
Scientific Programming 13 (2005) 317–331 317
IOS Press

Porting of scientific applications to Grid
Computing on GridWay1

J. Herreraa,∗, E. Huedob, R.S. Monteroa and I.M. Llorentea,b

aDepartamento de Arquitectura de Computadores y Automática, Facultad de Informática, Universidad
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Abstract. The expansion and adoption of Grid technologies is prevented by the lack of a standard programming paradigm to port
existing applications among different environments. The Distributed Resource Management Application API has been proposed
to aid the rapid development and distribution of these applications across different Distributed Resource Management Systems. In
this paper we describe an implementation of the DRMAA standard on a Globus-based testbed, and show its suitability to express
typical scientific applications, like High-Throughput and Master-Worker applications. The DRMAA routines are supported by
the functionality offered by the GridWay2framework, which provides the runtime mechanisms needed for transparently executing
jobs on a dynamic Grid environment based on Globus. As cases of study, we consider the implementation with DRMAA of a
bioinformatics application, a genetic algorithm and the NAS Grid Benchmarks.

1. Introduction

The deployment of existing applications across the
Grid continues requiring a high level of expertise and
a significant amount of effort, mainly due to the char-
acteristics of the Grid: complexity, heterogeneity, dy-
namism, high fault rate, etc. To deal with such charac-
teristics, we have developed GridW ay [11]: a Globus
submission framework that allows an easier and more
efficient execution of jobs on dynamic Grid environ-
ments. GridW ay automatically performs all the job
scheduling steps [20], provides fault recovery mecha-
nisms, and adapts job scheduling and execution to the
changing Grid conditions.

On the other hand, the lack of a standard program-
ming paradigm for the Grid has prevented the porta-
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bility of existing applications among different environ-
ments. The Distributed Resource Management Appli-
cation API Working Group (DRMAA-WG)3, within the
Global Grid Forum (GGF)4, has recently developed an
API specification for job submission, monitoring and
control that provides a high level interface with Dis-
tributed Resource Management Systems (DRMS). In
this way, DRMAA, or higher level tools that use DR-
MAA, could aid scientists and engineers to express their
computational problems by providing a portable direct
interface to a DRMS. It is foreseeable, as it happened
with other standards like MPI or OpenMP, that DR-
MAA will be progressively adopted by most DRMS,
making them easier and worthier to learn, thus lowering
its barrier to acceptance, and making Grid applications
portable across DRMS adhered to the standard.

In this work, we discuss several aspects of the im-
plementation of DRMAA within the GridW ay frame-
work, and investigate the suitability of the DRMAA
specification to distribute typical scientific workloads

3http://www.drmaa.org (2004).
4http://www.gridforum.org (2004).
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Table 1
Characteristics of the machines in the first configuration of the UCM-CAB research testbed

Name VO Model Speed OS Memory DRMS

babieca CAB 5×Alpha EV67 466 MHz Linux 2.2 256 MB PBS
pegasus UCM Intel P4 2.4 GHz Linux 2.4 1 GB fork
solea UCM 2×Sun US-II 296 MHz Solaris 7 256 MB fork
ursa UCM Sun US-IIe 500 MHz Solaris 8 128 MB fork
draco UCM Sun US-I 167 MHz Solaris 8 128 MB fork
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drmaa_finalize();

drmaa_init();
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Fig. 1. Development and execution cycle using the DRMAA interface.

across the Grid. We demonstrate the ability of the
GridW ay framework when executing different com-
putational workloads distributed using DRMAA. The
examples shown resemble typical scientific problems
whose structure is well suited to the Grid architecture.
The experiments were conducted in the UCM-CAB re-
search testbed, based on the Globus Toolkit [8], briefly
described in Tables 1 and 2.

In Section 2, we first analyze several aspects involved
in the efficient execution of distributed applications re-
lated to the barriers to use the Grid, and how they
are overcome by the GridW ay framework. Section 3
briefly describes the DRMAA standard, and the devel-
opment and execution process adopted in this work.
Then, in Sections 4 and 5, we illustrate how DRMAA

can be used to implement several scientific application
paradigms, like High-Throughput and Master-Worker,
and provide results of real-life applications. Finally, in
Section 6, we evaluate the suitability of the DRMAA for
implementing the NAS Grid Benchmarks (NGB) [22].
The NGB suite constitutes an excellent case-of-study,
since it models distributed communicating applications
typically executed on the Grid. The paper ends in Sec-
tion 7 with some conclusions.

2. The GridWay framework

The GridW ay framework [11] provides the follow-
ing techniques to allow a robust an efficient execution
of jobs in heterogeneous and dynamic Grids:
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Table 2
Characteristics of the machines in the second configuration of the UCM-CAB research testbed

Name VO Model Speed OS Memory DRMS

babieca CAB 5×Alpha EV67 466 MHz Linux 2.2 256 MB PBS
hydrus UCM Intel P4 2.5 GHz Linux 2.4 512 MB fork
cygnus UCM Intel P4 2.5 GHz Linux 2.4 512 MB fork
cepheus UCM Intel PIII 600 MHz Linux 2.4 256 MB fork
aquila UCM Intel PIII 666 MHz Linux 2.4 128 MB fork

Pre-processing Job

Post-processing Job

Job 0 Job i Job n

rc = drmaa_init(contact, err);

// Execute initial job and wait for it
rc = drmaa_run_job(job_id, jt, err);
rc = drmaa_wait(job_id, &stat, timeout,

rusage, err);

// Execute n jobs simultaneously and wait
rc = drmaa_run_bulk_jobs(job_ids,jt,1,

JOB_NUM,1,err);
rc = drmaa_synchronize(job_ids, timeout, 1, err);

// Execute final job and wait for it
rc = drmaa_run_job(job_id, jt, err);
rc = drmaa_wait(job_id, &stat, timeout,

rusage, err);

rc = drmaa_exit(err_diag);

Fig. 2. High-Throughput scheme and its codification using the DRMAA standard.

– Given the dynamic characteristics of the Grid,
the GridW ay framework periodically adapts the
schedule to the available resources and their char-
acteristics [13]. GridW ay incorporates a resource
selector that reflects the applications demands, in
terms of requirements and preferences, and the dy-
namic characteristics of Grid resources, in terms
of load, availability and proximity (bandwidth and
latency) [17].

– The GridW ay framework also provides adaptive
job execution to migrate running applications to
more suitable resources. So improvingapplication
performance by adapting it to the dynamic avail-
ability, capacity and cost of Grid resources. Once
the job is initially allocated, it is rescheduled when
one of the following circumstances occurs [11]:
(i) A “better” resource is discovered; (ii) The sub-
mitted job is cancelled or suspended; (iii) Perfor-
mance degradation or performance contract viola-
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Fig. 3. Testbed productivity in the execution of the High-Throughput
application.

tion is detected; (iv) The resource requirements or
preferences of the application change.

GridW ay also provides the application with the fault
detection capabilities needed in a Grid environment,
by:

– handling the Globus GRAM (Grid Resource Al-
location and Management) job manager call-
backs [7]. The GRAM callbacks notify submis-
sion failures that include connection, authentica-
tion, authorization, RSL parsing, executable or in-
put staging, credential expiration, among others.

– periodically probing the Globus job manager [7].
If the job manager does not respond after a given
number of tries, then a resource or network fail-
ure is assumed.This is the approach followed by
Condor-G [9].

– parsing the standard output of the execution mod-
ules. This is also useful to capture the job exit
code, which is used to determine whether the job
was successfully executed or not. If the job exit
code is not set, the job was prematurely terminated,
so it failed or was intentionally cancelled.

When an unrecoverable failure is detected, GridW ay
retries the submission of the job a number of times
specified by the user. If the failure persists, GridW ay
performs an action chosen by the user among two pos-
sibilities: stop the job for manually resuming it later, or
automatically generate a rescheduling event to migrate
the job.

The aim of the GridW ay project is similar to that
of other projects [4,5,9,16]: simplify distributed het-
erogeneous computing. However, it has some remark-
able differences. Our framework provides a submission
agent that incorporates the runtime mechanisms needed
for transparently executing jobs in a Grid by combining
both adaptive scheduling and execution. Our modular
architecture for job adaptation to a dynamic environ-
ment presents the following advantages:

– It is not bounded to a specific class of application
generated by a given programming environment,
which extends its application range.

– It does not require new services, apart from Globus
basic services, which considerably simplify its de-
ployment.

– It does not necessarily require code changes,
which allows reusing of existing software.

– It is extensible, which allows its communication
with the Grid services available in a given testbed.
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Post�processing Job (POST)

Initialization Job (INI)

Master Job (M)

W0 Wi Wn

rc = drmaa_init(contact, err_diag);

// Execute initial job and wait for it
rc = drmaa_run_job(job_id, jt, err_diag);
rc = drmaa_wait(job_id, &stat, timeout,

rusage, err_diag);

while (exitstatus != 0) {
// Execute n Workers concurrently and wait
rc = drmaa_run_bulk_jobs(job_ids, jt, 1,

JOB_NUM, 1, err_diag);
rc = drmaa_synchronize(job_ids, timeout,

1, err_diag);

// Execute the Master, wait and get exit code
rc = drmaa_run_job(job_id, jt, err_diag);
rc = drmaa_wait(job_id, &stat, timeout,

rusage, err_diag);
rc = drmaa_wexitstatus(&exitstatus, stat,

err_diag);
}

rc = drmaa_exit(err_diag);

Fig. 5. Master-Worker application and its codification using the DRMAA standard.

We would like to mention that the experimental
framework does not require new system software to be
installed in the Grid resources. The framework is cur-
rently functional on any Grid testbed based on Globus.
We believe that this is an important advantage because
of socio-political issues; cooperation between differ-
ent research centers, administrators and users is always
difficult.

3. Distributed resource management application
API

One of the most important aspects of Grid Comput-
ing is its potential ability to execute distributed commu-

nicating jobs. The DRMAA specification constitutes
a homogeneous interface to different DRMS to handle
job submission, monitoring and control, and retrieval
of finished job status. In this sense the DRMAA stan-
dard represents a suitable and portable framework to
express this kind of distributed computations.

In the following list we describe the DRMAA inter-
face routines implemented within the GridW ay frame-
work:

– Initialization and finalization routines: drmaa
init and drmaa exit.

– Job template routines: drmaa get attribute
and drmaa set attribute, drmaa allo-
cate job template and drmaa delete
job template. This routines enable the ma-
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Fig. 6. Execution profile for three iterations of the Master-Worker application.

nipulation of job definition entities (job templates)
to set parameters such as the executable, its argu-
ments or the standard output streams.

– Job submission routines: drmaa run job and
drmaa run bulk jobs. Bulk jobs are defined
as a group of n similar jobs, sharing the same job
template, with a separate job id.

– Job control and monitoring routines: drmaa
control, drmaa synchronize, drmaa
wait and drmaa job ps. This routines are
used to control (killing, resuming, suspending,
etc.) and synchronize jobs, and monitor their sta-
tus.

The DRMAA interface (see [18] for a detailed de-
scription of the C API) includes more routines in some
of the above categories as well as auxiliary routines
that provides textual representation of errors, not im-
plemented in the current version. All the functions im-
plemented in the GridW ay framework are thread-safe.

Although DRMAA could interface with DRMS at
different levels, for example at the intranet level with
SGE or Condor, in the present context we will only
consider its application at Grid level. In this way, the
DRMS (GridW ay in our case) will interact with the lo-
cal job managers (Condor, PBS, SGE. . . ) through the
Grid middleware (Globus). This development and exe-
cution scheme with DRMAA, GridW ay and Globus is
depicted in Fig. 1. There are several projects underway

to implement the DRMAA specification on different
DRMS, like Sun Grid Engine (SGE) or Condor. How-
ever, to the best of the authors’ knowledge, DRMAA
has never been implemented in a Globus-based DRMS.

The DRMAA standard can help in exploiting the in-
trinsic parallelism found in some application domains,
as long as the underlying DRMS is responsible for the
efficient and robust execution of each job. We ex-
pect that DRMAA will allow to explore several com-
mon execution techniques when distributing applica-
tions across the Grid [1]. For example fault tolerance
could be improved by replicating job executions (re-
dundant execution) [21], the intrinsic parallelism pre-
sented in the workflow of several applications could be
exploited, or several alternative task flow paths could
be concurrently executed (speculative execution).

4. High-throughput applications

This example represents the important class of
Grid applications called Parameter Sweep Applications
(PSA), which constitute multiple independent runs of
the same program, but with different input parameters.
This kind of computations appears in many scientific
fields like Biology, Pharmacy, or Computational Fluid
Dynamics. In spite of the relatively simple structure
of this applications, its efficient execution on computa-
tional Grids involves challenging issues [13].
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rc = drmaa_init(contact, err_diag);

// Execute all jobs simultaneously
for (i=0; i < ALL_JOBS; i++)

rc = drmaa_run_job(job_id, jt, err_diag);

// Execute GOGA if it doesn’t rise objective function
while (!objective_function()) {

// Wait for (dynamic connectivity degree) jobs
//and store results
for (i=0; i<NUM_JOBS; i++)

rc = drmaa_wait(job_id, &stat, timeout, rusage,
err_diag);

store_results();

// Execute (dynamic connectivity degree) jobs simultaneously
for (i=0; i<NUM_JOBS; i++)

rc = drmaa_run_job(job_id, jt, err_diag);
}

rc = drmaa_exit(err_diag);

Fig. 7. Scheme and implementation of fully-connected multi-deme genetic algorithm.

The general structure of a PSA and its implementa-
tion with DRMAA are shown in Fig. 2. An initial job
is submitted to perform some pre-processing tasks, and
then several independent jobs are executed with differ-
ent input parameters. Finally a post-processing job is
executed.

4.1. A test case

In this case we consider an application that comprises
the execution of 50 independent jobs. Each job cal-

culates the determinant of an square matrix read from
an input file (0.5 MB). The experiment was conducted
in the second configuration of the UCM-CAB Grid,
described in Table 2. The overall execution time for
the parameter sweep application is 40 minutes, with an
average job turnaround time of 125 seconds. Figure 3
presents the dynamic productivity (jobs per minute) of
the testbed during the execution of the PSA. Compared
to the single host execution on the fastest machine in
the testbed, these results represents a 35% reduction in
the overall execution time.
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Fig. 8. Execution profile of four generations of the One-Max problem, each subpopulation has been labelled with Pdeme.

4.2. A real-life application: Computational
proteomics

Bioinformatics, which has to do with the manage-
ment and analysis of huge amounts of biological data,
could enormously benefit from the suitability of the
Grid to execute High-Throughput applications. In the
context of this paper, we consider a bioinformatics ap-
plication aimed at predicting the structure and thermo-
dynamic properties of a target protein from its amino
acid sequences. The algorithm has been tested in the
5th round of Critical Assessment of techniques for pro-
tein Structure Prediction (CASP5) [3]. We have ap-
plied the algorithm to the prediction of thermodynamic
properties of families of orthologous proteins, i.e. pro-
teins performing the same function in different organ-
isms. If a representative structure of this set is known,
the algorithm predicts it as the correct structure.

Let us consider an experiment consisting in 88 tasks,
each of them applies the structure prediction algorithm
to a different sequence of the Triosephosfate Isomerase
enzyme which is present in different organisms. The
experiment was conducted in the first configuration of
the UCM-CAB Grid, described in Table 1. The overall
execution time for the bioinformatics application, when
all the machines in the testbed are available, is 7.15
hours with an average throughput of 12 jobs per hour.

This experiment was reproduced in two new situa-
tions. In the first case, babieca is shut down for mainte-
nance in the middle of the experiment during one hour.
As a consequence, the framework stops scheduling jobs
in this host and the average job turnaround is reduced to

10 jobs per hour. Once babieca is restarted, GridW ay
schedules jobs on it again and the throughput increases
to nearly 12 jobs per hour. The second case starts with
pegasus unavailable, and it is plugged in to the Grid
3.5 hours after the experiment started. As could be
expected, the absence of pegasus decreases the average
throughput (9 jobs per hour), and increases the overall
execution time to 9.8 hours. Figure 4 shows the dy-
namic job turnaround time during the execution of the
application in the above situations.

5. Master-Worker applications

We now consider a generalized Master-Worker
paradigm, which is adopted by many scientific appli-
cations like genetic algorithms, N-body simulations or
Monte Carlo simulations among others. A Master pro-
cess assigns a description (input files) of the task to be
performed by each Worker. Once all the Workers are
completed, the Master process performs some compu-
tations in order to evaluate a stop criterion or to assign
new tasks to more workers (see Fig. 5).

As an example of this paradigm, we will consider
Genetic Algorithms (GA), which are search algorithms
inspired in natural selection and genetic mechanisms.
GAs use historic information to find new search points
and reach an optimal problem solution. In order to
increase the speed and the efficiency of sequential GAs,
several Parallel Genetic Algorithm (PGA) alternatives
have been developed. PGAs have been successfully
applied in previous works, (see for example [15]), and



J. Herrera et al. / Porting of scientific applications to Grid Computing on GridWay 325

Launch

Report

BT6 LU8SP7

BT3 LU5

BT0 LU2SP1

SP4

// Initialization
jobs[0].jt = BT;
jobs[1].jt = SP;
jobs[2].jt = LU;
jobs[3].jt = BT;
jobs[4].jt = SP;
jobs[5].jt = LU;
jobs[6].jt = BT;
jobs[7].jt = SP;
jobs[8].jt = LU;

drmaa_init(contact, err);

// Submit all jobs consecutively
for (i = 0; i<9; i++) {

drmaa_run_job(job_id, jobs[i].jt,
err);

drmaa_wait(job_id, &stat, timeout,
rusage, err);

}

drmaa_exit(err_diag);

Fig. 9. Structure and implementation of the HC benchmark using DRMAA.

in most cases, they succeed to reduce the time required
to find acceptable solutions.

In order to develop efficient genetic algorithms [14]
for the Grid, the dynamism and heterogeneity of the en-
vironment must be considered. In this way, traditional
load-balancing techniques could lead to a performance
slow-down, since, in general the performance of each
computing element can not be guaranteed during the
execution. Moreover, some failure recovery mecha-
nisms should be included in such a faulty environment.
Taking into account the above considerations we will
use a fully connected multideme genetic algorithm. In
spite of this approach represents the most intense com-

munication pattern (all demes exchange individuals ev-
ery generation), it does not imply any overhead since
the population of each deme is used as checkpoint files,
and therefore transferred to the client in each iteration.

The initial population is uniformity distributed
among the available number of nodes, and then a se-
quential GA is locally executed over each subpopula-
tion. The resultant subpopulations are transferred back
to the client, and worst individuals of each subpopula-
tion are exchanged with the best ones of the rest. Fi-
nally, a new population is generated to perform the next
iteration [6]. The experiments shown in the following
subsections were performed in the second configura-
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Fig. 10. Results with the HC.A benchmark.

tion of the UCM-CAB Grid, described in Table 2.

5.1. A test case

We consider a simple distribution scheme for a ge-
netic algorithm. The master acts as the control process
by creating worker jobs. Each worker task is initiated
with an identical-sized sets of individuals, and evolves
the population a fixed number of iterations. The mas-
ter receives the results, evaluates the fitness function,
and if convergence is not achieved it exchanges some
individuals and repeats the process.

Figure 6 shows the execution profile of three gen-
erations of the above Master-Worker application. The
average execution time per iteration is 120 seconds,
with an average computational and transfer times per
worker of 15.7, and 23.3 seconds respectively. In this
case the total turnaround time is 360 seconds with an
average CPU utilization of 22%.

5.2. A Grid-Oriented Genetic Algorithm

The previous algorithm may incur in performance
losses when the relative computing power of the nodes
involved in the solution process greatly differs, since
the iteration time is determined by the slowest machine.
In order to prevent these situations we allow an asyn-

chronous communication pattern between demes. In
this way, information exchange only occurs between a
fixed number of demes, instead of synchronizing the
execution of all subpopulations. The minimum num-
ber of demes that should communicate in each iteration
depends strongly on the numerical characteristics of
the problem. We refer to this characteristic as dynamic
connectivity, since the demes that exchange individuals
differs each iteration. The scheme and implementation
of this algorithm is depicted in Fig. 7.

We evaluate the functionality and efficiency of the
Grid-Oriented Genetic Algorithm (GOGA) described
above in the solution of the One-Max problem [19].
The One-Max is a classical benchmark problem for
genetic algorithm computations, and it tries to evolve
an initial matrix of zeros in a matrix of ones. In our
case we consider an initial population of 1000 individ-
uals, each one a 20 × 100 zero matrix. The sequential
GA executed on each node performs a fixed number of
iterations (50), with a mutation and crossover proba-
bilities of 0,1% and 60%, respectively. The exchange
probability of best individuals between demes is 10%.

Figure 8 shows the execution profile of 4 genera-
tions of the GOGA, with a 5-way dynamic connec-
tivity. Each subpopulation has been traced, and la-
belled with a different number (Pdeme). As can be
shown, individuals are exchanged between subpop-
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drmaa_init(contact, err);

// Loop until all jobs are finished
while (there_are_jobs_left(jobs)) {

// Submit jobs with dependencies solved
for (i = 0; i<num_jobs; i++)

if (is_job_ready(jobs, i))
drmaa_run_job(jobs[i].id,

jobs[i].jt, err);

// Wait any submitted job to finish
job_id = "DRMAA_JOB_IDS_SESSION_ANY";
drmaa_wait(job_id, &stat, timeout,

rusage, err);
set_job_done(jobs, job_id);

}

drmaa_exit(err_diag);

Fig. 11. Implementation of the workflow engine.

ulations P1, P2, P3, P4, P5 in the first generation;
while in the third one the subpopulations used are
P1, P2, P4, P7, P8. In this way the dynamic connec-
tivity, introduces another degree of randomness since
the demes that communicate differ each iteration and
depend on the dynamism of the Grid.

6. The NAS Grid Benchmarks

The NAS Grid Benchmarks [10] have been presented
as a data flow graph (DFG) encapsulating an instance
of a NAS Parallel Benchmarks (NPB) [2] code in each
graph node, which communicates with other nodes by
sending/receiving initialization data. The NGB suite
models applications typically executed on the Grid and
therefore constitutes an excellent case-of-study for test-
ing the functionality of the DRMAA and the environ-
ment itself.

NGB is focused on computational Grids, which are
used mainly for running compute-intensive jobs that
potentially process large data sets. Each benchmark
comprises the execution of several NPB codes that sym-
bolize scientific computation (flow solvers SP, BT and
LU), post-processing (data smoother MG) and visual-
ization (spectral analyzer FT). Like NPB, NGB speci-
fies several different classes or problem sizes, in terms
of mesh size and number of iterations. The four fami-
lies defined in the NGB are:

Launch

BT6

BT3

BT0
MG1

MG4

MG7

Report

FT8

FT5

FT2

// Initialization
jobs[0].jt = BT; jobs[0].dep = "";
jobs[1].jt = MG; jobs[1].dep = "0";
jobs[2].jt = FT; jobs[2].dep = "1";
jobs[3].jt = BT; jobs[3].dep = "0";
jobs[4].jt = MG; jobs[4].dep = "3";
jobs[5].jt = FT; jobs[5].dep = "2 4";
jobs[6].jt = BT; jobs[6].dep = "3";
jobs[7].jt = MG; jobs[7].dep = "6";
jobs[8].jt = FT; jobs[8].dep = "5 7";

Fig. 12. Structure and workflow engine initialization of the VP
benchmark..

– Embarrassingly Distributed (ED) models High-
Throughput applications, whose structure and im-
plementation with DRMAA has been discussed in
Section 4.

– Helical Chain (HC) represents long chains of re-
peating processes, such as a set of flow compu-
tations that are executed one after the other, as is
customary when breaking up long running sim-
ulations into series of tasks, or in computational
pipelines.

– Visualization Pipe (VP) represents chains of com-
pound processes, like those encountered when vi-
sualizing flow solutions as the simulation pro-
gresses.

– Mixed Bag (MB) again involves the sequence of
flow computation, post-processing, and visualiza-
tion, but now the emphasis is on introducing asym-
metry.

Grid benchmarks should provide a methodology
to assess the functionality, performance and quality
of service provided by a Grid environment. In this
work we will concentrate in testing the functionality
of our testbed made up of: local schedulers (fork and
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Launch

LU2

FT8

LU0 LU1

MG3 MG4 MG5

FT6 FT7

2 4 8

8 2

4 8 2

Report

// Initialization
jobs[0].jt = LU; jobs[0].dep = "";
jobs[1].jt = LU; jobs[1].dep = "";
jobs[2].jt = LU; jobs[2].dep = "";
jobs[3].jt = MG; jobs[3].dep = "0 1";
jobs[4].jt = MG; jobs[4].dep = "0 1 2";
jobs[5].jt = MG; jobs[5].dep = "2";
jobs[6].jt = FT; jobs[6].dep = "3 4";
jobs[7].jt = FT; jobs[7].dep = "3 4 5";
jobs[8].jt = FT; jobs[8].dep = "5";

Fig. 13. Structure and workflow engine initialization of the MB
benchmark.

PBS), middleware (Globus toolkit), and high level tools
(GridW ay and DRMAA). In the NGB reports pre-
sented below, for the shake of completeness, we also
include some performance metrics like job turnaround
time, resource usage, and data transfers and execution
times. Moreover the Globus overhead, as well as the
GridW ay overhead (scheduling time), are included in
all measurements. The experiments shown below were
all conducted in the second configuration of the UCM-
CAB Grid, described in Table 2.

6.1. Helical Chain

The HC benchmark consists in a sequence of jobs
that model long running simulations that can be divided
in different tasks. Each job in the sequence uses the
computed solution of its predecessor to initialize. Con-
sidering this dependencies each job in the chain can
be scheduled by GridW ay once the previous job has
finished (see Fig. 9).

Results of the HC benchmark (class A) for this
scheduling strategy are shown in Fig. 10. The turnaround
time is 17.56 minutes, with an average resource usage

of 20.21%. The MDS delay in publishing resource
information results in an oscillating scheduling of the
jobs. This schedule clearly reduces the performance
obtained compared to the optimal turnaround time 5 of
6.18 minutes.

Nevertheless, this kind of applications can be sub-
mitted through the GridW ay framework as a whole.
The output files of each task in the chain are handled
by the framework as checkpoint files. In this way the
application can take advantage of the self-adapting ca-
pabilities provided by GridW ay:

– The application can progressively change its re-
source requirements depending on the task of the
chain to be executed. So, the application does not
have to impose the most restricted set of require-
ments at the beginning, since it limits the chance
for the application to begin execution [12].

– The application can generate a performance pro-
file to provide monitoring information in terms of
application metrics (for example time to perform
each task of the chain). This performance profile
can be used to guide the job scheduling. Thus,
the application could migrate to other host when
some resources (disk space, free CPU. . . ) are ex-
hausted [12].

– The application can be migrated when a better re-
source is found in the Grid. In this case the time to
finalize, and file transfer costs must be considered
to evaluate if the migration is worthwhile [17].

When the HC benchmark is submitted as a whole
job, the average resource usage increases to 91%, since
the nine tasks of the same chain are scheduled to the
same host (cygnus). In this case, the turnaround time
is 7 minutes and the average execution time is reduced
to 6.4 minutes. This supposes a decrement in the job
turnaround time of 60% compared to the first schedul-
ing strategy and an increment of only 11% compared
to the optimal case.

6.2. Visualization pipe and mixed bag

Although this kind of benchmarks could be serialized
and adaptively executed like the previous one, they
are more suitable to be implemented as a workflow
application to exploit the parallelism they exhibit.

Since GridW ay does not directly support workflow
execution, we have developed a workflow engine taking

5Belonging to a serial execution on the fastest machine.
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Fig. 14. Results with the VP.A benchmark.

advantage of the DRMAA programming interface, see
Fig. 11. This algorithm follows a greedy approach, al-
though different policies could be used to prioritize the
jobs submitted to at each moment, for example, submit
first the job with a more restricted set of requirements,
with more computational work or with more jobs de-
pending on it.

These benchmarks are combinations of the ED (fully
parallel) and HC (fully sequential) benchmarks de-
scribed above. They exhibit some parallelism that
should be exploited, but it is limited by the dependen-
cies between jobs. In the case of VP, the parallelism
is even more limited due to the low pipe width (only
3, for all classes) and the long times to fill and drain
the pipe (with class A, it only executes once with full
parallelism).

Figure 14 shows the results for the VP.A benchmark.
Dashed lines represent dependencies between jobs and
thicker lines represent the critical path, which deter-
mines the wall time. In this case, the turnaround time
is 21.68 minutes, with an average resource usage of
35.25%. Execution and transfer times are 22.93 and
8.1 minutes, respectively.

Figure 15 shows the results for the MB.A benchmark.
Again, dashed lines represent dependencies between
jobs and thicker lines represent the critical path. In
this case, the turnaround time is 16.8 minutes, with

an average resource usage of 45.7%. Execution and
transfer times are 23.03 and 9.7 minutes, respectively.

Figures 14 and 15 show the differences between the
VP and MB benchmarks. Both exhibit some degree of
parallelism, since the sum of execution time is greater
than the wall time, that could be increased by widening
the pipe (limited to three jobs) and reducing the Grid
overload (scheduling, file staging, job submission. . . ).
The parallelism obtained by the VP benchmark is very
poor, due to the stages of filling and draining the pipe,
being the sum of the execution times only a 4.57%
greater than the wall time. On the other hand, the MB
benchmark reaches a considerable parallelism degree,
having a sum of the execution times a 27.06% greater
than the wall time. In fact, the sum of the execution
time in both benchmarks is very similar (22.93 for VP
and 23.03 for MB), however, the wall time is a 23.21%
lower in the case of the MB benchmark, due to its
greater parallelism degree from the beginning, which
enables a better use of the resources (34.93% for VP,
while 45.7% for MB).

7. Conclusions

DRMAA can clearly aid the rapid development and
distribution across the Grid of typical scientific appli-
cations. In fact, we believe that DRMAA will become a
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Fig. 15. Results with the MB.A benchmark.

standard for Grid application development. This would
help users, making Grid applications portable across
DRMS adhered to the standard, and DRMS vendors,
making DRMS easier and worthier to learn.

We have presented an implementation of DRMAA
on top of the GridW ay framework and Globus. The
functionality, robustness and efficiency of this envi-
ronment have been demonstrated through the execu-
tion of typical computational models, namely: High-
Throughput and Master-Worker. This preliminary
study has been completed with the analysis of three
real-life applications: a protein structure prediction
model, a Grid-oriented genetic algorithm and the NGB
suite. In these cases, DRMAA also represents a suitable
and portable framework to develop scientific codes.
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