster and Grid
computing, Concurrency and Computation: Practice and Ex-
perience 17 (2005), 143–169, Wiley InterScience.

[9] T.A. Feo and M.G.C. Resende, Greedy randomized adaptive
search procedures, Journal of Global Optimization 6 (1995),
109–133.

[10] I. Foster et al., The Physiology of the Grid, Open Grid Service
Infrastructure WG, Global Grid Forum, 2002.

[11] A. Geppert, M. Kradolfer and D. Tombros, Market-based
Workflow Management, International Journal of Cooperative
Information Systems, World Scientific Publishing Co., NJ,
USA, 1998.

[12] D. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, 1989.

[13] E.S.H. Hou, N. Ansari and H. Ren, A genetic algorithm for
multiprocessor scheduling, IEEE Transactions on Parallel and
Distributed Systems 5(2) (February 1994), 113–120.

[14] B. Ludäscher et al., Scientific Workflow Management and the
KEPLER System, Concurrency and Computation: Practice &
Experience, Special Issue on Scientific Workflows, to appear,
2005.

[15] A. Mandal et al., Scheduling Strategies for Mapping Applica-
tion Workflows onto the Grid, IEEE International Symposium
on High Performance Distributed Computing (HPDC 2005),
2005.

[16] A. Mayer et al, ICENI Dataflow and Workflow: Composition
and Scheduling in Space and Time, In UK e-Science All Hands
Meeting, Nottingham, UK, IOP Publishing Ltd, Bristol, UK,
September 2003.

[17] A. Mandal et al., Scheduling Strategies for Mapping Applica-
tion Workflows onto the Grid, IEEE International Symposium
on High Performance Distributed Computing (HPDC 2005),
2005.

[18] S. Jang et al., Using Performance Prediction to Allocate Grid
Resources. Technical Report 2004-25, GriPhyN Project, USA.

[19] F. Neubauer, A. Hoheisel and J. Geiler, Workflow-based grid
applications, Future Generation Computer Systems 22 (2006),
6–15.

[20] G.R. Nudd et al., PACE- A Toolset for the performance Predic-
tion of Parallel and Distributed Systems, International Journal
of High Performance Computing Applications (JHPCA), Spe-
cial Issues on Performance Modelling- Part I, 14(3): 228–251,
SAGE Publications Inc., London, UK, 2000.

[21] T. Oinn et al., Taverna: a tool for the composition and en-
actment of bioinformatics workflows, Bioinformatics 20(17)
(2004), 3045–3054, Oxford University Press, London, UK.

[22] R. Prodan and T. Fahringer, Dynamic Scheduling of Scientific
Workflow Applications on the Grid using a Modular Optimi-
sation Tool: A Case Study, In 20th Symposium of Applied
Computing (SAC 2005), Santa Fe, New Mexico, USA, March
2005. ACM Press.

[23] R. Sakellariou and H. Zhao. A low-cost rescheduling policy
for efficient mapping of workflows on grid systems, Scientific
Programming 12(4) (December 2004), 253–262.

[24] W. Smith, I. Foster and V. Taylor, Predicting Application
Run Times Using Historical Information, In Workshop on Job
Scheduling Strategies for Parallel Processing, 12th Interna-
tional Parallel Processing Symposium & 9th Symposium on
Parallel and Distributed Processing (IPPS/SPDP ’98), IEEE
Computer Society Press, Los Alamitos, CA, USA, 1998.

[25] A. Sulistio and R. Buyya, A Grid Simulation Infrastructure
Supporting Advance Reservation, In 16th International Con-
ference on Parallel and Distributed Computing and Systems
(PDCS 2004), ACTA Press, Anaheim, California, November
9–11, 2004, MIT Cambridge, Boston, USA.

[26] I. Taylor, M. Shields and I. Wang, Resource Management of
Triana P2P Services, Grid Resources Management, Kluwer,
Netherlands, June 2003.

[27] H. Topcuoglu, S. Hariri and M.Y. Wu, Performance-effective
and low-complexity task scheduling for heterogeneous com-
puting, IEEE Transactions on Parallel and Distributed Sys-
tems 13(3) (March 2002), 260–274.

[28] G. Thickins, Utility Computing: The Next New IT Model,
Darwin Magazine, April 2003.

[29] E. Tsiakkouri et al., Scheduling Workflows with Budget Con-
straints, in: the CoreGRID Workshop on Integrated research
in Grid Computing, S. Gorlatch and M. Danelutto, eds,, Tech-
nical Report TR-05-22, University of Pisa, Dipartimento Di
Informatica, Pisa, Italy, Nov. 28–30, 2005, pp. 347–357.

[30] J. Yu and R. Buyya, A taxonomy of workflow manage-
ment systems for grid computing, Journal of Grid Com-
puting, Springer 3(3–4) (Sept. 2005), 171–200, Spring
Science+Business Media B.V., New York, USA,

[31] J. Yu, R. Buyya and C.K. Tham, A Cost-based Scheduling of
Scientific Workflow Applications on Utility Grids, In 1st IEEE
International Conference on e-Science and Grid Computing,
Melbourne, Australia, Dec. 5–8, 2005.

[32] M. Wieczorek, R. Prodan and T. Fahringer, Scheduling of sci-
entific workflows in the ASKALON grid environment, Special
Issues on scientific workflows, ACM SIDMOD Record 34(3)
56–62, ACM Press, 2005.

[33] A.S. Wu et al., An incremental genetic algorithm approach
to multiprocessor scheduling, IEEE Transactions on Parallel
and Distributed Systems 15(9) (September 2004), 824–834.

[34] Y. Zhao et al., Grid Middleware Services for Virtual Data
Discovery, Composition, and Integration, In 2nd Workshop on
Middleware for Grid Computing, October 18, 2004, Toronto,
Ontario, Canada.

[35] A.Y. Zomaya, C. Ward and B. Macey, Genetic scheduling for
parallel processor systems: Comparative studies and perfor-
mance issues, IEEE Transactions on Parallel and Distributed
Systems 10(8) (August 1999), 795–812.

[36] A.Y. Zomaya and Y.H. Teh, The, Observations on using ge-
netic algorithms for dynamic load-balancing, IEEE Transac-
tions on Parallel and Distributed Systems 12(9) (September
2001), 899–911.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

