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Abstract. The aim of this paper is to present a qualitative evaluation of three state-of-the-art parallel languages: OpenMP, Unified
Parallel C (UPC) and Co-Array Fortran (CAF). OpenMP and UPC are explicit parallel programming languages based on the
ANSI standard. CAF is an implicit programming language. On the one hand, OpenMP designs for shared-memory architectures
and extends the base-language by using compiler directives that annotate the original source-code. On the other hand, UPC and
CAF designs for distribute-shared memory architectures and extends the base-language by new parallel constructs.
We deconstruct each language into its basic components, show examples, make a detailed analysis, compare them, and finally
draw some conclusions.
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1. Introduction

The last two decades were a very active period in
the research of parallel programming models and lan-
guages domain [11]. Despite this enthusiastic research
activity, a parallel language is still a challenging goal
that attracts many scientists in the high-performance
computing community.

In this article, we present an analytical study of
three modern language-based programming models:
OpenMP-C [12] and Unified Parallel C (UPC) [14] and
Co-Array Fortran (CAF) [13]. These languages keep
the philosophy of making programs concise while giv-
ing the programmer the ability to exploit the underlying
hardware to gain more performance.

The motivation that drives us to study these three
programming languages has two reasons: (1) the devel-
opment of these languages is backed by industrial con-
sortiums where the major HPC vendors are involved.
Thus, deployment of these languages for the benefits
of the HPC community is promised; (2) the future road
map of microprocessors’ development shows that we
are in progress toward multiprocessor on-chip based
on multithreading technology. The Hyper-Threading

technology implemented in the Pentium processor [16]
and the Thread-Execution-Engine implemented in Ul-
traSPARC processor [17] are only the start. There-
fore, we believe parallel programming will find its way
to the commercial computing based on multithreading
paradigm. OpenMP and UPC are two programming
models that are based on multithreading and ANSI stan-
dards.

The main reason that widespread use of parallel lan-
guage has been lagging behind is that parallel pro-
gramming is a complex task. A programmer expects
that a parallel language will have three major proper-
ties: ease-of-use, high abstraction, and portable per-
formance across a wide range of parallel architectures.
The design of a parallel language that meets all these
expectations is still far from reach.

However, despite the many obstacles, there has been
progress in the parallel programming to bring us closer
to the desired parallel language. The state-of-the-art
parallel languages are converging toward three founda-
tions: (1) two models – the single-address space and
multi-address space; (2) three standards – data-parallel,
message-passing, and shared-variable; and (3) parallel
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languages based on well- known serial languages that
are extended for parallelism.

The contribution of this paper lies in its analytic
study of three contemporary programming languages:
OpenMP, UPC and CAF. The development of these
languages started before more than half decade ago and
they are still in progress. We deconstruct each pro-
gramming model to its basic components; show exam-
ples, make a detailed analysis, compare them, evaluate
how far they reach to achieve the desired expectations
mentioned above, and draw some conclusions.

The rest of this paper is organizedas follows: In Sec-
tion 2, we study the modeling aspects of each language
in detail. Section 3 concludes the paper.

2. Analytical comparison

In this section, each programming model is decom-
posed into its major elements. We describe, in detail,
the characteristics of each one and compare between
them. Table 1 summarizes all the analyzed attributes
of the three languages.

2.1. Execution model

Fork-join Model. OpenMP consists of a small but
powerful set of compiler directives and library rou-
tines. The directives extend the sequential program-
ming model with single program multiple data (SPMD)
constructs, work-sharing constructs, and synchroniza-
tion constructs, which provide support for the sharing
and privatization of data.

A program written with the OpenMP API begins ex-
ecution as a single thread of execution called the master
thread. The master thread executes in a serial region
until the first parallel construct is encountered. In the
OpenMP API, the parallel directive constitutes a par-
allel construct. When a parallel construct is encoun-
tered, the master thread creates a team of threads, and
the master becomes master of the team. Each thread in
the team executes the statements in the dynamic extent
of a parallel region, except for the work-sharing con-
structs. Work-sharing constructs must be encountered
by all threads in the team in the same order, and the
statements within the associated structured block are
executed by one or more of the threads. The barrier
implied at the end of a work-sharing construct without
a nowait clause is executed by all threads in the team.

Upon completion of the parallel construct, the
threads in the team synchronize at an implicit barrier,

and only the master thread continues execution. Any
number of parallel constructs can be specified in a sin-
gle program. As a result, a program may fork and join
many times during execution, each time with a different
number of threads.

A UPC program is a collection of threads operat-
ing in a single global address space, which is logically
partitioned among threads. Each thread has an affinity
with a private space and a portion of the shared ad-
dress space. From the compiler’s point of view, UPC
is a parallel extension to the C Standard for distributed
shared-memoryarchitectures that adopt the SPMD pro-
gramming paradigm. In UPC, the number of threads
is specified at compile-time or at run-time and cannot
be changed during the program’s execution. This is
unlike OpenMP, which allowed one to change the num-
ber of threads dynamically and to determine a different
number of threads for each parallel region.

Co-Array Fortran adopts the Single-Program-
Multiple-Data (SPMD) programming model. A single
program is replicated a fixed number of times, each
replication having its own set of data objects. The
number of replications is fixed throughout execution.

Fortran assumes a single program executing alone
with a single set of data objects. Each replication of
the program is called an image. Each image executes
asynchronously and the normal rules of Fortran apply,
so the execution path may differ from image to image.
With the help of a unique image index, the program-
mer determines the actual path for the image by us-
ing normal Fortran control constructs and by explicit
synchronizations. The compiler is free to use all its
normal optimization techniques for code between syn-
chronizations, as if only one image is present.

The array syntax of Fortran 95 is extended with ad-
ditional trailing subscripts in square brackets to give a
clear and straightforward representation of any access
to data that is spread across images. References with-
out square brackets are to local data, so code that can
run independently does not need to be changed. Only
where there are square brackets, or where there is a pro-
cedure call and the procedure contains square brackets,
is communication between images involved. There are
intrinsic procedures to synchronize images, return the
number of images, and return the index of the current
image.

Nested Parallelism. In OpenMP, if a thread in a
team executing a parallel region encounters another
parallel construct, it creates a new team, and it becomes
the master of that new team. Nested parallel regions
are serialized by default. As a result, by default, a
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Table 1
The major attributes of the OpenMP, UPC and CAF languages

Attributes of Model OpenMP-C UPC CAF

Version 2.0 1.1.1 1.0
Execution Model
Fork-Join Multiple Single Single
Parallelism
Explicit Yes Yes No
Multithreading Yes Yes No
Expression Directives Extensions Co-Arrays
Paradigm SPMD SPMD SPMD
Orphaned Yes No No
Threads set Dynamic Static Static
Nesting Yes No No
Data Environment
Data-Sharing shared, private shared, private Co-Array

firstprivate, lastprivate
Array Distribution None Round-Robin Co-Array
Dynamic Mem. Alloc. Non-Collective Coll. & Non-Coll. Non-Coll.
Work-sharing
Mechanism for, sections, single for all None
Schedule Control static, dynamic, run-time None None
Affinity None Thread, Address None
Synchronization
Mechanism Critical, Barrier, Lock, Notify-Wait, Barrier Sync all, Sync team

Atomic, Order, Flush Lock, Fence Sync Memory
Split-Phase No Notify-Wait No
Implicit Barrier Yes No Yes
Synchrony Blocking Blocking & Non-Blocking Blocking
Lock Allocation Static Static, Dynamic Static
Communication ***
Data Movement Copyin, Copyprivate Exchange, Permute Implicit

Scatter, Gather
Broadcast

Aggregation Reduction Reduce, Prefix-Reduce Implicit
Computation None Sort None
Programmability
Serial2Parallel Stepwise Re-design Re-design
Determinacy Weak Steady Weak
Correctness User User User
Portability Arch. Independent Arch. Independent Arch. Dependent

*** Currently, not part of the standard.

nested parallel region is executed by a team composed
of one thread. The default behavior may be changed
by using either the runtime library function or the envi-
ronment variable. UPC and CAF do not support nested
parallelism.

Orphaned Directives. Another key feature of
OpenMP is the concept of the orphaned directive. The
OpenMP API allows programmers to use directives in
functions called from within parallel constructs. Di-
rectives that do not appear in the lexical extent of a
parallel construct but may lie in the dynamic extent are
called orphaned directives. Orphaned directives give
programmers the ability to execute major portions of
their program in parallel with only minimal changes to
the sequential program. With this functionality, users

can code parallel constructs at the top levels of the pro-
gram call tree and use directives to control execution in
any of the called functions.

Bottom-Line. OpenMP presents a flexible and effi-
cient execution model. It has the ability to change the
number of running threads during program execution,
thus enabling the program to be adapted dynamically
to the underlying architecture by matching the number
of threads to the available number of processor, or to
adjust the number of threads according to the input size.
The ability to change, on- the- fly, the scheduling pol-
icy of the running threads for dynamic load-balancing,
as we discuss further below; the nested parallelism that
reflects the multithreading hierarchy of the underlying
modern architecture; and its use of orphaned directives
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makes OpenMP programs more portable, efficient, and
easy to use, in comparison to UPC and CAF, which
does not support this diverse functionality. Currently,
most commercial compilers do not support nested par-
allelism. However, experiments with NanosCompiler
SGI Origion 3000 show improved performance [18,
19].

However, the flexibility of OpenMP is not achieved
without any cost. For example, the Fork-join mech-
anism can incur high overhead when it occurs many
times during program execution. One solution is not
to kill the threads at the end of the parallel region, but
to keep them alive and use them in the next parallel
region. This open issue and its implications will be
addressed by a future version of OpenMP.

2.2. Data environment

Data Sharing. OpenMP, UPC and CAF enable
one to distinguish between shared and private objects.
However, each language presents its variations accord-
ing to its memory architecture and its execution model.

For example, pointers in UPC can be classified based
on the locations of the pointers and of the objects to
which they point. Accesses to the private area be-
have identically to regular C pointer operations, while
accesses to shared data are made through a special
pointer-to-shared construct. The speed of local shared
memory accesses will be lower than that of private ac-
cesses due to the extra overhead of determining affinity,
and remote accesses in turn are typically significantly
slower because of the network overhead. There are
three different kinds of UPC pointers: private pointers
pointing to objects in the threads own private space;
private pointers pointing to the shared address space;
and pointers living in shared space that also point to
shared objects.

OpenMP provides several clauses that allow a user
to control the sharing attributes of variables for the du-
ration of the region. Sharing attribute clauses applies
only to variables in the lexical extent of the directive
on which the clause appears. The private clause de-
clares variables private to each thread in a team. The
behavior of a variable specified in a private clause is as
follows. A new object with automatic storage duration
is allocated for the construct. This allocation occurs
once for each thread in the team. The original object
referenced by the variable, which has an indeterminate
value upon entry to the construct, must not be modified
within the dynamic extent of the construct and has an
indeterminate value upon exit from the construct.

OpenMP also supports two types of object privatiza-
tion clauses: Firstprivate and Lastprivate. For a First-
private clause on a parallel construct, the initial value of
the new private object is the value of the original object
that exists immediately prior to the parallel construct
for the thread that encounters it. For a Firstprivate
clause on a work-sharing construct, the initial value of
the new private object – for each thread that executes
the work-sharing construct – is the value of the original
object that exists prior to the point in time that the same
thread encounters the work-sharing construct. When a
Lastprivate clause appears on the directive that identi-
fies a work- sharing construct, the value of each lastpri-
vate variable from the sequentially last iteration of the
associated loop, or the lexically last section directive,
is assigned to the variable’s original object. The shared
clause declares variables such that all threads within a
team access the same storage area for shared variables.
CAF presents the concept of Co-Array for data sharing
as we explain below.

Data Distribution. UPC designs for distribute-
shred memory machines and supports mechanisms for
handling data distribution over the distributed memory.
UPC divides its memory space into two parts: one is
for shared memory and the other is for private memory
spaces. The shared space is partitioned such that each
thread has a unique association (affinity) with a shared
partition. The underlying objective is to allow UPC
programmers, using proper declarations, to keep the
shared data that are dominantly processed by a given
thread associated with that thread. Thus, a thread and
the data that has affinity to it can easily be mapped
by the hardware onto the same physical node. This
way, data locality can simply be exploited inherently in
applications.

UPC gives the user direct control over data placement
through local memory allocation and distributed arrays.
Shared arrays can be distributed on a block per thread
basis in a round robin fashion (row after row), with arbi-
trary block sizes. Block size and THREADS determine
affinity where element j of a blocked array has affinity
to thread ((j/block size) mod THREADS). For example,
a declaration of shared [20] int c[100][THREADS]
means that array c will be distributed among the threads
so that the first 20 elements will be on thread 0, the next
20 on thread 1, and so on.

OpenMP is designed as a shared-memory program-
ming model for scientific and engineering applications.
Therefore, data distribution mechanisms are not part
of the standard model. UPC, likes OpenMP, provides
dynamic memory allocation in shared memory but in-
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cludes an option to choose between collective and non-
collective allocations. If multiple threads call to a non-
collective function then all threads that make the call
get different allocations. A collective function has to
be called by every thread; it will make a single shared
allocation and returns the same pointer value on all
threads.

Co-Array Fortran extension to Fortran language al-
lows the programmer to express data distribution by
specifying the relationship among memory images in
syntax very much like normal Fortran array syntax.
Each image has its own set of data objects, all of which
may be accessed in the normal Fortran way. Some ob-
jects are declared with co-dimensions in square brack-
ets immediately following dimensions in parentheses
or in place of them.

Unless the array is allocateable, the form for the di-
mensions in square brackets is the same as that for the
dimensions in parentheses for an assumed-size array.
The set of objects on all the images is itself an array,
called a co-array, which can be addressed with array
syntax using subscripts in square brackets following
any subscripts in parentheses (round brackets), for ex-
ample:

REAL, DIMENSION (N) [*]:: X,Y X (:) = Y (:)
[Q]

declares that each image has two real arrays, X and Y,
of size N. The Q in the square brackets attached to array
Y is the image reference. In other words, Y (:) [2], is
the array Y of image number 2. Therefore, if Q has the
same value on each image, the effect of the assignment
statement is that each image copies the array Y from
image Q and makes a local copy in array X.

Array indices in parentheses follow the normal For-
tran rules within one memory image. Array indices
in square brackets provide an equally convenient no-
tation for accessing objects across images and follow
similar rules. Bounds in square brackets in co-array
declarations follow the rules of assumed-size arrays
since co-arrays are always spread over all the images.
The programmer uses co-array syntax only where it
is needed. A reference to a co-array with no square
brackets attached to it is a reference to the object in
the local memory of the executing image. Since most
references to data objects in a parallel code should be
to the local part, co-array syntax should appear only in
isolated parts of the code. If not, the syntax acts as a
visual flag to the programmer that too much communi-
cation among images may be taking place. It also acts

as a flag to the compiler to generate code that avoids
latency whenever possible.

Bottom-Line. Scientific applications usually re-
quire mechanisms for distributing and re-distributing
arrays of two and three dimensions in different shapes.
UPC and CAF currently support only symmetric distri-
bution of one-dimension arrays in a round-robin fash-
ion. Higher functionality of array distribution is essen-
tial to achieve scalable performance from large-scale
applications. Such functionality permits the ability to
adapt the data distribution to the geometry of a NUMA
machines.

OpenMP is a shared-memory programming model
designs for high-end scientific applications. However,
the HPC community uses high-performance parallel
machines and large-scale clusters based on NUMA ar-
chitectures that use distributed-shared memory (DSM).
The main obstacle to the adaptation of OpenMP on
NUMA architecture stems from the absence of facili-
ties for data placement among processors and threads
to achieve data locality. The absence of such a mech-
anism causes remote memory accesses and inefficient
cache memory use, both of which lead to poor perfor-
mance [5].

SGI, Compaq, and PGI provide high-level directives
to specify data distribution and thread scheduling in
OpenMP programs [8–10]. A major component in SGI
and Compaq directives is the DISTRIBUTION direc-
tive. This specifies the manner in which a data ob-
ject is mapped onto the system memories. Three dis-
tribution kinds, namely BLOCK, CYCLIC, and *, are
available to specify the distribution required for each
dimension of an array. They also offer the DISTRIBU-
TION RESHAPE directive to perform data distribution
at element granularity. Both vendors supply directives
to associate computations with the location of data in
storage. Compaq provides the NUMA directive to in-
dicate that the iterations of the immediately following
PARALLEL DO loop are to be assigned to threads in
a NUMA- aware manner. The ON HOME directive
informs the compiler exactly how to distribute itera-
tions over memories, and ALIGN is used for specify-
ing alignment of data. Similarly, SGI provides AFFIN-
ITY, a directive that can be used to specify the dis-
tribution of loop iterations based on either DATA or
THREAD affinity. PGI has a different execution model
of its HPF-like data distribution directives. Since PGI
mainly targets distributed memory systems, it relies on
one-sided communication or MPI libraries to commu-
nicate among the nodes that may contain more than one
processor.
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The diversity of the approaches used by the vendors
and the different syntaxes harm the portability and the
simplicity of the model. Moreover, since OpenMP is
hard to realize efficiently on clusters, the current ap-
proach is to implement OpenMP on top of software that
provides virtual shared memory on a cluster, so-called
software distributed shared memory system, such as
Omni [6] or TreadMarks [7].

2.3. Work-sharing

Most of the parallelism in OpenMP and UPC is done
by work-sharing constructs for and for all respectively.

OpenMP distributes the execution of the associated
statement among the members of the team that en-
counter it. The work-sharing directives do not launch
new threads and there is no implied barrier on entry to a
work-sharing construct. The sequence of work-sharing
constructs and barrier directives encountered must be
the same for every thread in a team. The for directive
identifies an iterative work-sharing construct that spec-
ifies that the iterations of the associated loop will be
executed in parallel. The iterations of the for-loop are
distributed across threads that already exist in the team
executing the parallel construct to which it binds.

OpenMP also permits associating a schedule policy
to the work-sharing construct to allow the user to spec-
ify how iterations of the loop will be divided among
threads of the team. The iterations are divided into
chunks and can be scheduled in one of the following:
static, in which the chunks are statically assigned to
threads in the team in a round-robin fashion in the order
of the thread number; dynamic, in which each chunk
is assigned to a thread that is waiting for an assign-
ment. The thread executes the chunk of iterations and
then waits for its next assignment, until no chunks re-
main to be assigned; guided, in which the iterations
are assigned to threads in chunks with decreasing sizes.
When a thread finishes its assigned chunk of iterations,
it is dynamically assigned another chunk, until none
remains; and run-time, in which the decision regarding
scheduling is deferred until runtime. The schedule type
and size of the chunks can be chosen at run time by
setting special environment variables. UPC does not
support such functionality.

The upc forall loop behaves like a C for-loop, except
that the programmer can specify an affinity expression.
It has four fields, the first three of which are similar to
those used for a regular C for-statement. The fourth
field is called affinity and is used to indicate that the
thread, which has the element v [i],will be executing the

i-th iteration. Thus, unnecessary remote accesses can
be avoided. The fourth field can also be an integer type.
In this case, the thread number (i mod THREADS)
will be executing the i-th iteration. OpenMP does not
support thread affinity control.

Co-Array Fortran does not provide work-sharing
constructs. The work distribution is done by setting
a different thread of execution to each one of the pro-
gram’s images. The programmer determines the actual
path for the image with the help of a unique image in-
dex by using normal Fortran control constructs and by
explicit synchronizations.

Bottom-Line. On the one hand, OpenMP is de-
signed for shared-memory architecture. In practice, it is
used also on top of distribute-shared machines. Adding
the option to control the threads affinity can change
dramatically the performance of the applications. On
the other hand, UPC can run on top of shared-memory
machines and thus the load balancing of the applica-
tions can be improved by adding scheduling policies
associate to the work-sharing construct. In CAF, the
programmer does the work sharing. CAF also lacks
of mechanism like scheduling policies to control the
workload to improve performance.

2.4. Synchronization model

OpenMP, UPC and CAF are shared-memory pro-
gramming environments. As such, they support high-
level synchronization mechanisms that are used to solve
conflicts when multiple threads have access to shared
objects. They introduce classic synchronization con-
structs together with special variations of these con-
structs. The classic synchronization mechanisms in-
clude look-unlock functions, barrier synchronization,
and flush operations.

The flush operation denotes a sequence point where
a thread creates a consistent view of memory. That is,
all memory operations (both reads and writes) defined
prior to the sequence point must be completed. All
memory operations (both reads and writes) defined af-
ter the sequence point must follow the flush, and vari-
ables in registers or write buffers must be updated in
memory.

In addition to these mechanisms, OpenMP offers
critical, atomic, and ordered directives. The critical
directive identifies a construct that restricts execution
of an associated structured block to a single thread at a
time. The atomic directive ensures that a specific mem-
ory location is updated atomically, rather than exposing
it to the possibility of multiple simultaneous writing
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threads. The ordered directive, which must be within
the dynamic extent of a for or parallel for construct,
forces the structured block following the directive to
be executed in the order in which iterations would be
executed in a sequential loop.

UPC, on the other hand, presents the concept of
split-phase barriers. The upc notify and upc wait pair
provides a split-phase barrier, which allows the notify
phase to be separated from the wait phase with local
work. This allows asynchronous computation, which
increases the efficiency and the performanceof scalable
applications.

Co-Array Fortran adds a global barrier synchroniza-
tion, sync all(), which requires all operations before
the call on all images to be completed before any im-
age advances beyond the call. In practice, it is of-
ten sufficient, and faster, to only wait for the rele-
vant images to arrive. Sync all(wait=list) provides
this functionality. There is also sync team(team=team)
and sync team(team=team, wait=list) for cases where
only a subset, team, of all images are involved in the
synchronization. The intrinsic pairs start critical and
end critical provide a basic critical region capability.
It is also possible to write your own synchronization
routines, using the basic intrinsic sync memory. This
routine forces the local image to both complete any
outstanding co-array writes into “global” memory and
refresh from global memory any local copies of co-
array data it might be holding (caches, registers etc.).
A call to sync memory is rarely required in Co-Array
Fortran, because there is an implicit call to this routine
before and after virtually all procedure calls includ-
ing Co-Array’s built in image synchronization intrin-
sic. This allows the programmer to assume that image
synchronization implies co-array synchronization.

Bottom-Line. OpenMP, UPC and CAF implemen-
tations are not required to check for dependencies, con-
flicts, deadlocks, race conditions, memory consistency,
or other problems that result in incorrect program ex-
ecution. The user is responsible for ensuring that the
applications using these languages execute correctly.
Neither frees the programmer from the most tedious
and cumbersome tasks of parallel programming.

2.5. Communication model

Generic collective operations are essential mecha-
nism for parallel computations where all the threads
are joined together to execute a specific task. The ef-
ficient realization of these operations is crucial for the
scalability of large-scale scientific applications.

OpenMP supports reduction operation and two more
collective functions: copyin, and copyprivate. The
copyin clause provides a mechanism to assign the same
value to threadprivate variables for each thread in the
team executing the parallel region. For each variable
specified in a copyin clause, the value of the variable
in the master thread of the team is copied, as if by as-
signment, to the thread-private copies at the beginning
of the parallel region. The copyprivate clause provides
a mechanism to use a private variable to broadcast a
value from one member of a team to the other mem-
bers. It is an alternative to using a shared variable for
the value when providing such a shared variable would
be difficult.

The current standard of UPC does not support collec-
tive functions. However, a proposal draft in-progress
will be part of the spec in the next major version [2].
According to this proposal, UPC will provide two sets
of functions: Re-localization Operations and Com-
putational Operations. Re-localization operations in-
clude the functions broadcast, scatter, gather, exchange,
and permute. Computational operations include the
functions reduce, prefix-reduce, and sort. Reduce and
prefix-reduce functions are reduction operations over
an associative operators (+, ∗,−, &, ,̂ |, &&, ‖). The
function sort takes shared array elements and sorts them
in place in ascending order.

In CAF, the communication among images, which
rise on different processors, is done implicitly when co-
array statements are used. For example, the statement
X = Y [PE] is actually a get operation from Y [PE]; Y
[PE] = X is a put operation into Y [PE]; Y [:] = X is a
broadcast operation on X; and S = MINVAL(Y [:]) is
a MIN reduction operation over all Y.

Square brackets attached to objects in an expression
or an assignment is a sign of communication between
images. However, CAF cannot use overlapping of
computation and communication because the compiler
does the communication in CAF implicitly and syn-
chronously and it is largely outside the programmer’s
control.

Bottom-Line. OpenMP supports a small set of col-
lective operations. Operations like broadcast, scatter,
and gather are not supported because they are less used
in shared memory programming environments. How-
ever, as we have already mentioned, many OpenMP
applications run on top of distribute-shared memory
machines where such operations are needed. The UPC
proposal presents a rich set of collective operations.
However, it remains to be seen how effectively they
will be realized.
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2.6. Programmability

OpenMP, UPC and CAF languages were designed
with the same principles in mind: simplicity and porta-
bility. They start with standard language as a base-
language and add parallel functionality on top of it.
OpenMP parallelism is done by annotating the code
with compiler directives, while UPC and CAF add new
parallel structures and type qualifiers.

One advantage that OpenMP has is that if an
OpenMP program is designed to work when there is
exactly one thread, it is then also a legal program. In
such a case, the serial compiler ignores the compiler
directives. Moreover, although UPC is a small set of
extensions to C, C programmers unfamiliar with UPC
have to understand what UPC programs do. For ex-
ample, a programmer has to be aware that adding a
for-loop into the body of a program could change the
multi-threading behavior of that program. In contrast,
adding a for-loop, or making any other modifications
outside a parallel region, to OpenMP is identical, in
effect, to making the same change to the serial program
without the directives.

CAF looks and feels like Fortran and requires For-
tran programmers to learn only a few new rules. The
few new rules are related to two fundamental issues that
any parallel programming model must resolve: work
distribution and data distribution. Co-Array Fortran
can in principle also work on shared nothing systems.
Since co-array syntax is incorporated into the language,
it is more flexible and more efficient than any library
implementation such as MPI or SHMEM. The syn-
chronization in Co-Array Fortran is simple to use as
compared to other process-based SPMD programming
models. However, the notation of square brackets for
representing images can be very complex, hard to un-
derstand, and error prone. The programmer may avoid
using complex descriptions of co-arrays and instead
adopting simple structures and statements wherever it
is possible.

OpenMP is primarily designed for fine-grained loop
parallelization, which is typically appropriate for small
node counts. Therefore, the lack of layout control is
less of an issue for OpenMP in its primary domain of
interest, though it is a concern for SPMD programs.
In Co›Array Fortran, all memory is associated with a
local image, so memory placement on NUMA systems
is simple to arrange and less affects scalability. Thus,
CAF has clear advantages on systems with large num-
ber of nodes.

OpenMP supports programs that execute correctly
both as parallel programs (multiple threads of execu-
tion and a full OpenMP support library) and as sequen-
tial programs (directives ignored and a simple OpenMP
stubs library). However, it is possible and permissi-
ble to develop a program that does not behave cor-
rectly when executed sequentially. This leads to non-
deterministic programming where different degrees of
parallelism may result in different numeric results be-
cause of changes in the association of numeric oper-
ations. For example, a serial addition reduction may
have a different pattern of addition associations than
a parallel reduction. These different associations may
change the results of floating-point addition

OpenMP, UPC and CAF implementations are not re-
quired to check for dependencies, conflicts, deadlocks,
race conditions, or other problems that result in incor-
rect program execution. The user is responsible for
ensuring that the applications using these languages
execute correctly. Neither frees the programmer from
the most tedious and cumbersome tasks of parallel pro-
gramming.

3. Conclusions

OpenMP, UPC and CAF are new based-languages
programming models that are still in development. On
the one hand, they present relatively simple program-
ming styles: annotating a serial code by compiler di-
rectives (OpenMP) or by using simple parallel con-
structs (UPC); explicit parallelism; SPMD program-
ming paradigm; high abstraction due to separation of
logical parallelism from physical execution environ-
ment; and high-level of machine portability. On the
other hand, the responsibility of the programmer to
ensure the correctness of the program is burdensome:
checking for dependencies, conflicts, deadlocks, race
conditions, or other problems that result in incorrect
program execution.

OpenMP stands at a crossroad. It is designed for
shared memory architectures and scientific applications
that demand high-speed computations. This can be
achieved only by extending OpenMP for large-scale
shared-distributed memory machines. There are two
tested-ways to achieve this goal. On the one hand,HPF-
like compiler directives for supportingdata-distribution
can extend OpenMP. A few vendors have already ex-
tended their compilers by such mechanisms [8–10].
This is the easy way. On the other hand, OpenMP can
be integrated with MPI for creating a coherent hybrid
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model [15]. This is the hard way, but a much more
promising one. In addition, OpenMP has many open
issues that will be addressed in the future [20]. Among
them are adding semaphores into OpenMP, better han-
dling of threads group, support of wavefront loop nests,
and precedence relations [21].

UPC was designed a priori for NUMA architectures.
It introduces a small set of powerful constructs. How-
ever, there are major proposals that are waiting for re-
alization. These proposals deal with a new memory
consistency model, a library for collective communica-
tions, and a library for parallel I/O.

CoArray Fortran can take full advantage of a hard-
ware global memory, but it can also be used on shared-
nothing systems with physically distinct memories con-
nected by a network. It requires the fewest changes
and should be as fast as SHMEM and MPI, but is not
widely available. Cray T3E, T3D and X1 are the only
machines with a CoArray Fortran compiler today and
it implements only a subset of the language. Currently,
Rice University is working to create an open-source,
portable, high-quality CAF compiler [23]. Co-Array
Fortran has a simple syntax as compared to other alter-
natives for SPMD Fortran, but without a portable com-
piler or support from several major vendors, it is not a
viable portability tool.

OpenMP, UPC and CAF are another phase in the
evolutionary process of the parallel programming mod-
els and languages. On the one hand, OpenMP simplic-
ity and its nested parallelism, that match the hierarchi-
cal design of future microprocessor, are more ready to
the commercial parallel programming. On the other
hand, UPC and CAF can be the parallel programming
of choice for the scientific community. While only
time will tell which of these scenarios will become real,
the above study offers a glimpse into the technological
potential and the evolving state of the art.
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