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Abstract. The paper presents a performance model that can be used to optimally distribute computations over heterogeneous
computers. This model is application-centric representing the speed of each computer by a function of the problem size. This
way it takes into account the processor heterogeneity, the heterogeneity of memory structure, and the memory limitations at each
level of memory hierarchy. A problem of optimal partitioning of an n-element set over p heterogeneous processors using this
performance model is formulated, and its efficient solution of the complexity O(p3×log2n) is given.
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1. Introduction

In this paper, we deal with the problem of optimal
distribution of computations over heterogeneous com-
puters taking into account the processor heterogeneity,
the heterogeneity of memory structure, and the mem-
ory limitations at each level of memory hierarchy of a
processor. We present a performance model that inte-
grates these essential features having an impact on the
execution time of parallel and distributed applications
running on networks of heterogeneous computers.

In our previous research [1], we addressed the prob-
lem of optimal distribution or scheduling of computa-
tional tasks on networks of heterogeneous computers
when one or more tasks do not fit into the main mem-
ory of the processors. We particularly addressed the
problem of optimal data partitioning in heterogeneous
environments when relative speeds of processors can-
not be accurately approximated by constant functions
of the problem size. We proposed a functional model
that integrated all architectural differences in comput-
ers having an impact on the performance of computers
depending on the size of the problem. These architec-
tural differences are mainly the processor heterogene-

ity in terms of the speeds of the processors and mem-
ory heterogeneity in terms of the number of memory
levels of the memory hierarchy and the size of each
level of the memory hierarchy. Under this model, the
speed of each processor is represented by a continu-
ous and relatively smooth function of the problem size
whereas standard models use a single number to rep-
resent the speed. This model is application-centric in
the sense that generally speaking different applications
will characterize the speed of the processor by different
functions.

There are two main motivations behind the repre-
sentation of the speed of the processor by a continu-
ous and relatively smooth function of the problem size.
First of all, we want the model to adequately reflect
the behavior of common, not very carefully designed
applications. Consider the experiments conducted by
Lastovetsky and Twamley [2] shown in Fig. 1 with
carefully designed applications ArrayOpsF and Ma-
trixMultAtlas that efficiently use memory hierarchy,
with applications such as TreeTraverse that reference
memory randomly, and applications such as Matrix-
Mult that use inefficient memory reference patterns. It
can be seen that although the applications ArrayOpsF,
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TreeTraverse, and MatrixMultAtlas demonstrate a
sharp and distinctive performance curve of dependence
of the absolute speed on the problem size, the applica-
tion MatrixMult, which uses a naı̈ve multiplication of
two dense square matrices, displays a quite smooth de-
pendence of speed on the problem size. Thus, to model
execution of a common and not carefully designed ap-
plication, we should realistically approximate the de-
pendence of the speed of the processor by a continuous
and relatively smooth function of the problem size.

The other main motivation is that we want to target
general-purpose common heterogeneous networks. A
computer in such a network is an integrated part of the
network periodically performing some computations
and communications just as such an integrated node of
the network. It will experience fluctuations in the work-
load due to its integration into the network. This chang-
ing transient load will cause a fluctuation in the speed
of computers on the network, in that the speed of the
computer will vary when measured at different times
while executing the same task. As a result, the fluctua-
tions in speed must be modeled as a performance band.
These performance bands representing the speeds of
the processors are more realistically approximated by a
continuous and relatively smooth function of the prob-
lem size even for carefully designed applications effi-
ciently using the memory hierarchy. Figure 1 shows
experiments on a set of computers whose specifications
are shown in Table 1. These computers have varying
specifications and varying levels of network integration
and are representative of the range of computers typ-
ically used in networks of heterogeneous computers.
The results reinforce the representation of the speed of
the processor by a continuous and relatively smooth
function of the problem size.

In [1], we also formulated a problem of partitioning
of an n-element set over p heterogeneous processors
using the functional model and designed efficient algo-
rithms to solve the problem. The optimal solution is the
solution where the size of the problem assigned to each
processor is proportional to the speed of the processor.
The algorithms are based on the following observation:
If a distribution of the elements of the set amongst the
processors is obtained such that the number of elements
is proportional to the speed of the processor, then the
points, whose coordinates are number of elements and
speed, lie on a straight line passing through the origin
of the coordinate system and intersecting the graphs of
the processors with speed versus the size of the problem
in terms of the number of elements. The algorithms
use the observation that the optimal solution obtained

by these algorithms is a straight line passing through
the origin of the coordinate system and intersecting the
graphs of the processors with speed versus the size of
the problem in terms of the number of elements. The
algorithms take at most p2×log2n steps to find the op-
timal solution.

However this model fails to provide optimal solu-
tions when the network consists of computers that are
configured to avoid paging. Consider the experiments
shown in Fig. 1. The experiments show that Comp1
and Comp2 do not permit paging. This is typical of
computers used as a main server. For applications de-
signed to efficiently use cache memory, such computers
show a constant speed function, up to a point where the
process crashes, probably because it tries to invoke a
paging procedure, not allowed due to its configuration.
So if we have such computers, the real speed function
of the size of the problem is not continuous any more
but discontinuous at the point where paging happens,
that is, there is a break in the continuity of the function
at the point where paging happens.

Consider a small network of three processors, whose
speeds as functions of problem size are shown in Fig. 2.
The processor represented by the speed function s 1(x)
is configured to permit paging. The processors repre-
sented by speed functions s2(x) and s3(x) are config-
ured to avoid paging. The bold curves represent the
experimentally obtained parts of the speed functions.
Now assume that we want to obtain optimal distribu-
tions for problem sizes whose optimal solution lines
lie beyond the bold curves. In this case we naturally
extrapolate the curves in a continuous manner using
some reasonable approximations. The extrapolations
are shown by dotted curves. However it can be seen
that sometimes the extrapolations are not accurate rep-
resentations of the real shape of the speed functions as
shown for the speed functions s1(x) and s2(x). The
real speed functions are shown by dashed curves. Con-
sider two data distributions obtained by the functional
model and which are shown by dotted lines passing
through the origin. Although the first data distribution
(x11, x12, x13) is not the optimal solution just because
the extrapolated speed functions s1(x) and s2(x) are
not accurate representations of the real speed functions,
it still gives a reasonable sub-optimal solution of the
problem. At the same time, the second data distribution
(x21, x22, x23) is not a solution at all. This is because
at the points x22 and x23 the paging starts occurring for
computers with speed functions s2(x) and s3(x) and
since these computers are configured to avoid paging,
they crash. Therefore in order to obtain optimal and
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Table 1
Specifications of the four heterogeneous computers

Machine Name Architecture cpu MHz Main Memory (kBytes) Cache (kBytes)
Comp1 Linux 2.4.20–20.9 bigmem 2783 7933500 512

Intel(R) Xeon(TM)
Comp2 SunOS 5.8 sun4u sparc 440 524288 2048

SUNW,Ultra-5 10
Comp3 Windows XP 3000 1030388 512
Comp4 Linux 2.4.7–10 i686 730 254524 256
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Fig. 1. The effect of caching and paging in reducing the execution speed of each of the four applications run on network of heterogeneous
computers shown in Table 1. (a) ArrayOpsF, (b) TreeTraverse, (c) MatrixMultATLAS, and (d) MatrixMult. P is the point where paging starts
occurring.

working solutions for such networks, we need to extend
the functional model.

We naturally extend the functional model by includ-
ing an additional parameter of maximum problem size.
The maximum problem size represents the upper bound
on the size of the problem that each processor can solve.
For computers that are configured to avoid paging, it

represents the point where the computer crashes due to
the occurrence of paging and where the speed function
of the size of the problem becomes discontinuous.

The rest of the paper is organized as follows. In
Section 2, we present the modified functional model.
This is followed by a formulation of a general set-
partitioning problem, which is the problem of partition-



96 A. Lastovetsky and R. Reddy / Data partitioning for multiprocessors with memory heterogeneity and memory constraints

Size of the problem

A
bs

ol
ut

e 
Sp

ee
d

)(xs1

)(xs2

)(xs3

experimentally obtained 
extrapolated
real

x11

x12

x13
x21

x22

x23

Fig. 2. A small network of three processors whose speeds are shown against the size of the problem. The dotted lines passing through the origin
represent solutions provided by the functional model. The bold curves represent the experimentally obtained speed functions. The dotted curves
represent reasonable approximations of the speed functions in a continuous manner. The dashed curves represent the real behavior of the speed
functions. The first dotted line giving the data distribution (x11, x12, x13) is a non-optimal solution. The second dotted line giving the data
distribution (x21, x22, x23) is not a solution at all.

ing of an n-element set over p heterogeneous processors
using this modified functional model. Then we give its
efficient solution of the complexity O(p3×log2n). This
problem is a simple variant of the most advanced prob-
lem of partitioning a set with weighted elements [3].
We use the simple variant to explain how complex
the problem of scheduling tasks amongst processors is
when: (a) the processors have significantly different
memory structure, and (b) there are memory limita-
tions on the size of task that can be solved by each
processor. We also use this variant to explain in simple
terms how the modified functional model can be used
to achieve better data partitioning on networks of het-
erogeneous computers before moving on to solve the
most advanced problem.

To demonstrate the efficiency of the modified func-
tional model, we perform experiments using na ı̈ve par-
allel algorithms for linear algebra kernel, namely, ma-
trix multiplication and LU factorization using striped
partitioning of matrices on a local network of hetero-
geneous computers. Our main aim is not to show how
matrices can be efficiently multiplied or efficiently fac-
torized but to explain in simple terms how the modi-
fied functional model can be used to optimally schedule
tasks on networks of heterogeneous computers taking
into account the processor and memory heterogeneity.
We also view these algorithms as good representatives
of a large class of data parallel computational problems
and a good testing platform before experimenting with
more challenging computational problems.

2. The performance model

The modified functional model of networks of het-
erogeneous computers has the following parameters:

– An upper bound on the size of the task that can be
solved by each computer, and

– The speed of the processor is represented by a
continuous and smooth function of the problem
size until the upper bound. Beyond the upper
bound, the speed of the processor is assumed to be
zero.

The model retains the restrictions imposed by the
functional model [1] on the shape of the graph rep-
resenting the speed function. The shape of the graph
should be such that there is only one intersection point
of the graph with any straight line passing through the
origin. These assumptions on the shapes of the graph
are representative of the most general shape of graphs
observed for applications experimentally as shown in
Fig. 1.

The upper bound could signify one of the following
cases:

– Allocation of a task whose size is beyond this
bound could result in processor failure.

– Allocation of the task whose size is beyond this
bound could result in unacceptable execution time
to accomplish the task due to severe paging.
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3. Algorithms for partitioning sets

Using the modified functional model, we solve the
following problem of partitioning a set, which can be
formulated as:

Definition 1. Heterogeneous Memory Partitioning
HMP(n, s, b):

Given: (1) A set of n elements, and (2) A well-
ordered set of p heterogeneous processors whose
speeds are functions of the size of the problem x, s i=
fi(x), and (3) There is a upper bound on the largest
problem size that can be solved on each processor, that
is, there is an upper bound bi on the number of elements
stored by each processor (i = 0, . . ., p−1);

Partition the set into p disjoint partitions such that:

– x0 + x1 + . . . + xp−1 = n, where x0, x1, . . . ,
xp−1 are the number of elements in partitions
0, 1, . . . ,p − 1 respectively,

– xi � bi for all (i = 0, . . . ,p− 1),
– the maximum maxp−1

i=0 (xi

si
) of the execution times

of the processors is minimized. That is, solve the
following min-max problem:

min
{

p−1
max
i=0

(
xi

si

)}

where xi is the number of elements in partition i.
We provide an optimal solution to this problem of

complexity O(p3×log2n). We assume that the volume
of computations involved in the execution of a problem
size is proportional to the problem size.

When the speed of the processor is represented by
a single number, the algorithm used to perform the
partitioning is quite straightforward, of complexity
O(p2) [4].

When there is an upper bound bi on the number of el-
ements stored by each processor (i = 0, . . . ,p−1), the
algorithm used to solve the partitioning problem is of
complexity O(p3). This algorithm can be summarized
as follows:

– Partition the set such that the number of elements
in each partition is proportional to the speed of
the processor and assuming no upper bound ex-
ists on the number of elements that can be stored
by each processor. If the number of elements as-
signed to each processor is less than or equal to the
upper bound on the number of elements that can
be stored by each processor, we have the optimal
distribution.

– For each processor i (i = 0, . . . ,p−1), we check
if the number of elements assigned to it is greater
than the upper bound on the number of elements
that it can store. For all the processors whose upper
bounds are exceeded, we assign them the number
of elements equal to their upper bounds. Now
we solve the partitioning problem of a set with
remaining elements over the remaining processors.
We recursively apply this procedure until all the
elements have been assigned.

The proof of optimality of the solution provided by
this algorithm is given in [5]. This is indeed a special
case of the problem variant we are going to solve in
this section.

When the speed of the processor is represented by
a function of the size of the problem, s = f(x), and
when there is no upper bound on the number of el-
ements stored by each processor, efficient algorithms
used to perform the partitioning have been proposed of
complexity O(p2×log2n) [1].

When the speed of the processor is represented by a
function of the size of the problem, s = f(x), and when
there is an upper bound on the number of elements
stored by each processor, the problem of partitioning
a set is non-trivial. Before presenting the algorithm to
solve this problem, we formulate the formal mathemat-
ical problem of the optimization problem HMP of par-
titioning of the set. Given: (1) A set of n elements, and
(2) A well-ordered set of p functions, si= fi(x), and (3)
There is a upper bound bi on the number of elements
that can be stored in each partition (i = 0, . . . ,p− 1),
find a partition of the the set into p disjoint partitions
such that:

– x0 + x1 + . . . + xp−1 = n where x0, x1, . . . ,
xp−1 are the number of elements in partitions
0,1,. . . ,p− 1 respectively,

– xi � bi for all (i = 0, . . . ,p− 1),
– the maximum of maxp−1

i=0 (xi

si
) is minimized. That

is solve the following min-max problem:

min
{

p−1
max
i=0

(
xi

si

)}

where xi is the number of elements in partition i.
Before we present the algorithm to solve the opti-

mization problem HMP, we apply the following as-
sumptions:

(1) The speed of each processor is represented by
a continuous function of the size of the problem
up till its upper bound on the problem size. The
speed of the processor is zero beyond the upper
bound.
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(2) The shape of the graph representing the speed
function should be such that there is only one
intersection point of the graph with any straight
line passing through the origin.

(3) For each processor, for all x � y, where x and y
are problem sizes, the execution times tx and ty

to execute problems of sizes x and y respectively
are related by tx � ty .

Algorithm. Heterogeneous Memory Partitioning Al-
gorithm HMPA(n, s, b). The algorithm we propose to
solve this advanced partitioning problem is graphically
illustrated in Fig. 3 and has the following main points:

1. Partition the set such that the number of elements
in each partition is proportional to the speed of
the processor and assuming no upper bound ex-
ists on the number of elements that can be stored
by the processor (we can use any continuous ex-
tension of the speed function beyond the maximal
problem size, say, a constant equal to the speed
for the maximal problem size). The partitioning
algorithm used to perform this task is discussed
in [1]. If the number of elements in each parti-
tion assigned to each processor is less than the
upper bound on the number of elements that can
be stored by the processor, we have an optimal
distribution.

2. For each processor i (i = 0, . . . ,p−1), we check
if the number of elements assigned to it is greater
than the upper bound on the number of elements
that it can store. For all the processors whose
upper bounds are exceeded, we assign them the
number of elements equal to their upper bounds.
Now we solve the partitioning problem of a set
with remaining elements over the remaining pro-
cessors. We recursively apply this procedure until
all the elements have been assigned.

Theorem 1. HMPA(n, s, b) gives the optimal solution
to the optimization problem HMP(n, s, b).
Proof. We prove the optimality of the solution using
mathematical induction. We use the maximum time to
solve the task assigned to each processor as the perfor-
mance metric.

The cases for p = 1 and p = 2 are trivial. For p =
3, let us assume the upper bounds of the processors 1,
2, and 3 on the number of elements that they can store
are b1, b2, and b3 respectively. Suppose the optimal
distribution assuming there are no upper bounds on the

number of elements is (x1, x2, x3) such that x1 + x2 +
x3 = n where n is the size of the problem.

Consider the case where x1 > b1 and x2 > b2. Let us
assign the number of elements equal to b1 for processor
1. The remaining distribution has to satisfy the equality
x′

2 + x′
3 = n − b1 where x′

2 and x′
3 are to be chosen

such that the speed of the processor is proportional to
the number of elements assigned to it. If the speeds
of the processors 2 and 3 are non-increasing functions
of problem size, it can be proved that x ′

2 > x2 and
x′

3 > x3. This gives us the inequality x′
2 > x2 > b2.

Therefore we have to necessarily assign b2 number of
elements to processor 2. If the speeds of the processors
2 and 3 are non-decreasing functions of problem size,
there are three possibilities, (x′

2 > x2, x
′
3 > x3), (x′

2 <
x2, x

′
3 > x3) and (x′

2 > x2, x
′
3 < x3). The first

and the third possibility give us the inequality x ′
2 >

x2 > b2. For the second possibility, any allocation x ′′
2

such that x′′
2 < b2 would result in an allocation of x′′

3

number of elements to processor 3 such that x ′′
3 > x′

3

thus resulting in a larger execution time. Therefore
we have to necessarily assign b2 number of elements
to processor 2. If the speed of the processor 2 is a
non-decreasing function of problem size and speed of
processor 3 is a non-increasing function of problem
size, there are two possibilities, (x′

2 < x2, x
′
3 > x3)

and (x′
2 > x2, x

′
3 < x3). In the first possibility, any

allocation x′′
2 such that x′′

2 < b2 would result in an
allocation of x′′

3 number of elements to processor 3
such that x′′

3 > x′
3 thus resulting in a larger execution

time. The second possibility gives us the inequality
x′

2 > x2 > b2. Therefore we have to necessarily assign
b2 number of elements to processor 2.

Consider the case of optimal distribution where x1 >
b1 is true. For processor 1, we assign the number
of elements equal to b1. The remaining elements are
allocated such that x′

2 + x′
3 = n− b1 where x′

2 and x′
3

are to be chosen such that the speed of the processor
is proportional to the number of elements assigned to
it. Any other allocation x′′

1 such that x′′
1 < b1 would

result in an allocation where one of the inequalities
(x′′

2 > x′
2), (x′′

3 > x′
3) is satisfied thus resulting in a

larger execution time. It can be proved similarly for the
case when x2 > b2.

Assuming this to be true for p = k processors,
we have to prove the optimality for p = k + 1
processors. For a given problem size n, let us as-
sume the distribution given by our algorithm to be
x0, b1, b2, . . . , bm, xm+1, . . . , xk such that x0 + b1 +
. . . + xk = n, where without loss of generality pro-
cessors 1, . . . ,m are allocated their upper bounds. It
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Fig. 3. The partitioning algorithm for the problem size n. The bold curves represent the experimentally obtained speed functions. The dotted
curves represent reasonable approximations of the speed functions in a continuous manner. For processor represented by speed function s1(x),
we assign this processor the number of elements equal to its upper bound b1. We then partition the set with remaining n − b1 elements amongst
the processors represented by speed functions s2(x) and s3(x) respectively. The region between the lines line1 and line2 is bisected to narrow
down to the optimal solution.

can be inferred that the execution times for the rest
of the processors 0,m + 1, . . . ,k satisfy the equality
t0 = tm+1 = . . . = tk. It can also be inferred that
(t0, tm+1, . . . , tk) � ti for all i = 1, . . . ,m. The ex-
ecution time for the problem size is equal to tmp =
maxk

i=0(ti) = (t0, tm+1, . . . , tk). Consider an alterna-
tive solution with the distribution x′

0, x
′
1, . . . , x

′
k where

x′
0 + x′

1 + . . . + x′
k = n and x′

1 � b1, . . . , x
′
m � bm.

It can be easily seen that for at least one processor
i(i = 0,m + 1, . . . ,k), x′

i � xi, thus giving an exe-
cution time t′i, which is greater than the execution time
given by our algorithm tmp.

Theorem 2. The complexity of the algorithm HMPA(n,
s, b) is O(p3 × log2n).
Proof. There are p major steps in the algorithm. At
each such major step i, we solve the problem of par-
titioning of a set amongst p-i processors such that the
number of elements in each partition is proportional
to the speed of the processor and assuming no upper
bound exists on the number of elements that can be
stored by the processor. The complexity of this step
is O(p2×log2n) [1]. Since there are p such steps, the
overall worst-case complexity is O(p3×log2n). Math-
ematically, the worst-case complexity is the summation
of p terms:

C = p2 × log2 n + (p − 1)2 × log2(n − b0)

+(p − 2)2 × log2(n − b0 − b1) + · · · + 1

∼= p2 × (log2 n + log2(n − b0) + log2

(n − b0 − b1) + · · ·)
∼= p2 × (log2(n × (n − b0)

×(n − b0 − b1) × · · ·))
∼= p2 × (log2 np)

∼= p3 × log2 n

4. Applications of the model

So far we have formulated a realistic performance
model of a network of heterogeneous computers and
designed efficient algorithms of data partitioning with
this model. Now we present a list of practical applica-
tions of this model:

– Data partitioning on networks of heterogeneous
computers, which only include computers that are
configured to avoid paging. Such computers crash
when problem sizes are allocated that requires pag-
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ing. The largest problem size on such computers
is the problem size where paging starts happening.

– Data partitioning on networks of heterogeneous
computers, which only include computers that per-
mit paging. However allocation of large problem
sizes can cause severe paging on such computers
as a result causing severe performance degrada-
tion and sometimes stalling of the entire applica-
tion. The largest problem size on such computers
is not the problem size where paging starts hap-
pening but the problem size which causes severe
performance degradation of the application.

– Data partitioning on networks of heterogeneous
computers, which include computers some of
which permit paging and some of which are con-
figured to avoid paging.

5. Experimental results

The experimental results are divided into three sec-
tions. The first two sections are devoted to building
the modified functional model. In the first section, we
suggest ways to determine the upper bound on the size
of the problem that each processor can solve. Then
we present the parallel applications and the network
of heterogeneous computers on which the applications
are tested. For each application, we explain how to
estimate the processor speed. This is followed by pre-
sentation of the procedure to build the speed functions
of the processors. Finally we present the experimental
results obtained by running these applications on the
network of heterogeneous computers.

5.1. Determination of largest problem size

In this section, we highlight different approaches to
determine the largest problem size of an application
that can be solved efficiently on a given computer. We
do not define the notion of largest problem size as this
depends on the nature of the applications run on the
network of heterogeneous computers and the level of
integration of the computers in this network.

One of the ways is to determine the user-available
memory on the computer and the memory requirement
of the application. If the memory requirement of the
application is less than the user-available memory then
the application will not suffer from memory limitations.
We can determine the largest problem size we can run,
by calculating when the total memory requirement of
an application would exceed the user-available memory

capacity on a given computer. The total user-available
memory of a computer can be obtained from the op-
erating system utilities like ‘cat /proc/meminfo’ and
‘top’ as shown in Fig. 4. There are also system calls
that can be called from the application code to obtain
the user-available memory of a given computer.

Cierniak et al. [6] show that the total memory re-
quirement is generally not a good criterion for judging
the largest problem size that can be run efficiently. The
reason is that the total memory requirement is a very
conservative measure, and generally overestimates the
memory requirement of an application. They intro-
duce a new notion, the resident memory size (RMS)
for a given program segment, defined as the minimum
number of pages of physical memory required to en-
sure that all fault misses are cold misses (i.e. due to
the first reference) for that segment, using a particular
page replacement algorithm. If the resident memory
size is less than the user-available memory then the
application will not suffer from the effects of memory
limitations. If, on the other hand, the program’s RMS
is larger than the available memory then some of the
pages required will not be in memory, and a page fault
occurs. As the input data size increases, the RMS in-
creases, ultimately exceeding the available memory. A
compile-time algorithm is provided to approximate the
RMS. The notion of RMS value should work well in
practice for regular problems, but it may not be a good
approximation for irregular problems.

As shown in Fig. 1, the notion of the largest problem
size depends on the nature of the application and on
the level of the integration of the computers used in
the experiments. For computers that do not permit
paging, the largest problem size is the point where
paging starts happening. This is shown to be the point
P for computers Comp1 and Comp2 in Fig. 1 for all
the applications. For computers configured to permit
paging, the largest problem size is not the point where
paging starts happening but the point where the absolute
speed of the processor falls drastically. This is shown
to be the point P for computers Comp3 and Comp4 in
Figure 1 for all the applications.

The problem size at point P shown in Fig. 1 is prob-
ably less than the largest problem size but it is a good
approximation. Speed functions built with large num-
ber of points with a wider range of problem sizes can
give a better approximation of largest problem size that
can be solved on a processor. However in this case it
depends on a number of conditions such as how much
time the application programmers are willing to spend
to build the speed functions of the processors and their
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Table 2
Specifications of the Eleven Heterogeneous Computers

Machine Name Architecture cpu MHz Main Memory Largest size of task Largest size of task Cache
(kBytes) (Matrix-Matrix Multiplication) (LU factorization) (kBytes)

X1 Linux 2.4.20-20.9bigmem 2783 7933500 116640000 262440000 512
Intel(R) Xeon(TM)

X2 Linux 2.4.18-10smp 1977 1030508 36000000 81000000 512
Intel(R) XEON(TM)

X3 Linux 2.4.18-10smp 1977 1030508 36000000 81000000 512
Intel(R) XEON(TM)

X4 Linux 2.4.18-10smp 1977 1030508 36000000 81000000 512
Intel(R) XEON(TM)

X5 Linux 2.4.18-10smp 1977 1030508 36000000 81000000 512
Intel(R) XEON(TM)

X6 SunOS 5.8 sun4u sparc 440 524288 31360000 64000000 2048
SUNW,Ultra-5 10

X7 SunOS 5.8 sun4u sparc 440 524288 30250000 59290000 2048
SUNW,Ultra-5 10

X8 SunOS 5.8 sun4u sparc 440 524288 30250000 64000000 2048
SUNW,Ultra-5 10

X9 SunOS 5.8 sun4u sparc 440 524288 30250000 59290000 2048
SUNW,Ultra-5 10

X10 Linux 2.4.18-3 i686 997 254576 24502500 30250000 256
Intel Pentium III

X11 SunOS 5.5 Sun4m sparc 110 65536 6000000 6250000 512
SUNW,SPARCstation-5

 
      
       

 
 

Fig. 4. Operating system tools to determine the user-available memory for an application. The user-available memory is highlighted in bold.

level of efficiency. This approach of determining the
largest problem size should work well in practice for
regular as well as irregular problems.

5.2. Applications

A small heterogeneous local network of 11 differ-
ent Solaris and Linux workstations shown in Table 2
is used in the experiments. The network is based on
100 Mbit Ethernet with a switch enabling parallel com-
munications between the computers.

There are two applications used to demonstrate the
efficiency of the modified functional model over the
functional and the single number models.

5.2.1. Matrix-matrix multiplication
The first application shown in Fig. 5(a) multiplies

matrix A and matrix B, i.e., implementing matrix oper-
ation C = A×BT , where A, B, and C are dense square

n×n matrices. The application uses a parallel algo-
rithm of matrix-matrix multiplication of two dense ma-
trices using horizontal striped partitioning [7, p. 199],
which is based on a heterogeneous 1D clone of the
parallel algorithm used in ScaLAPACK [8] for matrix
multiplication. The matrices A, B, and C are parti-
tioned into horizontal slices such that the total number
of elements in the slice is proportional to the speed of
the processor.

For the application implementing matrix operation
C = A×BT , the absolute speed of a processor must
be obtained based on multiplication of two dense non-
square matrices of sizes n1×n2 and n2×n1 respectively
as illustrated in Fig. 5(b). Even though there are two
parameters n1 and n2 representing the size of the prob-
lem, the parameter n2 is fixed and is equal to n during
the application of the set partitioning algorithm. To
apply the set partitioning algorithm HMPA(n, s, b) to
determine the optimal data distribution for such an ap-
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Fig. 5. (a) Matrix operation C = A×BT with matrices A, B, and C. Matrices A, B, and C are horizontally sliced. The number of elements in each
slice is proportional to the speed of the processor. (b) Serial matrix multiplication A1 × B1 of two dense non-square matrices of sizes n1 × n2

and n2 × n1 respectively to estimate the absolute speed of processor 1. The parameter n2 is fixed during the application of the set partitioning
algorithm and is equal to n.

plication, we need to extend it for problem size rep-
resented by two parameters (n1 and n), HMPA(n1,n,
s, b). The speed function of a processor is geometri-
cally a surface when represented by a function of two
parameters s = f(n1,n2). However since the parameter
n2 is fixed and is equal to n, the surface is reduced to
a line s = f(n1,n2) = f(n1,n). Thus the set partitioning
problem for this application reduces to the algorithm
that we presented in this paper. However additional
computations are involved in obtaining experimentally
the geometric surfaces representing the speed functions
of the processors and then reducing them to lines.

Our algorithm of partitioningof a set can be extended
easily to obtain optimal solutions for problem spaces
with two or more parameters representing the problem
size. Each such problem space is reduced to a problem
formulated using a geometric approach and tackled by
extensions of our geometric set-partitioning algorithm.
Consider for example the case of two parameters rep-
resenting the problem size where neither of them is
fixed. In this case, the speed functions of the proces-
sors are represented by surfaces. The optimal solution
provided by a geometric algorithm would divide these
surfaces to produce a set of rectangular partitions equal
in number to the number of processors such that the
number of elements in each partition (the area of the
partition) is proportional to the speed of the proces-
sor. We do not present the extensions of our algorithm
here for such multi-dimensional representations of the
size of the problem. We think it would complicate the
presentation.

To calculate the absolute speed of the processor,
we use a serial version of the parallel algorithm of
matrix-matrix multiplication. The serial version per-
forms matrix-matrix multiplication of two dense square
matrices. Though the absolute speed must be obtained
by multiplication of two dense non-square matrices, we
observed that our serial version gives almost the same
speeds for multiplication of two dense square matrices
if the number of elements in a dense non-square matrix
is the same as the number of elements in a dense square
matrix. This is illustrated in Table 3 for one Linux com-
puters X2–X5 whose specification is shown in Table 2.
The behavior exhibited is the same for other comput-
ers. Thus speed functions of the processors built using
dense square matrices will be the same as those built
using dense non-square matrices.

5.2.2. LU Factorization
The second application is based on the parallel al-

gorithm of LU factorization of a dense square n × n
matrix A, one step of which is shown in Fig. 6(a). On a
homogeneous p-processor linear array, a CYCLIC(b)
distribution of columns is used to distribute the matrix
A where b is the block size [4,9]. A cyclic distribu-
tion would assign block numbers 0, 1, 2, . . . ,n − 1 to
processor 0, 1, 2, . . . ,p−1, 0, 1, 2 . . . ,p−1, 0, . . ., re-
spectively, for a p-processor linear array (n>>p), until
all n blocks are assigned. At each step of the algorithm,
the processor that owns the pivot block factors it and
broadcasts it to all the processors, which update their
remaining blocks. At the next step, the next block of b
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Table 3
Results of serial matrix-matrix multiplication

Size of Absolute speed Size of Absolute speed Size of Absolute speed Size of Absolute speed
matrix (MFlops) matrix (MFlops) matrix (MFlops) matrix (MFlops)

256 × 256 67 1024 × 1024 67 2304 × 2304 67 4096 × 4096 59
128 × 512 68 512 × 2048 66 1152 × 4608 67 2048 × 8192 60
64 × 1024 67 256 × 4096 67 576 × 9216 69 1024 × 16384 59
32 × 2048 67 128 × 8192 67 288 × 18432 70 512 × 32768 60

Table 4
Results of serial LU factorization

Size of Absolute speed Size of Absolute speed Size of Absolute speed Size Absolute
matrix (MFlops) matrix (MFlops) matrix (MFlops) of matrix speed(MFlops)

1024 × 1024 115 2304 × 2304 129 4096 × 4096 131 6400 × 6400 132
512 × 2048 115 1152 × 4608 130 2048 × 8192 132 3200 × 12800 131
256 × 4096 116 576 × 9216 129 1024 × 16384 132 1600 × 25600 132
128 × 8192 117 288 × 18432 129 512 × 32768 131 800 × 51200 131

columns becomes the pivot panel, and the computation
progresses. Figure 6(a) shows how the column panel,
L11 and L21, and the row panel, U11 and U12, are com-
puted and how the trailing submatrix A22 is updated.
Because the largest fraction of the work takes place
in the update of A22, therefore, to obtain maximum
parallelism all processors should participate in the up-
dating. Since A22 reduces in size as the computation
progresses, a cyclic distribution is used to ensure that at
any stage A22 is evenly distributed over all processors,
thus obtaining a balanced load.

Two load balancing algorithms, namely, Group
Block algorithm [10,11] and Dynamic Programming
algorithm [4] have been proposed to obtain optimal
static distribution over p heterogeneous processors ar-
ranged in a linear array. The Group Block distribution
partitions the matrix into groups, all of which have the
same number of blocks. The number of blocks per
group (size of the group) and the distribution of the
blocks in the group amongst the processors are fixed
and are determined based on speeds of the processors,
which are represented by a single constant number.
Same is the case with Dynamic Programming distri-
bution except that the distribution of the blocks in the
group amongst the processors is determined based on
dynamic programming algorithm.

We propose a Variable Group Block distribution,
which is a modification of the Group Block algorithm.
It uses the functional model where absolute speed of
the processor is represented by a function of a size of
the problem. Since the Variable Group Block distri-
bution uses the functional model where absolute speed
of the processor is represented by a function of a size
of the problem, the distribution uses absolute speeds
at each step of the LU decomposition that are based

on the size of the problem solved at that step. That is
at each step, the number of blocks per group and the
distribution of the blocks in the group amongst the pro-
cessors are determined based on absolute speeds of the
processors given by the functional model, which are
based on solving the problem size at that step. Thus it
also takes into account the effects of paging.

Figure 6(b) and 6(c) illustrate the Variable Group
Block algorithm of a dense square n × n matrix A
over p heterogeneous processors. Given a dense n ×
n square matrix A and a block size of b, the Variable
Group Block distribution is a static data distribution
that vertically partitions the matrix into m groups of
blocks whose column sizes are g1,g2,. . .,gm as shown
in Fig. 6(b). The groups are non-square matrices of
sizes n × (g1× b),n × (g2× b),. . .,n × (gm× b) re-
spectively. The steps involved in the distribution are:

1). To calculate the size g1 of the first group G1 of
blocks, we adopt the following procedure:

– Using the data partitioning algorithm, we ob-
tain an optimal distribution of matrix A such
that the number of elements assigned to each
processor is proportional to the speed of the
processor. The optimal distribution derived
is given by (xi, si)(0 � i � p − 1), where
xi is the size of the subproblem such that∑p−1

i=0 xi = n2 and si is the absolute speed of
the processor used to compute the subproblem
xi for processor i. Calculate the load index
li = si/

∑p−1
k=0 sk (0� i � p − 1).

– The size of the group g1 is equal to �1/min(li)�
(0� i � p − 1). If g1/p<2, then g1 =
�2/ min(li)�. This condition is imposed to
ensure there is sufficient number of blocks in
the group.
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Fig. 6. (a) One step of the LU factorization algorithm of a dense square matrix A of size n × n. (b) The matrix A is partitioned using Variable
Group Block distribution. This figure illustrates the distribution for n = 576, b = 32, p = 3. The distribution inside groups G1, G2, and G3 are
{2,1,1,0,0,0}, {2,1,0,0,0}, and {2,2,1,1,0,0,0}. (b) Serial LU factorization of a dense non-square matrix is used to estimate the absolute speed
of a processor. Since the Variable Group Block distribution uses the functional model where absolute speed of the processor is represented by
a function of a size of the problem, the distribution uses absolute speeds at each step of the LU decomposition that are based on the size of the
problem solved at that step. As seen in this figure, at each of the steps for processor 0, the functional dependence of the absolute speed on the
problem size gives the speeds based on solving the problem size at that step, which is equal to the number of elements in matrices An,n1, An,n2,
and An,n3 respectively. That is at each of the steps for processor 0, the absolute speeds are based on serial LU decomposition of matrices An,n1,
An,n2, and An,n3.

– This group G1 is now partitioned such that
the number of blocks g1,i is proportional
to the speeds of the processors si where∑p−1

i=0 g1,i = g1 (0� i � p− 1).

2). To calculate the size g2 of the second group, we
repeat step 1 for the number of elements equal to
(n–g1)2 in matrix A. This is represented by the
sub-matrix An−g1,n−g1 shown in Fig. 6(b). We
recursively apply this procedure until we have
fully vertically partitioned the matrix A.

3). For algorithms such as LU Factorization, only
blocks below the pivot are updated. The global
load balancing is guaranteed by the distribution

in groups; however, for the group that holds the
pivot it is not possible to balance the workload
due to the lack of data. Therefore it is possible
to reduce the processing time if the last blocks
in each group are assigned to fastest processors,
that is when there is not enough data to balance
the workload then it should be the fastest pro-
cessors doing the work. That is in each group,
processors are reordered to start from the slow-
est processors to the fastest processors for load
balance purposes.

In LU Factorization, the size of the matrix shrinks as
the computation goes on. This means that the size of
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Fig. 7. Determination of a set with relatively few points used to build the speed functions of the processors X2–X5 whose specifications are
shown in Table 2. As few as 6 points and 5 points are used to build an efficient speed function for matrix multiplication and LU factorization
respectively with deviation approximately 5% from other speed functions built with more number of points.

the problem to be solved shrinks with each step. Con-
sider the first step. After the factorization of the first
block of b columns, there remain n–b columns to be
updated. At the second step, the number of columns to
update is only n–2 × b. Thus the speeds of the pro-
cessors to be used at each step should be based on the
size of the problem solved at each step, which means
that for the first step, the absolute speed of the proces-
sors calculated should be based on the update of n–b
columns and for the second step, the absolute speed of
the processors calculated should be based on the update
of n–2 × b columns. Since the Variable Group Block
distribution uses the functional model where absolute
speed of the processor is represented by a function of
a size of the problem, the distribution uses absolute
speeds at each step that are calculated based on the size
of the problem solved at that step.

For the application implementing LU factorization,
the absolute speed of a processor must be obtained
based on LU factorization of a dense non-square matrix

of size m1×m2 as shown in Fig. 6(c). Even though
there are two parameters m1 and m2 representing the
size of the problem, the parameter m1 is fixed and
is equal to n during the application of the set parti-
tioning algorithm. To apply the set partitioning al-
gorithm to determine the optimal data distribution for
such an application, we need to extend it for problem
size represented by two parameters, n and m2. The
speed function of a processor is geometrically a surface
when represented by a function of two parameters s =
f(m1,m2). However since the parameter m1 is fixed
and is equal to n, the surface is reduced to a line s =
f(m1,m2)=f(n,m2). Thus the set partitioning problem
for this application reduces to the algorithm that we
have presented in this paper. However additional com-
putations are involved in obtaining experimentally the
geometric surfaces representing the speed functions of
the processors and then reducing them to lines.

The set partitioning algorithm can also be extended
here easily as explained for matrix multiplication. To
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calculate the absolute speed of the processor, we use
a serial version of the parallel algorithm of LU factor-
ization. The serial version performs LU factorization
of a dense square matrix. Though the absolute speed
must be obtained by using LU factorization of a dense
non-square matrix, we observed that our serial version
gives almost the same speeds for LU factorization of
a dense square matrix if the number of elements in a
dense non-square matrix is the same as the number of
elements in a dense square matrix. This is illustrated
in Table 4 for computers X2–X5 whose specification is
shown in Table 2. The behavior exhibited is the same
for other computers.

The absolute speed of the processor in number of
floating point operations per second is calculated using
the formula

Absolute speed =
volume of computations

time of execution

=
MF × n × n × n

time of execution

where n is the size of the matrix. MF is 2 for Matrix
Multiplication and 2/3 for LU factorization. In the case
of matrix-matrix multiplication, the size of the task is
the number of elements in resultant matrix C=A × BT .
In the case of LU factorization, the size of the task is
the number of elements in the factorized matrix.

For these two applications, the network of heteroge-
neous computers shown in Table 2 contains some com-
puters that permit paging and some computers that do
not permit paging. For example, the computer X1 is
a computer science departmental server running NFS
and NIS, as well as web and database servers. It is con-
figured to not permit paging. The largest problem size
that can be solved on this computer is 116640000 and
262440000 for matrix-matrix multiplication and LU
factorization respectively. Allocation of a task larger
than this size will result in crash of this processor. The
computers X2, X3, X4, and X5 permit paging. How-
ever allocation of a task to these computers, the size
of which is greater than 36000000 and 81000000 for
matrix-matrix multiplication and LU factorization re-
spectively, will result in severe performance degrada-
tion of the parallel application. For each of these two
applications, the largest problem size that can be solved
on the network of heterogeneous networks shown in
Table 2 is just the sum of the largest sizes of the tasks
that can be solved on each computer.

There are three important issues in selecting a set of
points to build a speed function of a processor:

1. The range of the set of points, that is, the minimal
problem size and the maximal problem size ex-
perimentally used. The minimum problem size
could be as low as a size of memory that fits
into the top level of memory hierarchy of the
computer and the maximum problem size is the
upper bound on the largest problem size that the
processor can solve,

2. The number of points in the set, and
3. The intervals between the points.

The speed function for a processor is built using a set
of few experimentally obtained points. The more the
number of points used in building the speed functions,
the more accurate the speed functions are. However it
is prohibitively expensive to use large number of points
to build the speed functions of the processors. Hence
for each processor, an optimal set of few points needs
to be chosen to build an efficient speed function. Such
a speed function built gives the speed of the processor
for any problem size with certain deviation from the
ideal speed function and speed functions built with sets
with more number of points. This deviation must be
within acceptable limits, ideally not exceeding the in-
herent deviation of the performance of computers typ-
ically observed in the network. In our experiments,
we set the acceptable deviation to be ± 5%. This im-
plies that the speed function should give the speed of
the processor for a problem size within ± 5% accuracy
from the speed given by an ideal speed function or the
speed functions built with sets with more number of
points. Figure 7 shows speed functions for matrix mul-
tiplication obtained using three sets of 6, 7, and 8 points
and speed functions for LU factorization obtained us-
ing three sets of 5, 7, and 8 points for the computers
X2–X5 whose specifications are shown in Table 2. It
can be seen that 6 points and 5 points are enough to
build an efficient speed function that fall within accept-
able limits of deviation for matrix multiplication and
LU factorization respectively.

A naı̈ve approach to select a set of i points is: If
(xmin, smin) is the point with minimal problem size
experimentally obtained and (xmax, smax) is the point
with maximal problem size experimentally obtained,
the remaining i-2 points experimentally tested have
problem sizes (xmin + (xmax − xmin)/(i − 1)), . . .,
(xmin +(i−2)∗ (xmax−xmin)/(i−1))) respectively.

In some cases, clever experimental methods can be
adopted to determine the range that is used to choose a
set of points to build the speed functions of the proces-
sors. Two examples are illustrated in Fig. 8. Suppose
the problem size is n and the number of processors in-
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Fig. 8. Some advanced methods to determine the range that is used to choose a set of points to build the speed functions of the processors. In
both the cases, the optimal solution line lies between line1 and line2.

volved in the execution of the problem size is p. For
the first case shown in Fig. 8(a), obtain the speeds of
the processors with each processor executing a problem
size of (n/p). We assume that the upper bounds of all
the processors exceed (n/p). For the processor exhibit-
ing the lowest speed (in this case the processor with
speed function s1(x)), the set of points can be chosen
from xmin to (n/p). For the processor that shows the
maximum speed (in this case the processor with speed
function s2(x)), the set of points can be chosen from
(n/p) to xmax, where xmax represents the upper bound
on the largest problem size that can be solved on each
processor. For all the other processors, the set of points

are chosen from xmin to xmax.
For the second case shown in Fig. 8(b), the upper

bound of at processor with speed function s4(x) is less
than (n/p). For this processor, the set of points can
be chosen from xmin to b4. Obtain the speeds of the
processors with each processor executing a problem
size of b4. For the processor with speed function s1(x)
exhibiting the lowest speed, the set of points can be
chosen from xmin to b4. For the processor with speed
function s2(x) showing the maximum speed, the set of
points can be chosen from b4 to b2. For all the other
processors, the set of points are chosen from xmin to
xmax.
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We use piece-wise linear function approximation il-
lustrated in Fig. 9 to build the speed function. Such
approximation of the speed function is compliant with
the requirements of the model, which are the shape re-
quirements of the graph representing the speed function
and that the speeds be continuous and smooth functions
of problem size up till its upper bound on the problem
size and zero beyond.

For the applications that we have chosen, the contri-
bution of communication operations in the total execu-
tion time is negligibly small compared to that of com-
putations. The inclusion of the cost of communications
into the modified functional model is a subject of our
current research.

5.3. Numerical results

In this section, we present the experimental results
demonstrating the efficiency of our modified functional
model over the functional and the single number mod-
els.

In the figures, the speedup calculated is the ratio of
the execution time of the application using the single
number model over the execution time of the applica-
tion using a functional model. A set of as few as 5
points is used to build the speed functions of the pro-
cessors for the functional models.

The solid lined and dashed curves with normal thick-
ness represent the speedup obtained using the func-
tional model [1] over the single number model [4]. Both
these models do not take into account the upper bounds
on the problem size that a processor can solve. The
solid lined and dashed curves with bold thickness rep-
resent the speedup obtained using the modified func-
tional model over the single number model [5]. Both
these models take into account the upper bounds on the
problem size that a processor can solve.

Figure 10(a) shows the speedup of the matrix-matrix
multiplication executed on this network using the func-
tional models over the matrix-matrix multiplication us-
ing the single number model. There are two curves,
the solid lined curve corresponds to the single num-
ber speed of the processor obtained based on the mul-
tiplication of two dense 500 × 500 matrices and the
dashed curve corresponds to the single number speed
of the processor obtained based on the multiplication of
two dense 4000 × 4000 matrices. It can be seen from
the figure that problem sizes beyond 24000 cannot be
solved by using the functional and the single number
models. This is because both these models do not take
into account the memory limitations of the computers

involved in the execution of the application. The mod-
ified functional model is used to obtain solutions for
problem sizes beyond 24000. It should also be noted
that the modified functional model and the functional
model provide the same solutions for problem sizes
less than 24000. This is because the data distributions
for problem sizes less than 24000 do not exceed the
upper bound for any processor. Thus it can be seen that
larger problem sizes are solved using modified func-
tional model and the execution performance obtained
is good.

Figure 10(b) shows the speedup of the matrix factor-
ization executed on this network using the functional
models over the matrix factorization using the single
number model.

There are two curves, the solid lined curve corre-
sponds to the single number speed of the processor
obtained based on the matrix factorization of a dense
2000 × 2000 matrix and the dashed curve corresponds
to the single number speed of the processor obtained
based on the matrix factorization of a dense 5000 ×
5000 matrix. It can be seen from the figure that prob-
lem sizes beyond 19000 cannot be solved by using the
functional model and single number models. This is
because both these models do not take into account the
memory limitations of the computers involved in the
execution of the application. The modified functional
model is used to obtain solutions for problem sizes be-
yond 19000. It should also be noted that the modified
functional model and the functional model obtain the
same solutions for problem sizes less than 19000. This
is because the data distributions for problem sizes less
than 19000 do not exceed the upper bound for any pro-
cessor. Thus it can be seen that larger problem sizes
are solved using the modified functional model and the
execution performance obtained is good.

As can be seen from the figures, the modified func-
tional model performs better than the currently existing
models for a network of heterogeneous computers.

6. Related work

We survey related papers from the literature in this
section. They fall into two categories: papers dealing
with task partition and scheduling with memory con-
straints on dedicated environments and papers dealing
with task scheduling with memory constraints on non-
dedicated computing environments like the Heteroge-
neous Networks of Computers (HNOCs) and comput-
ing grids.



A. Lastovetsky and R. Reddy / Data partitioning for multiprocessors with memory heterogeneity and memory constraints 109

Size of the problem

A
bs

ol
ut

e 
sp

ee
d

)(1 xs

)(2 xs

)(3 xs

1b

2b

3b

Fig. 9. Using piece-wise linear approximation to build speed functions for 3 processors. The speed functions are built from 3 experimentally
obtained points. Speeds of the processors are assumed to be zero for problem sizes beyond their upper bounds.

Li et al. [12] investigate the problem of scheduling a
divisible load onto a set of processors with finite-size
buffers in heterogeneous single-level tree networks.
They propose a fast algorithm called Incremental Bal-
ancing Strategy (IBS) to achieve the optimal process-
ing time. In each increment, distribution of the load
is found for processors with available memory accord-
ing to the standard divisible load theory methods [13]
without taking the memory constraints into account.
Then, the distribution of the load is scaled proportion-
ately such that at least one buffer is filled completely.
The remaining available buffer capacities are memory
sizes in the next increment. This process is contin-
ued until distributing the entire load. Drozdowski and
Wolniewicz [14] propose a linear programmingmethod
of finding solutions with guaranteed optimality for the
problem of scheduling divisible loads in networks of
processors with limited memory and communication
startup times. The complexity of the linear program-
ming solutions that they use to solve their problem is
O(p3.5 × L), where p is the number of processors in-
volved in the execution of the algorithm and L is the
length of the string encoding all the parameters of linear
program.

The works discussed take into account the processor
heterogeneity in terms of speeds, memory heterogene-
ity in terms of memory limitation at each processor,
and network heterogeneity in terms of the communica-
tion cost between a pair of processors. However, these
works assume distributed systems with a flat memory
model and are not applicable to systems with memory
hierarchy. The dependence of the speed of the proces-
sor on the size of the problem is assumed to be linear
as is usually observed on dedicated distributed multi-
processor computer systems. The largest problem size

that can be solved at each processor is assumed to be
the core memory at that processor. This is a safe as-
sumption on dedicated distributed multiprocessor com-
puter systems. However on networks of heterogeneous
computers, due to the nature of applications run and the
level of integration of the computers involved in exe-
cution of these applications, the core memory at each
processor is just an upper bound on the largest problem
size that can be solved but is not a good approximation
of the actual largest problem size that can be solved.

The modified functional model that we propose in-
tegrates the essential features underlying applications
run on a network of heterogeneous computers, mainly,
the processor heterogeneity, the heterogeneity of mem-
ory structure, and the memory limitations at each level
of memory hierarchy. We also present efficient algo-
rithms of data partitioning with this model with rela-
tively low complexity of O(p3×log2n). However we
do not consider the cost of communications in our mod-
ified functional model.

While resource management and task scheduling are
identified challenges of Grid computing, current Grid
scheduling systems mainly focus on CPU and network
availability. Many heuristic scheduling algorithms [15,
16] have been proposed for traditional high perfor-
mance computing. However these scheduling systems
are for dedicated multiprocessor computer systems and
also ignore the impact of memory resource availability
on the scheduling decision-making.

Several studies have been reported on task alloca-
tion for load balance considering memory resource
constraints. An opportunity cost approach proposed
in [17] converts the usage of resources including CPU
and memory to a single homogeneous cost. Based on
the cost, task is assigned or reassigned to each node
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Fig. 10. Results obtained using the network of heterogeneous computers shown in Table 2. The speedup calculated is the ratio of the execution
time of the application using a functional model over the execution time of the application using a single number model. (a) Comparison of
speedups of matrix-matrix multiplication. For the single number models, the speeds are obtained using serial matrix-matrix multiplication of two
dense square matrices. For the solid lined curves, the matrices used are of size 4000 × 4000. For the dashed curves, the matrices used are of size
500 × 500. (b) Comparison of speedups of LU factorization. For the single number models, the speeds are obtained using serial LU factorization
of a dense square matrix. For the solid lined curves, the matrix used is of size 5000 × 5000. For the dashed curves, the matrix used is of size
2000 × 2000.

for load balance. Load sharing policies with the con-
sideration of effective usage of global memory were
studied in [18]. They consider two types of applica-
tion workload, known memory demands and unknown
memory demands. However their major concern is
how to reduce the average slowdown of all individual
jobs in the system, instead of how to schedule a parallel
application to achieve its best performance. Xu and
Sun [5] consider how to partition a Grid application and
schedule it on a cluster of distributed heterogeneous re-
sources to obtain a minimum application execution time

with the consideration of both CPU resource availabil-
ity and memory resource availability. Three task parti-
tion policies, namely, CPU-based, memory-based, and
CPU-memory combined partition are studied. They
show that the CPU-memory combined approach shows
good performance gains over the other approaches. A
heuristic CPU-memory algorithm for task scheduling
of a meta-task is also proposed. The effect of local
jobs on a grid application execution in the situation of
resource sharing is evaluated using distribution func-
tions. Currently our modified functional model and the
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algorithms using this model are not applicable for task
scheduling of a meta-task.

The accurate modeling of the electronic structure of
atoms and molecules involves computationally inten-
sive tensor contractions involving large multidimen-
sional arrays. The efficient computation of complex
tensor contractions usually requires the generation of
temporary intermediate arrays. These intermediates
could be extremely large, but they can often be gener-
ated and used in batches through appropriate loop fu-
sion transformations. To optimize the performance of
such computations on parallel computers, Cociorva et
al. [19] present a framework to address the optimiza-
tion problem: given a set of computations expressed as
a sequence of tensor contractions, an empirically de-
rived measure of the communication cost for a given
target computer, and a specified limit on the amount
of available memory on each processor, re-structure
the computation so as to minimize the total execution
time while staying within the available memory. The
framework considers only the heterogeneity in terms
of the memory limitations of each computer and is not
applicable for programming applications on networks
of heterogeneous computers, which exhibits processor
heterogeneity in terms of speeds and memory hetero-
geneity in terms of memory hierarchy and memory lim-
itations of each computer.

7. Conclusion

In this paper, we address the problem of optimal
distribution of computations over heterogeneous com-
puters taking into account the processor heterogeneity,
the heterogeneity of memory structure, and the mem-
ory limitations at each level of memory hierarchy of
a processor. We have proposed a modified functional
model of a network of heterogeneous computers and
designed efficient algorithms of data partitioning with
this model.

The modified functional model proposed can be used
to design efficient algorithms of data partitioning for
mathematical structures other than sets such as matri-
ces, graphs, and trees. This model can be used to design
efficient algorithms for the most general partitioning
problem, which can be formulated as:

– Given: (1) An application of problem size n to
be solved, and (2) A well-ordered set of p proces-
sors whose speeds are functions of the size of the
problem, si=fi(x), and (3) There is a limit li on
the largest problem size that can be solved on each
processor,

– Partition the problem into p disjoint sub-problems
xi (i = 0, . . . ,p− 1) such that (1) There is a one-
to-one mapping between the sub-problems and the
processors, (2) The size of the sub-problem x i is
proportional to the speed of the processor i owning
the sub-problem xi, and (3) The size of the sub-
problem xi is less than or equal to the limit li on
the largest problem size that can be solved on each
processor (xi � li).

In the presented research we do not take account of
communication cost. Although we well understand the
importance of its incorporation in our model, this is
just out of scope of this work. We also understand the
importance of the problems of efficient building and
maintaining of our model. These two problems are also
out of scope of the paper and are subjects of our current
research.
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