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Abstract. The statistical properties of oligonucleotide appearances within long DNA sequences often reveal useful characteristics
of the corresponding DNA areas. Two algorithms to statistically analyze oligonucleotide appearances within long DNA sequences
in genome banks are presented. The first algorithm determines statistical indices for arbitrary length oligonucleotides within
arbitrary length DNA sequences. The critical exponent µ of the distance distribution between consecutive occurrences of the
same oligonucleotide is calculated and its value is shown to characterize the functionality of the oligonucleotide. The second
algorithm searches for areas with variable homogeneity, based on the density of oligonucleotides. The two algorithms have been
applied to representative eucaryotes (the animal Mus musculus and the plant Arabidopsis thaliana) and interesting results were
obtained, confirmed by biological observations. All programs are open source and publicly available on our web site.

1. Introduction

During the last few years new revolutionary exper-
imental methods in molecular biology have been dis-
covered. It is now possible to sequence DNA macro-
molecules with increased speed and accuracy. This has
resulted in an explosive growth of the amount of bio-
logical data being stored in biological databases (such
as [6,27]). We now have complete genomic sequences,
even for organisms such as human (Homo sapiens) and
mouse (Mus musculus) with extensive genomes.

It is anticipated that, at today’s rates, the amount of
data inserted into biological databases will double ev-
ery 18 months. It is clear that this tremendous amount
of data is of no value, unless there exist tools for effec-
tively searching and manipulating it. For this reason
various biological packages have been developed, such
as BLAST [3,37], FASTA [23,33], CLUSTAL [12,34],
while other numerical approaches and algorithms are
presented in [1,2,4,5,8–10,13–15,18,24,26,28].
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Most of the problems addressed by these packages
deal with finding specific patterns in DNA or protein se-
quences, searching for similarities between known se-
quences, querying biological databases for similar se-
quences given an unknown one, developing algorithms
which try to reconstruct the 3D structure of a given
macromolecule, producing tools to automatically dis-
tinguish functional areas (like coding/non-coding re-
gions in DNA or topology prediction for proteins), cal-
culating various statistical and mathematical param-
eters etc. Despite the increasing number of avail-
able tools, the problem of categorizing oligonucleotides
based on their statistical properties is still open. We
propose two algorithms which deal with small DNA se-
quences and their distribution across the whole chromo-
some, in order to be able to categorize these sequences
or DNA areas only from their statistical properties and
not by laboratory biological findings.

Let us first formalize the representation of the DNA
sequences used in this work. Genomic DNA sequences
consist of the four nucleic acids; Adenine, Cytosine,
Guanine and Thymine:

Base = {A, C, G, T } (1)
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although in other genomic macromolecules other bases
are found as well (e.g. Uracil – U in RNA). Inside the
biological DNA databases only the above four bases
are stored. Thus, a DNA Sequence of length n can be
described as:

Sequence(n) = Basen (2)

Inside the cell, there is usually more than one long
DNA sequence. Each one of these sequences is called
a Chromosome, it is independent of the others and
usually includes different genomic information. 1

Again, a chromosome can be represented as

Chromosome(c) = Basec (3)

where c would be in the range of a couple of thousand
(for simpler organisms) to hundreds of millions (for
more complex organisms). If the size of the DNA
sequence is small, then this is called Oligonucleotide:

Oligonucleotide(m) = Sequence(m),
(4)

where m � c

Although the main operation of the DNA is to code
for proteins, it is known that, in higher eucaryotic or-
ganisms, only a small percentage of the DNA is trans-
lated, in order to produce proteins. These areas are
called coding areas. The rest of the DNA has more
structural than functional role and such areas are called
non-coding areas. In order for the coding areas to
be distinguishable by the enzyme which promotes the
transcription,2 usually in the beginning of the coding
regions there is a special DNA sequence called the pro-
moter. Promoters usually have a length in the order
of hundreds of bases. Between two successive appear-
ances of the promoter there are at least one coding
and one non coding sequence. Inside each promoter
there are small oligonucleotides of length m = 2 . . . 10,
which are steadily present, called consensus sequences.
Known consensus sequences in eucaryotes are, among
others, the CG and the TATA sequences.

In a recent work, the distance distribution between
two consecutive appearances of a given oligonucleotide
has been calculated [16]. The investigation has been
performed on human chromosomes 21 and 22 for
oligonucleotides of length m = 5 and m = 6. It
has been found that the oligonucleotides that contain

1Sometimes during the life of the cell (e.g. mitosis metaphase),
when the cell is going to double, each one of these sequences doubles
and there are two appearances of the same sequence.

2Like RNA polymerase II.

consensus sequences of promoters follow long tailed
distributions

P (S) ∼ S−1−µ, 0 � µ � 2 (5)

where S is the distance between two consecutive oc-
currences of the same oligonucleotide sequence, P (S)
is the distribution of S and µ is called the power law
or critical exponent. In contrast, randomly generated
oligonucleotides follow short tailed distributions.

Encouragedby this finding, we decided to generalize
the process; we created two algorithms, the Oligonu-
cleotide Process Algorithm (OPA) and the Statistical
Homogeneity Map (SHMap) algorithm. The former
one (OPA) calculates statistical indices of oligonu-
cleotide distributions in long DNA sequences. Rep-
resentative indices are the frequency of appearance,
the maximum distance, the average distance, the dis-
tance deviation between two occurrences of the same
oligonucleotide and the power law exponent µ. The
values of these indices are shown to be associated
with the degree of functionality of the correspond-
ing oligonucleotide indicating whether the particular
oligonucleotide sequence serves as promoter signature
for this organism. The latter (SHMap) algorithm maps
areas in the DNA sequence which lack homogeneity,
providing information about the characteristics of the
underlying DNA sequence and possibly predicting its
functionality.

Each one of these algorithms is applied to chromo-
somal data (DNA sequences with c at least 103) and
statistically manipulates these long sequences. A gen-
eral interface has been developed which is able to input
a DNA sequence in either plain text format, without
any special coding, or in NCBI’s FASTA (FNA) for-
mat [23]. All the code that resulted from this work are
publicly available under an open source licence (GNU
GPL) through our web site [32].

In the next two sections we describe the OPA and
the SHMap algorithms respectively. In Section 4 we
discuss the applications of the two algorithms and the
external tools required. In Section 5 we present inter-
esting results from the application of our algorithms to
real biological data. Finally in Section 6 we discuss
the results, address some open problems and propose
future extensions.

2. Oligonucleotide Processing Algorithm (OPA)

Our aim here was to examine the statistical prop-
erties of oligonucleotides within a given chromosome
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(sequence). To this end our algorithm aims to distin-
guish oligonucleotides with special statistical proper-
ties. It is then extremely useful to compare these results
with experimentally determined oligonucleotides with
distinct biological function.

The main points of focus are the following:

– Distance Distribution of two consecutive appear-
ances of the same Oligonucleotide Sequence
DDOS inside a give chromosome

– Determination of the power law exponent µ for
each oligonucleotide

– Ordering of the results on any statistical parameter
calculated above and checking whether the ranking
of oligonucleotides has functional meaning or if
there is any type of possible clustering between
the oligonucleotides

In order to calculate the statistical properties of the
oligonucleotides, pattern matching in DNA sequences
is needed. Apart from the four symbols which represent
the four nucleic acid bases (A, T, C and G), more sym-
bols exist in DNA databases, which are used to describe
bases whose composition is not fully sequenced. In the
following algorithms we have used a generic approach,
where all these symbols are taken into account [20–22].
Table 1 gives the truth matrix we constructed to decide
whether two bases match.

To calculate the power law exponent µ we have fol-
lowed two approaches, depending on the method be-
ing used. The first approach relies on the observation
that the DDOS for almost every oligonucleotide has a
central linear part in double logarithmic scale, usually
found between fixed boundaries for a given chromo-
some. Using this information it is possible to distin-
guish oligonucleotides depending on their DDOS and
their critical exponent µ, which is the slope of this lin-
ear part (Eq. (5)). The algorithm variant used is the
following:

DNA = load dna(’DNASequence.FNA’);
/* Provide the length M of the oligonucleotides */
M = input();
/* Create a list with all possible oligonucleotides of length M */
/* The list should have 4M items */
LIST = compute possible
oligonucleotides (M);

/* Go through every item in the list */
for (S in LIST) {

/* Search for the first occurrence of S in the DNA */
/* sequence (from position 0) */
POSITION1 = find(0, S, DNA);
/* Initialize distances list */
DISTANCES = new list();
while (not end of ’DNA’) {

POSITION2 = find (POSITION1+M, S, DNA);
add distance to list(DISTANCES,

POSITION2-POSITION1);
POSITION1 = POSITION2;

}
/* Calculate the various statistical parameters */
MAXDIST = calculate max distance

(DISTANCES);
AVRDIST = calculate average

distance(DISTANCES);
DISTDEV = calculate distance

deviation(DISTANCES);
HISTOGRAM1 = calculate histogram

(DISTANCES);
HISTOGRAM2 = calculate cumulative

histogram (DISTANCES);
HISTOGRAM3 = convert to loglog

(HISTOGRAM2);
/* Perform a line fitting over the HISTOGRAM, -1-m is the slope */
SLOPE = line fitting(HISTOGRAM3);
/* VAR is any statistical variable, such as MAXDIST, SLOPE, etc. */
sort (HISTOGRAM3, VAR);
save (HISTOGRAM3);

}

The complexity of this algorithm is O(4m ∗ c ∗ m),
where m is the length of the search pattern and c is the
length of the DNA sequence.

The least squares algorithm [25] has been used for
the line fitting. The results are ordered by the desired
statistical parameter, and the oligonucleotides which
appear to have extreme values are exposed. For ex-
ample, if the critical exponent µ is used for sorting,
oligonucleotides with small values of |µ| (follow long
range distributions) are expected to include consensus
sequences, whereas oligonucleotides with large values
of |µ|, (follow short range distributions) have no clear
biological meaning. Interestingly, this ordering is in
general robust, for all statistical properties considered.

The second approach uses a general curve in order to
fit the produced DDOS, taking into account the whole
histogram. We have selected a curve with an expo-
nential and a polynomial part, in order to be able to
describe both power law (long tails) and exponential
(short tail) behavior of the distribution:

y(x) = Ax−1−je−kx (6)

This expression contains three independent param-
eters: A being a normalization parameter, j being an
intermediate scale and k being a large scale parameter.
The parameter j corresponds to the critical exponent
µ presented above. The curve fitting algorithm which
was used is a combined Levenberg-Marquardt [17,19]
with Gauss-Newton method. The curve fitting version
of the algorithm is:

/* Load the DNA into memory, input the length of the */
/* oligonucleotides and check every oligonucleotide in order */
DNA = load dna(’DNASequence.FNA’);
M = input();
LIST = compute possible
oligonucleotides (M);

for (S in LIST) {
POSITION1 = find(0, S, ’DNA’);
DISTANCES = new list();
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Table 1

A B C D G H K M N R S T V W Y

A 1 0 0 1 0 1 0 1 1 1 0 0 1 1 0
B 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
C 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1
D 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
G 0 1 0 1 1 0 1 0 1 1 1 0 1 0 0
H 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
K 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0
M 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0
N 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
R 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0
S 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0
T 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1
V 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
W 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0
Y 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1

The DNA base matching matrix of two nucleic acid symbols. The symbols in the
vertical axis represent the bases found inside the DNA sequence being searched and
the symbols in the horizontal axis represent the bases found in the search pattern (‘1’
= match, ‘0’ = no match). We note that most of these symbols match with more than
one symbol. The generic symbols match the more specific ones only when the former
appear in the search pattern, not inside the long DNA sequence. The representation
of each symbol is as follows: G for Guanine, A for Adenine, T for Thymine, C for
Cytosine, R for G or A (puRine), Y for T or C (pYrimidine), M for A or C (aMino),
K for G or T (Keto), S for G or C, W for A or T, H for A or C or T, B for G or T or C,
V for G or C or A, D for G or A or T, and N for G or A or T or C [20–22].

while (not end of DNA) {
POSITION2 = find (POSITION1+M, S, DNA);
add distance to list(DISTANCES,

POSITION2-POSITION1);
POSITION1 = POSITION2;

}
/* Calculate the distance distribution of this oligonucleotide */
HISTOGRAM = calculate histogram

(DISTANCES);
/* Convert the histogram in double logarithmic scale */
convert to loglog (HISTOGRAM);
save (HISTOGRAM);

}
/* Parse all histograms being produced */
for (H in HISTOGRAM files) {

/* Perform the curve fitting on this histogram */
curve fit (H);
/* Store the curve parameters */
store (A, j, k);

}
/* Perform a data clustering based on j,k */
find clustering(j,k);
display data();

The complexity of this algorithm is again O(4m ∗ c∗
m) as in the previous version of the algorithm.

This approach presents new views over the possi-
ble classification of the oligonucleotides. By appro-
priately mapping the various parameters, clustering of
oligonucleotides may appear, when statistically mean-
ingful queries are posed. In order to evaluate the pro-
duced results, we have taken into account only the j
and k parameters, since these describe the statistical be-
havior of the result. As can be seen in Section 5.2, two
clearly distinct areas are visible and this observation is
robust in both chromosomes we have chosen.

We would like to note that the sequences which are
found with this algorithm do not appear solely inside the
promoters, but can also be seen elsewhere in the DNA,
like inside exons, and thus do not appear exclusively at
the beginning of genes. Since this algorithm calculates
statistical indices which refer mostly to the tails of
the size distribution of these sequences, at least the
consensus sequences of the promoters which have large
interdistances (i.e. separate mostly intergenic regions)
correspond to promoter sequences.

3. Statistical Homogeneity Map (SHMap)

The algorithms presented above give statistical in-
formation on various oligonucleotide combinations. It
is also useful to be able to map areas inside the chromo-
some according to their statistical behavior. We thus
consider another biological observation; the lack of ho-
mogeneity within eucaryotic chromosomes. Each eu-
caryotic chromosome consists of areas with different
composition. Some areas can be described as “ran-
dom” from the statistical point of view, whereas other
areas have more “stable” consistency [26].

The algorithm proposed here marks areas of the chro-
mosome according to their “randomness”. As a base
measure we employ all possible oligonucleotides of
length m. We distinguish the areas which are rich in



P. Katsaloulis et al. / Statistical algorithms for long DNA sequences: Oligonucleotide distributions and homogeneity maps 181

different oligonucleotides, and those which consist of
only a few oligonucleotides. The algorithm is as fol-
lows:

/* Load the DNA into memory, input the length of the */
/* oligonucleotides and check every oligonucleotide in order */
DNA = load dna(’DNASequence.FNA’);
/* Allocate memory in order to save the SHMap values */
MAP = allocate memory(size of(DNA);
clear memory (MAP);
M = input();
LIST = compute possible
oligonucleotides (M);

for (S in LIST) {
POSITION1 = find(0, S, DNA);
while (not end of ’DNA’) {

POSITION2 = find (POSITION1+M, S, DNA);
DISTANCE = POSITION2-POSITION1;
/* Check if the distance between two consecutive appearances */
/* of an oligonucleotide are above a given threshold */
if (DISTANCE > THRESHOLD) {

/* Mark all positions between first and second */
/* appearance of the oligonucleotide */
for (K between POSITION1 and

POSITION2) {
MAP[K] = MAP[K]+1;

}
}
/* The second position becomes now the first */
POSITION1 = POSITION2;

}
}
/* Normalize the MAP between the values 0 to 255 */
normalize map (MAP, 0, 255)
save map(MAP);

The result of this algorithm is a data file, with the
same size as the input DNA sequence; there is a one-to-
one correspondence between chromosome bases and
values within this file (Fig. 1). The complexity of this
algorithm is O(4m ∗ c ∗ m), since, for each one of the
4m oligonucleotides, the start of each new search is the
end of the previous one (where the oligonucleotide was
last found). In the end the entire genome c is traversed
once.

The biological meaning of values within this file is
as follows:

– a lower value implies that the distances between
oligonucleotides in this area are generally smaller
than the given threshold. Having short distances
means that the possibility of finding any given
combination, starting from any position inside this
area is high, or in other words, that most combina-
tions are present and mixed in this area. Since this
kind of behavior resembles “random” distribution,
it is also expected that these areas include mostly
coding DNA sequences.

– a higher value implies long distances between
oligonucleotides (above the given threshold).
Having long distances means that it is less proba-
ble to find the next occurrence of a certain oligonu-
cleotide inside this area. Since we do not con-

Fig. 1. Schema of the SHMap algorithm. Top lines contain the
DNA sequence and bottom lines contain the MAP values. In this ex-
ample we consider for simplicity single-base nucleotides (mononu-
cleotides, m = 1) and thus the number of possible oligonucleotides
are 4m = 41 = 4. The four sequences are A, C, G and T respec-
tively. The threshold in this example is 4m+d = 4, taken m = 1
and d = 0 (Eq. (7)). Each new row in this schema depicts the status
of the MAP after a step of the algorithm for the respective oligonu-
cleotide (shown on the left of the table). The bases in italics mark
the positions in the DNA sequence which will be incremented.

sider extensive DNA gaps in this implementation
of the algorithm, but there is a contiguous cov-
erage of bases, the reason for the long distances
is the over-representation of few specific oligonu-
cleotide combinations in this area, forcing the re-
maining majority of the oligonucleotides to be
under-represented. This behavior is common in
non-coding DNA sequences, where the presence
of structures like poly-A (long sequences consist-
ing only of adenine) are common.

The choice of the threshold is important, as it distin-
guishes whether the distance between two occurrences
of an oligonucleotide is statistically insignificant or not.
As c is the length of the DNA sequence and m is the size
of the oligonucleotides, then the number of m-sized
oligonucleotides inside c are c−m+1. Since the num-
ber of possible oligonucleotides is 4m, the expected
number of appearances of each oligonucleotide within
a random DNA sequence of size c is c−m+1

4m . The aver-
age distance between two consecutive appearances of
a specific oligonucleotide is expected to be

Distance(c, m) =
c − m + 1

c−m+1
4m

= 4m (7)

In this study the threshold was set to 4m+d, where
d is used to bring the threshold well above the random
probability of appearance (4m).

Using this algorithm it is possible to distinguish areas
which are rich in oligonucleotide combinations (lower
value) from those which are poorer (higher values).
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Fig. 2. Application of the SHMap algorithm over chromosome 1 of Mus musculus in the NT 039170 area. The size of the oligonucleotide being
used was m = 5. The region between 11730700–11813700 is displayed. Some of the peaks appear to be in the regions 11740900–11742700
(P1), 11760000–11763500 (P2), 11775800–11776800 (P3), 11793000–11794100 (P4) and some of the lowest valleys appear to be in the regions
11748600–11750200 (V1), 11753400–11755000 (V2), 11765500–11766700 (V3) and 11798000–11800000 (V4). By direct comparison with
the NCBI gene database it is found that in general the peaks correspond to the introns, while the valleys correspond to regions rich in exons of
the Dst gene. The corresponding regions (which include the identified peaks) are (11740853–11742704) for P1, (11754490–11763711) for P2,
(11775756–11776896) for P3 and (11792763–11794229) for P4. The valleys correspond to several exons each, with statistically insignificant
small introns between them: [11748859–11749016], [11749445–11749623] and [11750055–11750193] for V1, [11753810–11753917] and
[11754392–11754490] for V2, [11765657–11765745] and [11766514–11766646] for V3, [11798030–11798271] and [11799091–11799220] for
V4.

Since the coding regions appear to be richer in oligonu-
cleotide combinations, we expect them to be inside the
areas with the lower values. A visualized result of this
algorithm is presented in Section 5.3 (Fig. 2). Since
this approach is statistical and not biochemical, there
is less accuracy in the positioning of the exons and in-
trons. It can be used as a tool to point to DNA ar-
eas which need to be further investigated by traditional
biochemical methods.

4. Implementation

An integrated application under an open source li-
cence (GNU GPL) implements the above algorithms.
It is console-based, although some components (such
as the display of various plots) produce graphical out-
put. Our development environment was a Linux single
processor (Intel) system. We used the ANSI C++ lan-
guage under the GNU G++ compiler in order for the
source code to be portable [29]. We have also tested
it under Windows 98 and Windows XP environments
using cygwin/mingw32 tools. Other tools used include
the BASH shell [35] to manage and sort the results,
the GNUPLOT utility [36] to graphically present the
results and the GRACE application [31] to perform the
curve fitting over the data.

Depending on the amount of computation and the
plan of work, it can be used in either interactive or batch
mode.

4.1. Interactive

This mode is the default. The user is able to inter-
actively perform various exploratory statistical tests in

real time. Typically a single oligonucleotide is tested
at a time. The input DNA sequence is either in plain
text or in FNA format. A search pattern is specified and
statistical information is displayed in real time, such as
frequency of appearance, maximum and average dis-
tance, distance deviation and the critical exponent µ. It
is also possible to calculate simple or cumulative dis-
tributions and to graphically display a plot of distances
for the given oligonucleotidecombination or the DDOS
together with the calculated slope.

4.2. Batch

This mode is useful for collecting statistical data on
multiple oligonucleotides. The algorithms described in
the previous sections are implemented in batch mode.
Both the OPA (with line or curve fitting) and the SHMap
algorithm can be executed on data provided by the user
at run time. For the visual display of the clustering of
oligonucleotides, the sequences can be split according
to a regular expression (RegExp [7]), as shown in Figs 3
and 4. The computational cost of each algorithm on a
Pentium 4 PC (2.5 GHz) for quintuplet processing on
Chromosome 19 of Mus musculus (about 60 Mbases)
was of the order of 1 hour.

In addition to the presented algorithms, a few extra
facilities are also available. It is possible to calculate all
histograms for an oligonucleotide string of a specified
length and store the results in a single file. The scales of
the histograms are not normalized (top part of Fig. 5).
A 2D matrix is created whose horizontal dimension
contains the size distribution values and the vertical di-
mension indexes the oligonucleotide. It is also possible
to calculate all histograms in normalized scales (bottom
part of Fig. 5). This is useful for comparing the shape
of the histograms for different oligonucleotides.
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Fig. 3. Application of the OPA algorithm over chromosome 18 of Mus musculus. The axes plot (−1 − j) against −k. Two clearly separated
areas are visible; on one side are oligonucleotides with at least one occurrence of the CG sequence (X) and on the other all other oligonucleotides
(O).

5. Application to biological data

To test the usability and effectiveness of the pro-
posed algorithms, we performed tests on biological
data. Fully sequenced chromosomes from the NCBI
genome bank were obtained [30]. The organisms which
were used are the animal Mus musculus (mouse) and
the plant Arabidopsis thaliana.

5.1. Long range distribution of oligonucleotides

In this study, reference chromosomes 1, 15 and 19
of Mus musculus and chromosomes 1, 2 and 3 of Ara-
bidopsis thaliana from the NCBI database were tested.
The line fitting variation of the OPA algorithm was
employed to calculate the critical exponent. The lin-
ear regions taken into account were in the range 2–6
of the P (S) in double logarithmic scale. Quadruplets
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Fig. 4. Application of the OPA algorithm over chromosome 19 of Mus musculus. As in Fig. 3, two areas are again visible, on the right are
oligonucleotides with at least one occurrence of the CG pattern (X) and on the left all other oligonucleotides (O).

(oligonucleotides of m = 4) and quintuplets (oligonu-
cleotides of m = 5) were considered. The oligonu-
cleotides were sorted according to the value of their
critical exponent µ and the combinations with the low-
est and the highest values of µ are presented here. An
example of the produced output can be seen in Table 2.

In all tested chromosomes of Mus musculus it can
be seen that in general the quintuplets with the small-
est absolute value of µ are those which contain the se-
quence CG twice. Various combinations of this basic
pattern appear to belong to this group, such as TCGCG

and CGCGA (which are complementary), CGCGT and
ACGCG (complementary), CGTCG and CGACG (com-
plementary) and a few others. Following the same pat-
tern, the quadruplet with the smallest absolute value of
µ is the one with the double CG sequence, namely the
CGCG. The oligonucleotides with the highest value of
|µ| do not appear to have any specific pattern. We note
here that the complex CG is a consensus sequence of
the RNA polymerase II promoter in some organisms.
The OPA algorithm, without any input about promoter
structure, solely based on distance distribution between
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Fig. 5. Calculation of multiple histograms. The top plot displays the unnormalized and the bottom the normalized histograms. For clarity
of presentation only two of the 256 histograms are shown (the actual number of histograms calculated are 4m, where m = 4 in the case of
quadruplets). The displayed oligonucleotides are ACTA and TCGC from the 10th chromosome of Mus musculus.

various oligonucleotides has sorted out all the oligonu-
cleotides which contain the signature of the promoter
of the polymerase.

In Arabidopsis th. the situation is more complicated.
In chromosome1 the quadrupletwith the smallest value
of |µ| is the TATA, which is different to the one found
for Mus m. In quintuplets we have a similar situation.
The sequences with the smallest value of |µ| are those
which have the TATA sequence or point mutations of it.
Sequences with large values of |µ| do not appear to fol-
low any special pattern, although some of the oligonu-
cleotides appear to have A and T, but with different
ordering than the one described above.

In chromosomes 2 and 3 the quadruplets with the
smallest value of |µ| are theCGCG andGCGC sequences.
The results are similar for quintuplets; sequences with
the smallest value of |µ| appear to contain the CG se-
quence twice. These sequences are CGCGC, GCGCG
and point mutations of them, rich in cytosine and gua-
nine. Although at first sight the results appear to con-
tradict (since in both organisms it is the same enzyme
which promotes the production of mRNA) they can
easily be explained in biological terms. It has been
found that in mammals and other higher organisms,
the consensus sequence of the promoter includes the
CG sequence. However in Arabidopsis th. the TATA
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Table 2

% SEQ FREQ AVG MAX STDDEV FIT CFIT LNFIT

CTCA 17856 239 2503 252.545 0.0388571 −0.00792694 −5.85913
AGAG 22392 190 2724 225.815 −0.0166103 −0.0120101 −5.81601
TCAG 17476 244 2856 255.668 −0.0175687 −0.00545257 −5.79798
AGGT 12641 338 4149 351.576 0.0434072 −0.00367821 −5.65297
CTGA 17755 240 2404 248.927 −0.00226716 −0.00842822 −5.58917
AAGC 11951 357 3730 387.117 0.0109258 −0.0405405 −5.56692
ACTT 14646 291 3229 306.616 −0.00621426 −0.0154523 −5.56439
GTGA 12892 331 4088 343.58 −0.0101775 −0.00443319 −5.52546
AGGA 19309 221 2576 248.277 −0.00600354 −0.00443272 −5.52412
TGAG 18476 231 2325 248.305 0.02659 −0.0109548 −5.50157

. . . . . . . . . . . . . . . . . . . . . . . .
TCGG 1757 2433 28958 3072.47 −0.000182006 −0.00024667 −2.30993
GGCG 1976 2164 38312 3337.87 −0.00177118 −0.00043499 −2.30579
CACA 22612 189 5063 257.518 −0.0078082 −0.00230276 −2.25369
CGGA 1940 2203 28078 2976.34 0.000635356 −0.000635895 −2.22556
CGGC 1836 2329 34029 3510.3 −0.000213448 −0.000323557 −2.21539
ACGC 1648 2593 27919 3340.61 −0.00113418 −0.00101467 −2.19301
CGCC 1971 2168 41934 3379.38 8.54279e-05 −0.000357682 −2.05837
CCGC 1642 2602 45587 4017.48 −3.65871e-05 −0.00047312 −2.01543
GCGC 1449 2950 57166 4963.49 −0.000699545 −0.000175142 −2.01383
CGCG 533 7998 108882 14786.1 −0.000275482 −0.000127624 −1.16537

Sample output of the OPA algorithm for Mus musculus chromosome 18. The columns are, from left
to right, the current oligonucleotide sequence (SEQ), the frequency of appearance (FREQ), the average
distance (AVG), the maximum distance (MAX), the deviation of the distances (STDDEV), the slope
of the histogram (FIT), the slope of the cumulative histogram (CFIT) and the slope of the cumulative
histogram in double logarithmic scale (LNFIT) which is also the value of the critical exponent (−1−µ).
The data is sorted according to the critical exponent values. Only the extreme parts of the list are shown.
The oligonucleotide with the smallest value of |µ| is the CGCG sequence.

oligonucleotide is an important consensus sequence, in
addition to CG. Our algorithms confirm this biological
particularity.

From our current and previous studies we have seen
that the sequences which follow long-range distribu-
tions were found to correspond to consensus sequences
of DNA promoters. Thus at this stage the OPA al-
gorithm might be used to predict possible consensus
promoter sequences in long DNA sequences.

5.2. Clustering of oligonucleotides

In this test we perform curve fitting over the DDOS.
We have used the SHMap algorithm over chromosomes
18 and 19 of Mus musculus and taken into account
quintuplets and hexaplets (m = 5 and m = 6 respec-
tively). The results can be seen in Figs 3 and 4. Each
scatter plot depicts the two main parameters −1 − j
and −k. Every plotted symbol corresponds to a sin-
gle oligonucleotide. We have divided the 4m oligonu-
cleotides in two sets, the first set α (marker X) consists
exclusively of oligonucleotides which include the CG
sequence, and the second set β (marker O) contains all
other oligonucleotides.

The result is rather amazing. Two clearly separated
clusters are visible in every plot, one consisting solely

of oligonucleotides belonging to set α on the right part
of the graph, and the other consisting solely of oligonu-
cleotides belonging to set β, on the left part. The ex-
istence of the CG sequence is the characteristic differ-
entiator of these clusters; CG is known to be a consen-
sus sequence of the promoter for this organism. This
clustering is more prominent in mammals and is less
evident in plants and lower eucaryotes.

5.3. SHMap

We have used SHMap to calculate the statistical ho-
mogeneity map of chromosome 1 of Mus musculus. An
example output of the algorithm can be seen in Fig. 2
using oligonucleotides of size m = 5. In this example
we have focused on the NT 039170 area of this chro-
mosome. Since the whole data sequence is of the order
of 107, only a specific region is shown in the example
(namely bases 11730700–11813700). The threshold
being used is 4m+d = 45+2 = 16384. This area cor-
responds to the Dst gene, which produces the dystonin
protein.

The diagram shows some peaks and some valleys.
The peaks characterize low diversity for the underlying
DNA sequence and in this example correspond to non-
translated areas. The deeper valleys are found to corre-
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spond to areas of the gene rich in exons, which means
that they are part of the coding regions of this DNA
sequence. The algorithm thus has predictive power in
non-annotated sequences. It would be interesting to
further investigate this behavior and compare it against
biological data regarding the functionality of the given
chromosomal areas.

At this point we should note that in chromosomes
which are not fully sequenced, an artifact may appear.
If the DNA sequences have areas of unknown base
consistency (e.g. having the symbol N), the unknown
bases will not match with any given sequence and will
produce false high peaks.

6. Conclusions and open problems

We present a set of algorithms for the statistical anal-
ysis of DNA data. Interestingly the use of our algo-
rithms over laboratory biological data revealed a spe-
cific behavior related to functionality. Although the ap-
proach was completely based on mathematical terms,
the sequences which stand out are those which have
specific biological meaning (e.g. consensus sequences
of promoters). This is important, not only because it
is a different kind of proof for the special function of
these sequences, but also because they could be used
on organisms for which we have the DNA sequence
but do not know much about the functionality of their
genome.

We would like to note that in this analysis we do not
presume the existence of promoters. We have focused
only on calculating statistics of long DNA sequences
and estimating the size distribution between oligonu-
cleotides. It is true that there can be more than one
promoter consensus sequence even for the same RNA
polymerase. This situation is depicted in Arabidopsis
th. where both TATA and CG sequences appear. How-
ever since the treatment is statistical,only the prominent
promoter consensus sequences dominate. Sequences
which appear sporadically do not contribute signifi-
cantly to statistics and thus may not appear in the top
places of the results.

We have to stress that apart from the requirement of
long DNA sequences, our algorithms are neither organ-
ism nor data specific. They can equally be applied to
eucaryotes or procaryotes, ‘higher’ or ‘lower’ organ-
isms. It is expected that the results will vary according
to the selection of organism, since each organism might
have different enzymes and biological pathways. The

main principles of the algorithms will remain, only the
biological interpretation of the data will change.

OPA algorithm seems to distinguish the promoter
consensus sequences from other oligonucleotides,
since these sequences appear to have the smallest ab-
solute value of µ. It may be possible to use this al-
gorithm in order to predict possible promoter consen-
sus sequences in unknown long DNA sequences. In
the current work we have focused on making statistical
tools which can be used to analyze any sequence in the
statistical sense of searching for oligonucleotides.

Although it would be possible to modify these algo-
rithms in order to ignore consecutive repeats of oligonu-
cleotides, the statistics will change. The repeats are an
important element in the structure of intergenic regions
and in non-coding DNA sequences and they have been
produced by evolutionary forces. For this reason they
drastically contribute to the statistics of the tails of the
sequences and they induce long range properties.

Finally it would be interesting to extend our system
so as to be able to zoom in various levels on the map
and display specific DNA ranges. It is also important
to tag these DNA areas with information such as which
known genes are inside this area or which parts consist
mainly of exons or introns. An implementation under
the GRID [11] would allow the separation of logically
distinct parts of our system (data banks,processing, dis-
play) and speed up the batch mode through distributed
processing.

The algorithms developed can be downloaded and
tested from our website [32] under an open source li-
cence (GNU GPL).
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