
Scientific Programming 13 (2005) 189–203 189
IOS Press

Dynamic Memory De-allocation in Fortran
95/2003 derived type calculus

Damian W.I. Rousona, Karla Morrisb and Xiaofeng Xuc

aUS Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA
Tel.: +1 202 767 6965; Fax: +1 815 572 8203; E-mail: damian.rouson@nrl.navy.mil
bDepartment of Mechanical Engineering, The Graduate Center of the City University of New York, 365 Fifth
Avenue, New York, NY 10016, USA
Tel.: +1 212 650 7134; Fax: +1 212 650 8013; E-mail: karla morris@hotmail.com
cDepartment of Fire Protection Engineering, University of Maryland, College Park, MD 20742, USA
Tel.: +1 571 215 2413; Fax: +1 301 405 9383; E-mail: xxf@umd.edu

Abstract. Abstract data types developed for computational science and engineering are frequently modeled after physical objects
whose state variables must satisfy governing differential equations. Generalizing the associated algebraic and differential operators
to operate on the abstract data types facilitates high-level program constructs that mimic standard mathematical notation. For
non-trivial expressions, multiple object instantiations must occur to hold intermediate results during the expression’s evaluation.
When the dimension of each object’s state space is not specified at compile-time, the programmer becomes responsible for
dynamically allocating and de-allocating memory for each instantiation. With the advent of allocatable components in Fortran
2003 derived types, the potential exists for these intermediate results to occupy a substantial fraction of a program’s footprint
in memory. This issue becomes particularly acute at the highest levels of abstraction where coarse-grained data structures
predominate. This paper proposes a set of rules for de-allocating memory that has been dynamically allocated for intermediate
results in derived type calculus, while distinguishing that memory from more persistent objects. The new rules are applied to the
design of a polymorphic time integrator for integrating evolution equations governing dynamical systems. Associated issues of
efficiency and design robustness are discussed.

1. Introduction

A central activity in object-oriented software design
involves constructing abstract data types (ADTs) ap-
propriate for a given application domain. In compu-
tational science and engineering (CS&E), these ADTs
often represent physical entities whose state variables
admit a standard calculus. One typically uses this cal-
culus to formulate differential equations that govern the
system dynamics. Implementing the associated alge-
braic and differential operators in a high-level language
facilitates semantics mimicking standard mathematical
notation. As the formulas expressed become increas-
ingly complicated, one frequently finds the need to al-
locate temporary storage for intermediate results. To
avoid memory leaks, a strategy must be adopted for
de-allocating storage once it is no longer needed. As

with any task performed ubiquitously in a given ap-
plication domain, one expects common idioms to arise
for expressing the associated algorithms. Since the
addition of dynamic memory management to Fortran
lagged that of many other popular languages, there has
been less time for such algorithms and idioms to be
promulgated. This paper presents an attempt to fill this
gap and discusses the attendant issues of efficiency and
design robustness.

The design patterns to be presented have been heav-
ily influenced by a series of papers published by Decyk,
Norton and Szymanski [4–7]. They outlined techniques
for object-oriented programming (OOP) in Fortran
90/95, including strategies for implementing encapsu-
lation, information hiding, inheritance, static polymor-
phism and run-time polymorphism. An additional in-
fluence on the current work has been the recent text

ISSN 1058-9244/05/$17.00 © 2005 – IOS Press and the authors. All rights reserved

190 D.W.I. Rouson and K. Morris / Dynamic Memory De-allocation in Fortran 95/2003 derived type calculus

on OOP in Fortran 90/95 by Akin [1]. In particular,
he inspired our design of object constructors as wrap-
pers for Fortran’s intrinsic constructors. Akin also gave
a particularly lucid illustration of emulating run-time
polymorphism via dynamic dispatching. A third in-
fluence is the work of Leftantzi, Ray and Najm [9] in
developing reacting flow simulation codes using the
Common Component Architecture (CCA). In integrat-
ing stiff partial differential equations forward in time,
they find it useful to separate algorithms from physics.
For example, they create essentially stateless, polymor-
phic time integrators for marching forward more state-
ful modules containing physical data. The current pa-
per attempts to resolve memory management issues en-
countered in the development of a polymorphic time
integrator for several ADTs in Fortran 95/2003.

The Fortran 95 standard provided numerous con-
structs useful in creating ADTs [9,13]. These include
modules, derived types and private data. ADTs can be
implemented in Fortran 95 as modules that encapsulate
derived types with public procedures for operating on
the types’ private data. Operator overloading facilitates
performing arithmetic on the derived types. Generic
function interfaces (module procedures) facilitate gen-
eralizing that arithmetic to a more feature-rich calculus
with polymorphic integration and differentiation func-
tions. We will refer to these functions as differential
operators by analogy with the mathematical operators
they implement.

When overloaded arithmetic and differential opera-
tors are strung together in a single expression, the call
tree follows a pattern wherein the result of each opera-
tor of higher precedence gets passed up the call tree to
an operator of lower precedence, typically terminating
with a call to the assignment operator. Each operator
result is an instance of the given derived type. The
memory that must be allocated for each result falls into
two categories: derived type components whose size
can be determined at compile-time and those whose
size must be determined at run-time.

The Fortran 95 standard provided only one mecha-
nism for derived type components whose memory re-
quirements are not known at compile-time. That mech-
anism was pointer components. Given the havoc point-
ers potentially wreak on optimizing compilers and the
resulting performance penalty, this mechanism offered
limited utility for the class of CS&E programs in which
long loops over fine-grained data objects form the dom-
inant activity (cf. [15]). This deficiency was recognized
soon after the publication of the Fortran 95 standard,
and the standards committee promised in a 1998 techni-

cal report to include allocatable components in derived
types in its next standard [10]. Allocatable components
are now officially a feature of Fortran 2003 [11].

Due to its importance for CS&E applications, com-
piler vendors began providing this feature in advance of
the publication of the Fortran 2003 standard (cf. [17]),
albeit without adding what Metcalfe, Reid and Co-
hen [13] indicate was one of the primary motivations
for its inclusion: facilitating automatic de-allocation
of memory allocated to hold intermediate results in
derived type arithmetic. Metcalfe, Reid and Cohen
point out that automatic de-allocation for pointer com-
ponents is infeasible due to the difficulty of determining
whether the associated memory is the target of another
pointer [10]; whereas allocatable components appar-
ently circumvent this difficulty at least in the isolated
case of derived type arithmetic.

Until compiler vendors provide for automatic de-
allocation, developers must supply this capability. Sec-
tion 2 presents a case study on a class of CS&E ap-
plications for which dynamic de-allocation of interme-
diate results is critical: defining a polymorphic time
integrator class for evolving dynamical systems. Sec-
tion 3 proposes a bottom-up de-allocation scheme in
which results are marked as temporary upon creation
and freed at the immediately higher level in the call tree.
A simple convention facilitates freeing all temporary
storage while allowing chosen objects to persist. Sec-
tion 4 discusses relevant trade-offs between execution
time, memory usage and design robustness.

2. Case study: A polymorphic time integrator class

2.1. Physics

Consider a set of ADTs embodying the state and be-
havior of various lower-dimensional objects immersed
in a moving three-dimensional (3D) fluid. Two ex-
amples of current interest include zero-dimensional
point masses and one-dimensional line vortices. More
specifically, we are interested in simulating clouds
of water droplets being transported through turbulent
combustion reactants for purposes of fire suppression.
We abstract from this the idealized case of point masses
immersed in a turbulent flow with buoyancy driven by
temperature gradients. The motion of sufficiently small
droplets is governed by Stokes’ drag law:

D.W.I. Rouson and K. Morris / Dynamic Memory De-allocation in Fortran 95/2003 derived type calculus 191

dvdroplet
dt = 1

St [vgas(rdroplet, t) − vdroplet],

t ∈ (0, T]
drdroplet

dt ≡ vdroplet, rdroplet(0) = r0,

vdroplet(0) = v0

(1)

where rdroplet,vdroplet and St are the droplet position,
velocity and Stokes number, respectively; and vgas is
the local gas velocity. The gas velocity is interpo-
lated from velocity fields produced by a Navier-Stokes
solver. The Stokes number is a dimensionless mea-
sure of a droplet’s dynamic response time. The droplet
state space is thus 7-dimensional, including three com-
ponents each of rdroplet and vdroplet plus one scalar
St.

Since we will typically simulate millions of droplets,
a large number of objects are needed to represent the
full problem state space, and the droplet abstraction
can be considered fine-grained according to the defini-
tion of Rouson and Xiong [15]. It will prove conve-
nient, however, to gather large collections of droplets
into a “cloud” abstraction, at the heart of which lies a
droplet array or linked list. At this level, the data struc-
ture is coarse-grained and each instantiation occupies
substantial amounts of memory.

As mentioned above, we are also interested in track-
ing the motion of complicated networks, or “tangles”,
of quantized vortices in superfluid liquid helium (4He).
Below a critical transition temperature of 2.17 K, he-
lium behaves as a two-fluid mixture of interpenetrating
normal fluid and superfluid. The superfluid is charac-
terized by vortices swirling around evacuated cores of
approximately 1 Angstrom in diameter, so in the con-
text of classical physics simulations, they can be repre-
sented quite well by curvilinear, one-dimensional ob-
jects that induce a velocity in the surrounding fluid ac-
cording to the Biot-Savart law. The equation of motion
for the vortex lines themselves is [16]:

dS
dt

= vs + vi + αS′ ⊗ (vn − vs − vi)

−α′S′ ⊗ [S′ ⊗ (vn − vs − vi)], (2)

S(ξ, 0) = S0(ξ), t ∈ (0, T]

where vs is the superfluid velocity imposed by bound-
ary and initial conditions; vi is the velocity induced
by other vortex segments; S(ξ, t) is the position of a
point on the vortex filament; S ′ is the first derivative of
S with respect to vortex filament arc-length ξ; α and
α′ are temperature-dependent constants; and finally vn

is the local velocity of the normal fluid. Neglecting

point connectivity information, the vortex point state
space is thus three-dimensional, comprising the three
components of S, all other variables being provided by
other ADTs.

As with droplets, it proves convenient to gather
large collections of vortex points into a vortex tangle
ADT. Again if we desire to simulate millions of vortex
points, the data structure is coarse-grained at the tangle
level, and memory management will prove paramount.
(See [15] for more detail on the tangle data structure
design.)

In both the droplet and superfluid problems,a “Fluid”
ADT provides the local velocities at the droplet and
vortex core locations via interpolations on a velocity
field produced by solving the Navier-Stokes equations:

∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇2u + f ,

∇ · u = 0 (3)

on [0, 2π)3 × (0, T]

supplemented by the initial conditions

u(x, 0) = u0(x), p(x, 0) = p0

and periodic boundary conditions

u(xi ± 2πn, t) = u0(xi)∀n,

p(xi ± 2πn, t) = p(xi)∀n,

i = 1, 2, 3

where u generically represents vgas or vn; p is the fluid
pressure; Re is the Reynolds number; and the body
force, f , generically represents buoyancy in hot gases,
collective drag reactions from droplets, or collective
mutual friction between normal fluid and superfluid.

Since we are interested in high-fidelity representa-
tions of fluid turbulence, we model the fluid state vari-
ables with globally smooth Fourier basis functions.
This builds the desired periodic boundary conditions
into our basis. We also recast Eq. (3) in a form that
eliminates the pressure term while identically guaran-
teeing the divergence-free condition (cf. [14]). Time
advancement takes place in Fourier space; whereas the
nonlinear terms in Eq. (3) are computed pseudospec-
trally in physical space [3]. Transformation between
these two representations via 3D Fast Fourier Trans-
form (FFT) dominates the simulation’s operation count.
Since these transforms are most easily performed in
shared memory, our simulations require gigabyte-sized
arrays. Thus, our fluid representation is also coarse-
grained and economy receives high priority.

192 D.W.I. Rouson and K. Morris / Dynamic Memory De-allocation in Fortran 95/2003 derived type calculus

2.2. Numerical algorithms

Each of the above problems requires modeling the
evolution of a dynamical system governed by a coupled
system of nonlinear ordinary differential equations of
the form

dY
dt

= F(Y, t), Y(0) = Y0, t ∈ (0, T], (4)

where Y is the global state vector, Y0 is the vector of
initial conditions, and T is the final value of the time
variable t. For droplets, Y contains all droplet posi-
tions, velocities and Stokes numbers. For vortex points,
it contains position vectors. For a fluid, it contains 3D
Fourier coefficient vectors. (Recall that time advance-
ment for our fluids takes place in Fourier space.) For
mixtures, Y contains all of the above.

Advancing Eq. (4) from the kth time step, tk, to time
tk+1 ≡ tk + ∆t requires calculating

Yk+1 = Yk +
∫ tk+1

tk

F(Y, t)dt (5)

Each choice of quadrature scheme for the above in-
tegral yields a corresponding marching scheme. For
example, choosing the rectangle rule yields the forward
Euler method:

Yk+1 = Yk + F(Yk, tk)∆t (6)

For stiff systems, it is often useful to split the time
derivative in Eq. (4) into a linear operator, L, and a
nonlinear operator, N . Assuming L and N are time-
invariant, we write:

dY
dt

= F(Y, t) = L(Y) + N(Y) (7)

For the fluid, the stiff terms lie in L. The above
splitting facilitates advancing this term with an implicit
scheme to circumvent the otherwise stringent stability
restrictions, while N can be advanced by an explicit
scheme to avoid iteration. Spalart et al. [19] proposed
just such a marching algorithm, choosing trapezoidal
quadrature for L and a third-order Runge-Kutta (RK3)
method for N . Their method can be written in the
three-step predictor-corrector form:

Y′ ≡ Yk + ∆t[α1L(Yk) + β1L(Y′)
+γ1N(Yk)]

Y′′ ≡ Y′ + ∆t[α2L(Y′) + β2L(Y′′)
+γ2N(Y′) + ζ2N(Yk)]

Yk+1 ≡ Y′′ + ∆t[α3L(Y′′) + β3L(Yk+1)
+γ3N(Y′′) + ζ3N(Y′)]

(8)

which we write in a slightly modified form for clarity.
Comparing a Taylor expansion of Eq. (7) to Eq. (8)
yields 11 nonlinear constraints on the coefficient vec-
tors α, β, γ and ζ that must be satisfied to achieve the
desired order of accuracy. Our coefficient values were
provided by Alan Wray of NASA Ames Research Cen-
ter (private communication). In what follows, we will
explore the dynamic memory de-allocation require-
ments of both the explicit Euler and the Wray RK3
scheme.

2.3. Software architecture

Figure 1 depicts a typical class diagram using the
Unified Modeling Language (UML) architectural de-
scription standard [2]. At the top of the diagram is a
representation of our Integrand class. This essen-
tially stateless, polymorphic class is implemented as
a MODULE containing the derived type Integrand,
whose only components are pointers to instances of the
derived types to be integrated. The relationship be-
tween the Integrand class and each of its pointer
targets is represented as UML association.

Just below the Integrand class in Fig. 1 are
three coarse-grained ADTs: Cloud, Mixture, and
Fluid. The first and last of these are built up from two
more fine-grained ADTs. A Cloud contains a very
fine-grained array of Droplets; whereas a Fluid
contains an array of three Fields, each of which
contains one component of the fluid velocity vector
field. Grouping fine-grained instances of an ADT
into a more coarse-grained collection ADT facilitates
changing the relationship between each instance. For
example, an alternative implementation of a Cloud
might create a linked list by adding pointer compo-
nents to the Droplets. Alternatively, without affect-
ing the Droplet definition, one might insert individ-
ual Droplet instances into linked list ADT as de-
scribed by Akin [1]. Although the linked list abstrac-
tion would be somewhat artificial for the Droplet
dispersion simulations, it proves quite natural in our
quantum vortex tangle simulations. In the latter, the
corresponding class diagram is analogous to that of
Fig. 1 with a Tangle class replacing the Cloud class
and a Vortex Point class replacing the Droplet
class.

Although the Cloud/Droplet and Tangle/
Vortex Point relationships are not inheritance hi-
erarchies in the strictest sense, they share some of
the properties of such hierarchies. Decyk et al. [5,
7], express inheritance relationships in Fortran 90/95

D.W.I. Rouson and K. Morris / Dynamic Memory De-allocation in Fortran 95/2003 derived type calculus 193

1

1

3

1

1
1

1

1*

1

Integrand

+ euler_Integrate(Integrand)
+ RK3_Integrate(Integrand)

- Fluid : pointer
- Mixture : pointer
- Cloud : pointer

Droplet

+ d_dt(Droplet)

- position : real(3)
- velocity : real(3)
- stokes : real

Mixture

+ d_dt(Mixture)

- N : integer
- haze : Cloud(N)
- gas : Fluid

Grid

+ nodes_Grid(Grid)

- nx : integer
- x : integer(nx)

Field

+ velocity_at(position)
+ d_dx(Field)

- N : integer
- fourier : complex(N/2,N,N)
- physical : real(N,N,N)

Cloud

+ d_dt(Cloud)

- ND : integer
- drop : Droplet(ND)

Fluid

+ d_dt(Fluid)

- velocity: Field(3)

2*

Polymorphic behavior: new(), delete(), print(), read()

Fig. 1. Class diagram for droplet-laden Navier-Stokes solver with polymorphic time integration.

by including exactly one copy of the base class inside
the subclass and delegating operations on the subclass
to the base class via calls to homonymous methods
in the base class. Unlike an inheritance relationship,
Clouds and Tangles contain multiple instances of
their related classes, but like an inheritance relation-
ship, many operations on these coarse-grained classes
are delegated to operations on each instance of their
fine-grained counterparts. Each relationship connec-

tor in Fig. 1 is labeled according to the multiplicity
of the relationship. Thus, a Cloud contains two or
more Droplets, but each Droplet is associated
with only one Cloud. Finally, open connectors indi-
cate composition, i.e. classes composed of quantities
that could exist on their own. Closed connectors indi-
cate aggregation relationships, i.e. classes aggregating
quantities that would not be useful independently.

The Fluid class on the right side of Fig. 1 aggre-

194 D.W.I. Rouson and K. Morris / Dynamic Memory De-allocation in Fortran 95/2003 derived type calculus

gates three instances of the Field class. As men-
tioned above, our use of globally smooth basis func-
tions makes it less natural to decompose the fluid state
into the sort of fine-grained data structures that might
be more typical of, say, a finite element code. Hence,
the Fluid could be implemented as a traditional in-
heritance hierarchy as defined in [5,7] – that is, the
three component Fields could be aggregated into a
single Vector Field abstraction, exactly one copy
of which would be stored in a Fluid. Since inher-
itance relationships are frequently described as “is a”
relationships, we could then state that a Fluid is a
Vector Field that satisfies the Navier-Stokes equa-
tions. For our purposes, however, the Vector Field
class would be too simplistic to justify the additional
layer of abstraction. Furthermore, the relationships
would be more complicated because Fluids would
still need direct access to individual Fields for stor-
ing scalar quantities such as temperature.

Note that a Field abstracts a purely mathemati-
cal construct. Following a design pattern similar to
Lefantzi et al. [12], we have separated physics from
data. The Fluid function d dt() calculates the right-
hand side of the Navier-Stokes equations using the dif-
ferentiation function d dx() provided by its Fields.
The differentiation details and the associated grid and
basis functions are not exposed to the Fluid. Neither
are the equations being solved exposed to the Fields.
This design enhances the reusability of both modules.
One could reuse the Fluid class, while replacing the
Fourier representation in Field with a finite element
method. Likewise, one could reuse the Field class,
while replacing the Navier-Stokes equations in Fluid
with an acoustic wave equation.

As shown in Fig. 1, another service a Field ob-
ject provide its Fluid is the interpolation algorithm
velocity at(position), which returns a 3D ve-
locity vector at the location of a passed 3D position
vector. This yields vgas at the droplet positions in
Eq. (1) and vn at vortex point locations in Eq. (2).
Finally, note that all state variables are private as in-
dicated by the “−” symbols; whereas public methods
are designated by “+”; and all classes implement the
polymorphic constructor new(), destructor delete(),
and input/output procedures print() and read().

2.4. Derived type calculus

We can now specify the requirements for an ADT
calculus using Fortran 95/2003 derived types. We seek
to develop a polymorphic time integrator class for ap-

proximating the solution to Eq. (5) using the algorithms
in Eqs (6) and (8). Such a class must be agnostic with
respect to the private implementation details described
in the previous section. The class must be able to
operate on any physical object in the architecture of
Fig. 1. (Here we distinguish between “physical” ob-
jects for which there exists an evolution equation and
purely mathematical abstractions such as the Field
class.) For example, it must be possible to integrate a
Cloud object without knowing that a Cloud is com-
posed of Droplets, nor whether those Droplets
are organized into an array or a linked list.

We further require the syntax of the resulting derived
type calculus to map naturally from the mathematical
notation of Eqs (4)–(8). For example, we expect that
after a Cloud instantiation of the form

TYPE(Cloud) :: silver_lined
CALL new(silver_lined)

one could access the explicit Euler method in the pro-
posed Integrand class as follows:

DO k=1,num_steps
CALL euler_Integrator(silver_lined,
dt)

END DO

resulting in a call to a subroutine of the form

SUBROUTINE euler_Integrator(this,dt)
...
this = this + dt*d_dt(this)
...

END SUBROUTINE euler_Integrator

where “this” is pseudocode for a generic pointer to
an object of any one of several desired classes. Since
no such generic pointers exist in Fortran 95, the actual
code differs in ways that will be discussed below. Note
that, following Decyk, Norton and Szymanski [5], our
procedures mimic C++ by making the first argument
in all ADT methods an object named “this” whose
type is the derived type defined in the same module.

Successful compilation of the above code requires
overloading the +,* and = operators and implementing
the differentiation functiond dt(). More significantly,
it also requires run-time polymorphism. Decyk, Norton
and Szymanski [7] first outlined a strategy for express-
ing run-time polymorphism via dynamic dispatching in
Fortran 90/95. Our Integrand class implementation
follows an example of their technique from Akin [1] as
explained next.

An Integrand must be instantiated using the
Integrand constructor as follows:

D.W.I. Rouson and K. Morris / Dynamic Memory De-allocation in Fortran 95/2003 derived type calculus 195

USE Cloud_Class
USE Integrand_Class
TYPE(Cloud), TARGET :: purple_haze
TYPE(Integrand) :: kernel
INTEGER ,PARAMETER :: num_drops=1.
REAL ,PARAMETER :: St=1.
purple_haze = Cloud_(num_drops,St)
kernel = Integrand_(purple_haze)

whereupon purple haze can now be marched for-
ward in time by repeated calls toeuler Integrator
(kernel) or RK3 Integrator(kernel). Above
we have made use of the constructor convention pro-
posed by Akin [1], whereby the Integrand () con-
structor calls the Fortran 90/95 default constructor
Integrand(), the latter being inaccessible from out-
side the Cloud MODULE due to the privacy of the
Integrand data members (see [1] for more de-
tail). Ultimately, the results can be output by a call
to print(purple haze), after which the results can
later be recovered by a call to read(purple haze).

Appendix A shows an excerpt of the code with com-
plete details for the explicit Euler and RK3 integration
of Fluid and Cloud objects. Note that Integrand
instantiations take place through assignment proce-
dures that guarantee that at any given time, all but one
of the pointers points to NULL() as suggested by Decyk
et al. [7] and Akin [1]. The euler Integrator()
and RK3 Integrator() methods use this fact to
determine what type of object is being passed. An
IF-THEN-ELSE construct then dispatches the appro-
priate code for the given object. The code blocks inside
each clause are semantically equivalent, with the only
differences being the class of object being manipulated.

Note that in Fortran 2003, it will likely be much eas-
ier to implement similar functionality using so-called
“polymorphic entities”, i.e. objects whose actual type
might vary during program execution. However, com-
mercial compiler vendors have only recently provided
full Fortran 95 compliance (cf. [17,18]), and compiler
projects in the public domain have not even reached
that point (cf. [20,21]). It is likely there will continue
to be a need for strategies to emulate this technology
in Fortran 95 for the next several years. Regardless,
the memory de-allocation issues discussed next exist in
either version of the language – as they likely would in
any language without garbage collection.

Without loss of generality, it will suffice to focus on
Cloud objects for the remainder of this paper. At the
heart of the Cloud clause in euler Integrator()
is the code

this%cloud_ptr = this%cloud_ptr
+ dt*d_dt(this%cloud_ptr)

Execution of the above line results in a calling se-
quence in which the result of the differentiation func-
tion d dt() is passed to an overloaded multiplication
operator, the result of which is passed to an overloaded
addition operator, the result of which is passed to an
overloaded assignment operator. A typical interface
and function signature for one of these calls might take
the form

INTERFACE operator(*)
MODULE PROCEDURE scalar_times_
Cloud

END INTERFACE

FUNCTION scalar_times_Cloud(scalar,
factor)RESULT(product)
REAL ,INTENT(IN) :: scalar
TYPE(Cloud) ,INTENT(IN) :: factor
TYPE(Cloud) :: product

where scalar times Cloud() must handle any
memory allocations required to store product. If, for
example, the Cloud ADT contains an ALLOCATABLE
array component called “drop” holding a collection
of Droplets, then scalar times Cloud() will
contain a line of the form

ALLOCATE(product%drop(SIZE(factor%
drop)))

To avoid memory leaks, each such allocation must
have a corresponding de-allocation. This issue arises
four times in the call tree of the above explicit Euler
expression (see Fig. 2). It arises many more times dur-
ing a typical RK3 time step (see Fig. 3). The question
to be addressed in the next section is where best to
accomplish the requisite de-allocations.

3. Memory de-allocation rules

The software developer’s vantage point frames our
central dilemma. Looking from the top of the call
tree down, it is clear to the designer of euler
Integrator() which results in the explicit Euler
formula can be deleted immediately after their first
use. However, by the time the ultimate result has
been computed, copied into the object on the left
of the assignment operator, and control has been re-
turned to euler Integrator(), all variable names
associated with intermediate results have gone out of

196 D.W.I. Rouson and K. Morris / Dynamic Memory De-allocation in Fortran 95/2003 derived type calculus

euler_Integrate()

 assignment(=)()

operator(+)(this%cloud_ptr,)

 operator(*)(dt,)

d_dt(this%cloud_ptr)

this%cloud_ptr = this%cloud_ptr + dt*d_dt(this%cloud_ptr)

Fig. 2. Call tree for a typical euler Integrator() statement: tree (top), statement (bottom).

scope. Thus, the program name space contains neither
ALLOCATABLE arrays nor POINTERs on which the
DEALLOCATE intrinsic can operate to free the desired
memory.

Alternatively, looking from the middle of the call
tree down, it may not be clear to the designer of an
overloaded arithmetic or differential operator whether
the arguments passed up to it are temporary or persis-
tent. Deleting all arguments would waste clock cycles
if some arguments need to be recomputed later. For
example, the RK3 code for a Cloud is

TYPE(Cloud):: cP, cPP, Nonlinear_this
_cloud,Nonlinear_cP

Nonlinear_this_cloud = Nonlinear
(this%cloud_ptr)
cP = inverse_1_LinearBDt(this%
cloud_ptr+ &

dt*(alpha(1)*Linear(this%cloud
_ptr) + &
gamma(1)*Nonlinear_this_cloud),
beta(1)*dt &

)
Nonlinear_cP = Nonlinear(cP)

cPP = inverse_1_LinearBDt(cP +
&

dt*(alpha(2)*Linear(cP) +
gamma(1)*Nonlinear_cP &
+ zeta(2)*Nonlinear_this
_cloud),beta(2)*dt &

)
this%cloud_ptr = &
inverse_1_LinearBDt(cPP + &

dt*(alpha(3)*Linear(cPP) +
gamma(2)*Nonlinear(cPP) &

+ zeta(3)*Nonlinear_cP),
beta(3)*dt &

)

where cP and cPP are analogous to Y ′ and Y′′ in
Eq. (8);Nonlinear this cloud andNonlinear
cP are intermediate results; andinverse 1 Linear
BDt() represents the inverse operator (1 − βi∆tL)−1

and takes a right-hand side from Eq. (8) as its first argu-
ment along with βi∆t as its second argument for RK3
substep i. Note that each of the above assignments
represents an implicit instantiation, including any req-
uisite dynamic memory allocations under programmer
control.

In tallying persistent results in the above code, a very
simple pattern emerges: all objects on the left side of an
assignment operator are used more than once after as-
signment. Clearly erroneous results would obtain were
one to assume all operator arguments are temporary
and can therefore be deleted after their first use.

It is worth mentioning here that Fortran 95 requires
an arithmetic OPERATOR to be a Fortran FUNCTION
taking one or two non-optional arguments declared
with INTENT(IN), which precludes alteration of the
arguments inside the procedure. Note that there is no
need to alter something that will not be used subse-

D.W.I. Rouson and K. Morris / Dynamic Memory De-allocation in Fortran 95/2003 derived type calculus 197

RK3_Integrate()

 assignment(=)()

 inverse_1_LinearBDt(, beta(2)*dt)

 operator(+)(cp,)

 operator(*)(dt,)

 operator(+)(,)

 operator(*)(alpha(2),) operator(+)(,)

Linear(cP) operator(*)(gamma(2), Nonlinear_cP) operator(*)(zeta(2),Nonlinear_this_cloud)

cPP = inverse_1_LinearBDt(&

 cP + dt*(alpha(2)*Linear(cP) + &

 gamma(2)*Nonlinear_cP + &

 zeta(2)*Nonlinear_this_cloud &

),beta(2)*dt &

)

Fig. 3. Call tree for a typical RK3 Integrator() statement: tree (left), statement (right).

quently. By contrast, a Fortran 95 ASSIGNMENT oper-
ator must be a SUBROUTINE taking two non-optional
arguments, the first declared with INTENT(OUT) or
INTENT(INOUT) and the second with INTENT(IN).
Again, the only reason to modify an argument is if
that modification will somehow be used subsequently.
Thus, modification implies persistence.

The latter reasoning suggests a solution to the de-
allocation dilemma from the bottom-up vantage point.
Starting at the bottom of the call tree, one marks each
object as temporary or persistent at the point of creation
before it is passed up the call tree. Temporary objects
are deleted immediately after their first use. To codify
this approach, we introduce a simple definition and its
corollary:

Definition: Given an object that appears as the
result of an arithmetic or differential operator,
we define the object as temporary if it can be
deleted at the termination of execution of the first
subsequent operator in which it appears as an
argument.

Corollary: All objects that are not temporary are
persistent.

Four simple rules comprise the proposed memory
de-allocation scheme:

Rule 1: All results of arithmetic and differential
operator FUNCTIONs are marked as temporary
upon creation.
Rule 2: Left-hand arguments to assignment op-
erator SUBROUTINEs are marked as persistent.
Rule 3: Temporary objects are deleted prior to
the termination of any arithmetic or differential
operator in which they appear as an argument.
Rule 4: Persistent objects are deleted prior to
the termination of the procedure that instantiated
them.

It might be worth noting the above definition and
corollary are the reverse of how the terms “temporary”
and “persistent” are defined in [2] for UML. There, an
object that survives beyond the procedure that creates it
is termed “persistent”. An object deleted by the proce-

198 D.W.I. Rouson and K. Morris / Dynamic Memory De-allocation in Fortran 95/2003 derived type calculus

dure that instantiates it is termed “temporary”. Again
the issue is vantage point. Our definition seems more
natural from the standpoint of the arithmetic operator
designer, who would otherwise be required to delete
“persistent” objects upon first use, while the designer
of the overall time-advancement algorithm might use
“temporary” objects multiple times before deletion.

To facilitate imposition of the above rules, we store
information in each ADT about its persistence. The
binary nature of persistence naturally lends itself to
representation by a Fortran LOGICAL variable. For
example, our Cloud derived type definition is

TYPE Cloud
PRIVATE
TYPE(Droplet) ,DIMENSION(:),
ALLOCATABLE :: drop
LOGICAL :: temporary

END TYPE Cloud

We can therefore mark an operator result as tem-
porary immediately subsequent to its instantiation or
direct memory allocation inside the operator. Return-
ing to the discussion of the scalar times Cloud()
operator at the end of the previous section, we would
simply include the following line immediately after the
ALLOCATE statement presented near the end of the
previous section:

product%temporary = .TRUE.

At the end of scalar times Cloud(), we would
release the memory associated with any temporary ar-
guments before their variable names go out of scope by
executing a line of the form

IF (factor%temporary) CALL delete
(factor)

We place similar statements in all arithmetic and dif-
ferential operators; whereas in the assignment operator,
we write

left%temporary = .FALSE.

just after the corresponding ALLOCATE. Then, just
before termination of the assignment operator, we write

IF (right%temporary) CALL delete
(right)

We tested the above strategy in several of the classes
described in Fig. 1. Our tests indicate that the mem-
ory usage of simulations with constant-sized objects
remains constant over time.

One important caveat relates to syntax. We
have found considerable variation amongst compil-

ers with regards to one’s ability to DEALLOCATE al-
locatable components of derived type arguments de-
clared with INTENT(IN). Some compilers allow the
DEALLOCATE command and perform it successfully
for sufficiently small sets of objects. Other compilers
allow it, but appear not to perform it. Still other com-
pilers disallow it. To ensure portability, we currently
define one MODULE PROCEDURE to replace each de-
sired operator. This circumvents the requirement to
declare INTENT. Since the resulting expressions are
somewhat less readable, we always insert an adjacent
comment with the syntax used throughout this paper.
For example, we write

!this%cloud_ptr= this%cloud_ptr
+ dt*d_dt(this%cloud_ptr)
CALL assign(this%cloud_ptr, &

plus(this%cloud_ptr , &
times(dt, d_dt(this%cloud_
ptr) &

)))

where the corresponding MODULE PROCEDUREs are

! INTERFACE assignment(=)
INTERFACE assign

MODULE PROCEDURE assign_Cloud
END INTERFACE assign

! END INTERFACE assignment(=)
! INTERFACE operator(+)
INTERFACE plus

MODULE PROCEDURE plus_Cloud
END INTERFACE plus

! END INTERFACE operator(+)

and likewise for the times operator. We hope the stan-
dards committee will eventually relax the INTENT re-
quirement on operator arguments, in which case we
can rapidly revise our code by replacing the above exe-
cutable lines with the corresponding commented lines.

4. Efficiency and robustness

We make no claim regarding the uniqueness of our
proposed rule set. However, it appears to offer a rea-
sonable trade-off between execution time and memory
utilization. In this regard, considering two alternatives
might be instructive. A bottom-up alternative would
be to simply de-allocate all intermediate results, mark-
ing none as persistent. When coupled with judicious
overwriting of results that can be cheaply recalculated,
it might be possible to reduce the memory require-

D.W.I. Rouson and K. Morris / Dynamic Memory De-allocation in Fortran 95/2003 derived type calculus 199

ments at the expense of increased execution time. A
top-down alternative might be to daisy-chain objects
together into a linked list as they percolate up the call
tree. When coupled with a mechanism for enumerating
and labeling the nature of the data contained in each
object, one could then recursively tunnel through the
list, deleting all non-persistent data and obviating any
recalculations at the expense of increased memory and
additional logic for constructing the linked list.

At some level, designs based on the two latter strate-
gies would exhibit greater robustness. The bottom-
up alternative would require slightly simpler logic,
eliminating the temporary marker. The top-down
alternative would likewise eliminate this marker and
gather all the de-allocation decisions into one place:
the Integrator module, which as previously noted
is the place where it is most obvious to the software
engineer whether a particular object is temporary or
persistent. By contrast, distributing the de-allocation
decisions across all operators on all ADTs requires co-
ordination and compliance in the development of each
ADT. Verifying compliance would require exposing
implementation details to a greater level than might be
desirable in a team development effort. All of this im-
plies that the best solution would be for compiler ven-
dors to provide an automatic de-allocation capability at
least for overloaded arithmetic operators.

We have investigated the capabilities of several com-
pilers. Currently, the Fortran 95 compiler from ST Mi-
cro Portland Group [17] and Intel [18] do not perform
any automatic de-allocations for intermediate results
in derived type arithmetic. The Numerical Algorithms
Group Fortran 95-to-C translator does perform the de-
allocations, but only at the top of the call tree [22].
As mentioned, this solution is costly for coarse-grained
data structures. Finally, two public domain Fortran 95
compiler projects do not appear to be far enough along
to compile our code [20,21].

5. Conclusions

We have proposed a set of rules for de-allocating
memory associated with temporary intermediate results

of arithmetic and differential operators on abstract data
types, while preserving objects desired to be persistent.
Constructs have been presented for using such opera-
tors to write Fortran expressions that naturally mimic
standard mathematical notation. We applied these con-
structs to the development of a polymorphic class for
integrating equations that govern evolving dynamical
systems.

As complicated expressions are evaluated, our rules
work from the bottom of the call tree upwards, mark-
ing each intermediate result as temporary or persistent
immediately after instantiation. Each temporary object
is deleted at the immediately lower level of operator
precedence (higher level on the call tree) just before the
final name associated with the object goes out of scope.
Doing so avoids memory leaks that would be particu-
larly costly at the highest levels of abstraction, where
coarse-grained data structures predominate. We tested
the rules to ensure that simulations with constant-sized
objects exhibit constant memory utilization over time.
We also proposed a workaround for compilers that do
not allow de-allocation of allocatable components of
objects declared with INTENT(IN).

Although the resulting algorithm is not unique, com-
parisons to alternative bottom-up and top-down ap-
proaches indicate it represents a reasonable trade-off
between execution time and storage requirements. A
minor compromise in robustness stems from of the re-
quired coordination and compliance by the developer
of each operator for each abstract data type. Nonethe-
less, we believe the proposed rules fill an important
need in the absence of automatic de-allocation by com-
pilers and makes more efficient use of memory than
automatic de-allocation at the top of the call tree.

Acknowledgements

This work was supported in part by Award No.
0206152 from the National Science Foundation.

200 D.W.I. Rouson and K. Morris / Dynamic Memory De-allocation in Fortran 95/2003 derived type calculus

Appendix A. Polymorphic time integration class

MODULE Integrand_Class

USE Cloud_Class
USE Fluid_Class

IMPLICIT NONE

PRIVATE ! Default for procedures & data
PUBLIC :: Integrand ! Derived type
PUBLIC :: Integrand_ ! Constructor
PUBLIC :: euler_Integrator ! explicit Euler
PUBLIC :: RK3_Integrator ! 3rd-order Runge-Kutta

TYPE Integrand
PRIVATE
TYPE(Cloud) , POINTER :: cloud_ptr
TYPE(Fluid) , POINTER :: fluid_ptr

END TYPE Integrand

INTERFACE Integrand_
MODULE PROCEDURE assign_Fluid
MODULE PROCEDURE assign_Cloud

END INTERFACE

CONTAINS

FUNCTION assign_Fluid(fluid_Integrand) RESULT(family)
TYPE(Integrand) :: family
TYPE(Fluid), TARGET, INTENT(IN) :: fluid_Integrand
CALL nullify_Integrand(family)
family%fluid_ptr => fluid_Integrand

END FUNCTION assign_Fluid

FUNCTION assign_Cloud(cloud_Integrand) RESULT(family)
TYPE(Integrand) :: family
TYPE(Cloud), TARGET, INTENT(IN) :: cloud_Integrand
CALL nullify_Integrand(family)
family%cloud_ptr => cloud_Integrand

END FUNCTION assign_Cloud

SUBROUTINE nullify_Integrand(family)
TYPE(Integrand), INTENT(OUT) :: family
NULLIFY(family%fluid_ptr)
NULLIFY(family%cloud_ptr)

END SUBROUTINE nullify_Integrand

! ______ Explicit Euler time advancement _____________
! Each integrand class must provide a d_dt() function
! taking one instance of the class as its sole argument

D.W.I. Rouson and K. Morris / Dynamic Memory De-allocation in Fortran 95/2003 derived type calculus 201

! and returning another instance of the same class
! holding the time derivative of the argument.

SUBROUTINE euler_Integrator(this,dt)
TYPE(Integrand), INTENT(INOUT) :: this
REAL :: dt

IF (ASSOCIATED(this%fluid_ptr)) THEN

this%fluid_ptr=this%fluid_ptr +dt*d_dt(this%fluid_ptr)

ELSE IF (ASSOCIATED(this%cloud_ptr)) THEN

this%cloud_ptr=this%cloud_ptr +dt*d_dt(this%cloud_ptr)

END IF
END SUBROUTINE euler_Integrator

! _______ 3rd-order Runge-Kutta time advancement ________
! This integator uses the algorithm of Spalart, Moser &
! Rogers [19] with constants specified by Wray (private
! comm.). Each integrand must provide functions Linear()
! and Nonlinear() to calculate the corresponding part of
! the differential operator, each taking as their sole
! argument one instance of the class and returning
! another instance of the same class containing its
! derivative. In addition, the inverse of
! 1-beta(i)*dt*Linear() must be provided, taking an
! instance of the integrand class as its 1st argument
! and beta(i)*dt as its 2nd argument for substep i.

SUBROUTINE RK3_Integrator(this,dt)
IMPLICIT NONE
TYPE(Integrand), INTENT(INOUT) :: this
REAL , INTENT(INOUT) :: dt
TYPE(Droplet):: fP,fPP,Nonlinear_this_fluid,Nonlinear_fP
TYPE(Cloud) :: cP,cPP,Nonlinear_this_cloud,Nonlinear_cP
INTEGER,PARAMETER :: NSTEPS=3
REAL ,PARAMETER, DIMENSION(NSTEPS) :: &

alpha = (/ 4./15., 1./15., 1./6. /) &
,beta = (/ 4./15., 1./15., 1./6. /) &
,gamma = (/ 8./15., 5./12., 3./4. /) &
,zeta = (/ 0. , -17./60., -5./12. /)

IF (ASSOCIATED(this%fluid_ptr)) THEN

Nonlinear_this_fluid = Nonlinear(this%fluid_ptr)
fP = inverse_1_LinearBDt(&

this%fluid_ptr + &
dt*(alpha(1)*Linear(this%fluid_ptr) + &

gamma(1)*Nonlinear_this_fluid &

202 D.W.I. Rouson and K. Morris / Dynamic Memory De-allocation in Fortran 95/2003 derived type calculus

),beta(1)*dt &
)

Nonlinear_fP = Nonlinear(fP)
fPP = inverse_1_LinearBDt(&

fP + dt*(alpha(2)*Linear(fP) + &
gamma(2)*Nonlinear_fP + &
zeta(2)*Nonlinear_this_fluid &

),beta(2)*dt &
)

this%fluid_ptr = inverse_1_LinearBDt(&
fPP + dt*(alpha(3)*Linear(fPP) + &

gamma(3)*Nonlinear(fPP) + &
zeta(3)*Nonlinear_fP &

),beta(3)*dt &
)

CALL delete(fPP)
CALL delete(Nonlinear_fP)
CALL delete(fP)
CALL delete(Nonlinear_this_fluid)

ELSE IF (ASSOCIATED(this%cloud_ptr)) THEN

Nonlinear_this_cloud = Nonlinear(this%cloud_ptr)
cP = inverse_1_LinearBDt(&

this%cloud_ptr + &
dt*(alpha(1)*Linear(this%cloud_ptr) + &

gamma(1)*Nonlinear_this_cloud &
),beta(1)*dt &

)
Nonlinear_cP = Nonlinear(cP)
cPP = inverse_1_LinearBDt(&

cP + dt*(alpha(2)*Linear(cP) + &
gamma(2)*Nonlinear_cP + &
zeta(2)*Nonlinear_this_cloud &

),beta(2)*dt &
)

this%cloud_ptr = inverse_1_LinearBDt(&
cPP + dt*(alpha(3)*Linear(cPP) + &

gamma(3)*Nonlinear(cPP) + &
zeta(3)*Nonlinear_cP &

),beta(3)*dt &
)

CALL delete(cPP)
CALL delete(Nonlinear_cP)
CALL delete(cP)
CALL delete(Nonlinear_this_cloud)

END IF
END SUBROUTINE RK3_Integrator

END MODULE Integrand_Class

D.W.I. Rouson and K. Morris / Dynamic Memory De-allocation in Fortran 95/2003 derived type calculus 203

References

[1] E. Akin, Object-oriented Programming via Fortran 90/95,
Cambridge University Press, Great Britain, 2003.

[2] S.S. Alhir, UML in a Nutshell, O’Reilly Media, Inc., 1998.
[3] C. Canuto, M.Y. Hussaini, A. Quateroni and T.A. Zhang,

Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin,
Germany, 1988.

[4] V.K. Decyk, C.D. Norton and B.K. Szymanski, Expressing
object-oriented concepts in Fortran 90, ACM SIGPLAN For-
tran Forum 15 (1997), 13–18.

[5] V.K. Decyk, C.D. Norton and B.K. Szymanski, How to ex-
press C++ concepts in Fortran 90, Scientific Programming 6
(1997), 363–390.

[6] V.K. Decyk, C.D. Norton and B.K. Szymanski, High perfor-
mance object-oriented programming in Fortran 90, in: Proc.
Eighth SIAM Conference on Parallel Processing for Scientific
Computing March 14–17, 1997, M. Heath et al., eds, Min-
nesota, 1997.

[7] V.K. Decyk, C.D. Norton and B.K. Szymanski, How to sup-
port inheritance and run-time polymorphism in Fortran 90,
Computer Physics Communications 115 (1998), 9–17.

[8] J3 Fortran Standards Technical Committee, ISO/IEC 1539:
1991 (E) Fortran 90 – Documentation, International Organiza-
tion for Standards/International Electrotechnical Committee,
Geneva, Switzerland, 1991.

[9] J3 Fortran Standards Technical Committee, Technical Re-
port ISO/IEC 1539-1:1997 International Organization for
Standards/International Electrotechnical Committee, Geneva,
Switzerland, 1997, (cited in [13]).

[10] J3 Fortran Standards Technical Committee, Technical Re-
port ISO/IEC 15581:1998(E) International Organization for
Standards/International Electrotechnical Committee, Geneva,

Switzerland, 1998, (cited in [13]).
[11] J3 Fortran Standards Technical Committee, ISO/IEC

1539 Working Draft, International Organization for Stan-
dards/International Electrotechnical Committee, Geneva,
Switzerland, 2001, (cited in [13]).

[12] S. Lefantzi, J. Ray, C. Kennedy and H. Najm, A component-
based toolkit for reacting flow with high order spatial dis-
cretizations on structured adaptively refined meshes, Progress
in Computational Fluid Dynamics: An International Journal
(to appear in 2005).

[13] M. Metcalf, J. Reid and M. Cohen, Fortran 95/2003 Explained,
Oxford University Press, Oxford, 2004.

[14] D.W.I. Rouson and J.K. Eaton, On the preferential concentra-
tion of solid particles in a turbulent channel flow, Journal of
Fluid Mechanics 428 (2001), 149–159.

[15] D.W.I. Rouson and Y. Xiong, Design metrics in quantum tur-
bulence simulations: How physics influences software archi-
tecture, Scientific Programming 12 (2004), 185–196.

[16] R.J. Donnelly, Quantized Vortices in Helium II, Cambridge
University Press, 1991.

[17] ST Micro Portland Group, PGI IA-32 Compilers and Tools
Documentation, (http://www.pgroup.com).

[18] Intel, Inc. Intel Fortran Compiler 8.1 for Linux, (http://www.
intel.com/software/products/compilers/flin).

[19] P.R. Spalart, R.D. Moser and M.M. Rogers, Spectral methods
for the Navier-Stokes equations with one infinite and two pe-
riodic directions, Journal of Computational Physics 6 (1991),
297–324.

[20] G95 Forgran project (http://www.g95.org).
[21] GNU Fortran 95 project (gfortran), http://gcc.gnu.org/fortran.
[22] Numerical Algorithms Group (NAG) Fortran 95 compiler,

http://www.nag.com/nagware/NP.asp.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

