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Abstract. The simultaneous analysis of a number of related datasets using a single statistical model is an important problem
in statistical computing. A parameterized statistical model is to be fitted on multiple datasets and tested for goodness of fit
within a fixed analytical framework. Definitive conclusions are hopefully achieved by analyzing the datasets together. This paper
proposes a strategy for the efficient execution of this type of analysis on heterogeneous clusters. Based on partitioning processors
into groups for efficient communications and a dynamic loop scheduling approach for load balancing, the strategy addresses the
variability of the computational loads of the datasets, as well as the unpredictable irregularities of the cluster environment. Results
from preliminary tests of using this strategy to fit gamma-ray burst time profiles with vector functional coefficient autoregressive
models on 64 processors of a general purpose Linux cluster demonstrate the effectiveness of the strategy.
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1. Motivation

One of the difficult problems in data analysis in-
volves multivariate time series. A vector time series
is a set of observations of multiple related phenomena
across time. The mathematical underpinnings of the
statistical analysis of time series incorporate the corre-
lation across time and between series – properties that
complicate statistical theory. This is especially true for
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nonlinear models, where mathematical theory is diffi-
cult. The calculations involved in the analysis of non-
linear vector time series are highly computationally in-
tensive, requiring several minutes to a few hours on a
single processor, even for a series with length of a few
thousand observations.

The very long computation time associated with the
analysis of multivariate time series has tempted statisti-
cians to tackle smaller problems in the interest of “com-
putational expediency” and productivity. For example,
the number of replications in a simulation may be re-
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Fig. 1. Sample plots from the results of a nonlinear vector time-series analysis of the G1238922 gamma-ray burst dataset.

duced, or very large sample sizes may be excluded from
study, for reasons of computational costs. These temp-
tations have been successfully overcome by utilizing
parallel processing technology [2,3,19]. The intensive
computations in statistical codes typically occur inside
parallel loops. The presence of these loops allows the
strategy of integrating dynamic loop scheduling tech-
niques into a statistical analysis program for paralleliza-
tion and for achieving high performance through load
balancing.

Applying multivariate nonlinear time series analysis
to a large collection of datasets dramatically increases
the computational cost to days or even weeks. The
simultaneous analysis of related datasets is sometimes
necessary, for example, to uncover underlying struc-
ture, to extract important variables, to test underlying
assumptions, and to develop compact models, for the
phenomena described by the datasets. In addition to
the parallel loops inherent in the implementation of
the vector nonlinear time series analysis technique, the
multiplicity of the datasets to be analyzed defines an-

other level of concurrency. These two levels of con-
currency occurring within a single application presents
an interesting load balancing problem, especially when
executing in a heterogeneous cluster environment.

This paper proposes a load balancing strategy that
exploits the large number of processors available in a
cluster environment for the simultaneous analysis of
multiple datasets. The context in which the strategy
was developed is as follows. The datasets are gamma-
ray burst (GRB) time profiles recorded by the NASA
Burst And Transient Source Experiment (BATSE) [8].
The datasets are to be fitted with Vector Functional Co-
efficient Autoregressive (VFCAR) models [15,16] un-
der various analysis scenarios. The analysis aims to ex-
pose discontinuities or evolution in complex time pro-
files, and to help classify the GRB profiles into groups.
The analysis was conducted on the EMPIRE cluster of
the Mississippi State University Engineering Research
Center. Although developed in this context, the imple-
mentation of the load balancing strategy is orthogonal
to the code for the statistical analysis. This implemen-
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tation can be used in other applications that involve
computationally intensive data analysis.

The remainder of this paper is organized as fol-
lows: Section 2 provides an overview of gamma-ray
bursts, the statistical analysis of GRB time profiles us-
ing VFCAR models, and the programming environ-
ment used. Section 3 describes a load balancing strat-
egy which is based on the partitioning of processors into
small groups appropriate for the level of concurrency
in the statistical analysis procedure, and employing a
dynamic loop scheduling approach to balance group
loads. Section 4 presents results of preliminary tests of
the strategy on a general purpose Linux cluster. Sec-
tion 5 concludes with previews of ongoing efforts to
further improve the strategy.

2. Background

This section provides brief descriptions of gamma-
ray bursts (GRBs), the statistical analysis of GRB time
profiles using VFCAR models, and the programming
environment used. This representative application ex-
hibits two opportunities for parallelism: the concur-
rent analysis of datasets, and the computationally in-
tensive parallel loops within the analysis procedure.
Load balancing is a crucial issue in this application due
to the disparity in the dataset sizes, the potential non-
uniformityof the loop iteration execution times, and the
unpredictable runtime irregularities in a heterogeneous
cluster environment.

2.1. Gamma-ray bursts

Early astronomical observations were restricted to
the visible range of the electromagnetic spectrum.
However, the past century has seen the invention and
use of new detectors and telescopes that are capable
of observing the radio, infrared, ultraviolet, x-ray, and
gamma-ray regions. Without this wider spectral vi-
sion, we might never have discovered a type of explod-
ing star whose brightness surpasses the well-known su-
pernova. Since 98% of their power is released in the
form of gamma radiation, they are called gamma-ray
bursts (GRB). There is approximately one burst each
day somewhere in the observable universe.

Discovered in the mid-1960’s by US military satel-
lites, the causes of GRB have risen to the top of the list
of perplexing astrophysical questions. Their incredible
distances, known to be far outside our own Milky Way,
and their short lifetimes (average brightening duration

of 20 seconds) have hampered investigators. For ex-
ample, with more than 3,000 recorded, we have reli-
able distance measurements for only a few dozen burst
sources.

A complete understanding of the underlying phe-
nomena will require a concerted effort from many dif-
ferent scientific disciplines. Such an understanding
could provide us with important,new information about
the structure and evolution of the early universe. In ad-
dition, this is an opportunity to learn more about the be-
havior of matter and energy under extreme conditions
of pressure, temperature, and magnetic field which are
impossible to create in the laboratory.

In practice, when a burst occurs, a gamma-ray detec-
tor onboard an orbiting satellite measures a sudden and
intense increase in the photon count rate above the nor-
mal, relatively constant, gamma-ray background. This
flood of radiation from an explosion that lies perhaps
billions of light years away can last for only a frac-
tion of a second or for several minutes. Some simply
brighten, then dim, but many show multiple peaks in
intensity that often overlap, resulting in highly complex
profiles. Just as quickly, it is over and our record of
the event is most often limited to the energies and the
times of arrival of the gamma-ray photons.

The typical time profile shows features, such as sharp
jumps and other hints of intermittency, that cannot be
modeled by linear time series analyses (Fig. 1, bottom
plot). These brightness peaks are a reflection of the
energetics of the explosion and the environment. A
likely possibility is that many of the peaks are the re-
sult of shock interactions between an expanding fire-
ball and the circumstellar material. A nonlinear vector
time-series analysis as outlined below could shed light
on both the nature of the burster environment and the
dominating physical processes.

2.2. Multivariate nonlinear time series

Although complicated in theory, vector nonlin-
ear time series are especially useful for describing
complex nonlinear dynamic structures that exists in
many time-dependent multivariate series. Let Y t =
(Y1,t, . . . , Yk,t)′ denote the vector time series at time
t = 1, 2, . . . , T . Then the vector functional coefficient
autoregressive model of order p (VFCAR(p)) is defined
as

Y t = f (0)(Zt) +
p∑

j=1

f (j)(Zt)Y t−j + εt,

(1)
t = p + 1, . . . , T,
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Fig. 2. Sample structure of a GRB dataset, flowchart of VFCAR analysis and outputs of the analysis.

where f (j), j = 0, . . . , p are k×k matrices whose ele-
ments are real-valued measurable functions that change
as a function of the (possible vector-valued) Z t, and
which have continuous second-order derivatives. The
error terms εt in Eq. (1) are such that for each i, the
series {εi,t}T

t=1 is a white noise sequence, indepen-
dent of {Y t}T

t=1. However contemporaneous cross-
correlation may exist between {εi,t} and {εj,t}, i �= j.
The primary motivation for studying this model is that
specific choices for the elements of the f (j) yield para-
metric models.

The VFCAR(p) model may be considered a hybrid
of parametric and non-parametric models since the au-
toregressive structure is assumed, but there is little or
no information about the form of the elements of the
f (j). As such, estimation of the parameters of the
VFCAR(p) model is done nonparametrically via local
regression. Simultaneous estimation of the elements of
the f (j) provides improved statistical efficiency when
the error terms have positive cross-correlation. In the
process of fitting the model Eq. (1), modified multifold
cross-validation is used to determine an optimal band-
width and value for p by finding the pair of values that
minimize the accumulated prediction error. This multi-
stage procedure requires an immense number of arith-
metic operations on a univariate series. That number
increases exponentially for multivariate series.

The VFCAR model is also used in statistical tests of
model misspecification. However, the null distribution
is unknown, and so a procedure that fits the model to a
large number of bootstrapped realizations of the series
under the null model is used to obtain a numerical p
value for the test. Specifics for fitting the model and the
testing procedure are found in [15]. Forecasting can
be accomplished using the VFCAR model either recur-
sively or via bootstrap as in [16]. The mathematical
complexity of the statistical theory of the estimators,
testing procedures, and forecasts using the VFCAR
model are highly complicated, requiring arithmetically
intensive computations.

Figure 2 illustrates the major steps in fitting the
VFCAR(p) model to a GRB time profile. The bulk of
the computations occur in the determination of the opti-
mal bandwidth (FCAR bandwidth) and in the statistical
test of model misspecification (Bootstrap Test). The
analysis can be done on a single processor, but a dataset
with a few thousand observations may require up to two
days. The bandwidth computations involve a parallel
loop with 50–150 iterations, while the bootstrap test
involves a parallel loop with iteration count of 400–
1000 as decided by the statistician. Thus, the degree of
loop-level concurrency in the analysis of single dataset
for the bandwidth computations is small compared to
the few thousands of processors available in a typical
supercluster. The outputs of the VFCAR analysis of
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a GRB time profile are used to produce visualization
plots like Fig. 1 for interpretation by the physicist.

2.3. Heterogeneous clusters

A very popular high performance computing plat-
form is the cluster of Linux workstations, in view of
the easily available off-the-shelf hardware components
and clustering software. Such clusters are usually built
over time, and thus tend to be made up of hetero-
geneous processors, memory, and networking compo-
nents. An example is the EMPIRE cluster of the Mis-
sissippi State University Engineering Research Center
(MSU ERC). The cluster was built in four phases from
February 2001 through May 2002. It has a total of
1038 Pentium III (1.0 GHz and 1.266 GHz) processors,
and runs the Red Hat Linux operating system. Two
processors reside in a node, 32 nodes are connected via
100 Mbps Ethernet switch to comprise a rack, and the
racks are connected via Gigabit Ethernet. The clus-
ter queuing system (PBS) attempts to assign compute
nodes from a single rack to a job, but this is not guaran-
teed. Jobs also contend for network bandwidth and disk
I/O resources. For all practical purposes, unpredictable
system-induced load imbalance will affect most paral-
lel applications running on this cluster, with varying
degrees of severity. Therefore, applications running on
the cluster must incorporate dynamic load balancing to
achieve highest possible efficiency.

3. Load balancing strategy

The proposed load balancing strategy for the simul-
taneous statistical analysis of multiple datasets on a het-
erogeneous cluster is driven by considerations arising
from the characteristics of the analysis program and
the computational platform. The number of datasets
to be analyzed and the sizes of parallel loops in the
statistical procedure are known before execution, but
information about processors and communication dis-
tances are available only after cluster resources have
been committed to the job. Thus, a dynamic load bal-
ancing strategy is necessary for high performance. A
simple master-slave strategy where a single processor is
assigned to analyze one dataset at a time may seem ap-
pealing, except that it potentially achieves low proces-
sor utilization due to the disparate sizes of the datasets.
A dataset may require a few seconds or over one day
of analysis time on a single processor. The processors
assigned to the big datasets will finish very long after

the other processors have finished all of the smaller
datasets. Likewise, the strategy of having all the pro-
cessors cooperatively analyzing one dataset at a time
restricts the maximum number of processors that can
be utilized for the job. This maximum is determined
by the amount of parallelism in the analysis procedure,
which may be a small number relative to the total num-
ber of processors available for the job. Thus, an alter-
native load balancing strategy is needed which takes
advantage of a large number of processors available
in a cluster environment, and keeps all the processors
busy doing useful work. Such a strategy described in
the rest of this section.

The proposed strategy takes two preparatory steps
before any statistical analysis takes place: (1) the parti-
tioning of the processors assigned to the job into groups,
and (2) the initial distribution of datasets to the proces-
sor groups. After the completion of these two steps, the
strategy employs a dynamic loop scheduling approach
to schedule the analysis of datasets in each group, for
load balancing group loads. If the analysis procedure
involves parallel loops, dynamic loop scheduling can
also be used within a group for balancing the loads
of processors of the group while executing the parallel
loops. Datasets are migrated between groups as nec-
essary to address the load imbalance induced by the
initial distribution of datasets among processor groups
or induced by unpredictable system irregularities.

3.1. Partitioning of processors into groups

In a cluster environment, it is intuitively obvious that
the communications between processors assigned to a
job will be more efficient if the processors reside in
a single rack instead of being spread across several
racks. For example in the EMPIRE cluster, a message
between two processors p1 and p2 located in the same
rack requires at most two hops (p1 → Mbps switch →
p2), as opposed to four hops for a message between
two processors p3 and p4 located on different racks
(p3 → Mbps switch → Gbps switch → Mbps switch
→ p4). Thus, the cluster scheduler attempts to assign
nodes from a single rack to a job for efficient communi-
cations. Despite these attempts, fragmentation of pro-
cessors across several racks occurs with a high proba-
bility, especially for jobs that request large numbers of
processors.

The fragmentation of processors assigned to a job
across a few physical racks is actually useful in the con-
text of simultaneous analysis of multiple datasets. The
proposed load balancing strategy considers the group of
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processors residing in a rack as a single computational
unit, cooperatively analyzing one dataset at a time. A
very large group can broken into two or three smaller
groups to fit the degree of concurrency in the analysis
procedure. Tiny groups can be merged to avoid the
long analysis time in the event that a tiny group is as-
signed a very large dataset. The resulting number of
groups determine the number of datasets that can be
analyzed simultaneously. This setup exploits the effi-
cient communications among processors residing in a
single rack, and ensures that all processors assigned to
the job actively participate in solving the big problem.

The typical naming convention for the processors in
Linux clusters make it easy to determine which pro-
cessors belong to the same physical rack. In the EM-
PIRE cluster for example, the processors are named
Empire-<rn>-<pn>, where <rn> is the rack num-
ber and <pn> is the processor number. Thus, pro-
cessors with the same <rn> belong to the same rack.
In MPI, the routine MPI GETHOSTNAME() may be in-
voked with appropriate arguments to determine name
of the processor.

3.2. Initial distribution of datasets to processor
groups

After the processors assigned to the analysis job are
identified and the processor groupings are established,
the datasets are retrieved from disk for distribution to
the processor groups. Keeping the datasets in mem-
ory offers some advantages over “on demand” retrieval
of datasets from disk. In the case of GRB analysis, a
dataset with n observations requires (k + 1) × n real
memory locations, where k is the number of compo-
nents of an observation. The preliminary analysis that
were conducted in this work involved 555 datasets with
k = 1 and 46 � n � 9037. Only 5 datasets have n >
5000 and 55 datasets have n > 1500. Thus, the mem-
ory requirement for all the datasets is relatively small
compared to the total amount of memory available on
the cluster. In addition, moving a dataset from one pro-
cessor to another is less expensive than retrieving the
dataset from disk.

An important issue that has a major effect on group
load balance is the initial partitioning of the datasets
among the processor groups. It may be possible to cor-
relate the analysis time of a dataset to the number of
observations, depending on the nature of the computa-
tions. In such a case, the correlation can provide useful
guidance in the initial load distribution. For example, if
the analysis mainly uses matrix-vector multiplications,

then the time complexity may be O(n2). Initial group
loads can then be assigned based on quantities derived
from the correlation, with the expectation that further
load balancing will no longer be necessary. However,
this correlation has limited usefulness in a dynamic en-
vironment, where the effective speed of a processor is
affected by factors such as operating system daemons
waking up to perform short monitoring tasks, or delays
in I/O operations due to disk access contention. Also,
conditional statements embedded in the analysis pro-
cedure may trigger an execution sequence whose time
complexity is not captured by the correlation. There-
fore, in the interest of generality, the load balancing
strategy should utilize dynamically collected informa-
tion instead of an assumed static correlation between
the size and the computational load of a dataset. Nev-
ertheless, the size of a dataset is an important input to
the load balancing decisions.

Given only the number of observations in each
dataset and the sizes of the processor groups, the pro-
posed strategy uses the following heuristic to initially
distribute the datasets among the groups. Let D de-
note the number of datasets, G the number of proces-
sor groups, ni the number of observations in dataset i,
and sj the size of group j. Therefore, the total number
of observations is W =

∑D
i=1 ni and the number of

processors in the groups is P =
∑G

j=1 sj . Then, the
datasets are distributed such that group j has a total
of approximately sj × W/P observations. Thus, the
number of observation in a group is proportional to
the number of processors in the group. To avoid the
situation of all the big datasets being lumped together
into one group, the distribution procedure is as follows.
The datasets are first sorted according to decreasing
ni. Then, for each dataset in sorted order, the group
which is farthest from its quota of observations is iden-
tified and the processor with the minimum number of
observations in that group will store the dataset. This
ensures that the big datasets are effectively scattered
among the groups, and that the processors in a group
store comparable numbers of observations.

3.3. Dynamic loop scheduling

The proportionality of the size of a processor group
to the total number of observations stored by the group
is not a guarantee for good load balance among groups.
This is because the number of observations in a dataset
may not be an appropriate measure of the computational
load of that dataset. Even if the load is known from
the size of the dataset, the dynamic nature of a cluster
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environment induces other types of load imbalance that
must be addressed during the actual analysis of datasets.

The proposed strategy employs a dynamic loop
scheduling approach for load balancing group loads.
Two of the authors have extensive experience with dy-
namic loop scheduling techniques [4,10–12], and the
implementation of these techniques on both distributed
and shared memory environments [9], as well as the
integration of these techniques into scientific applica-
tions [2,3,5–7,13] and systems [1]. In loop schedul-
ing, a parallel loop with N iterations is to be executed
on P processors. Chunks of iterations are assigned to
processors with the objective of minimizing the loop
completion time. The sizes of chunks are determined
according to a loop scheduling technique. Mapped to
the present context of simultaneous analysis of multi-
ple datasets, the N loop iterations correspond to the W
observations, and the P processors correspond to the G
groups, each group being a single computational unit.
A chunk of iterations is essentially a fraction f of the
total N iterations; this chunk corresponds to a collec-
tion of datasets whose cumulative size is approximately
f ×W observations. Using these correspondences, the
dynamic loop scheduling techniques are applicable in
the present context, with the possible exception of tech-
niques like adaptive factoring [4] that require measure-
ment of individual iterate execution times. The corre-
spondence between a single iteration and a single ob-
servation point may not be valid because the execution
of an iteration can timed, while observations are not
analyzed individually, but only collectively in a dataset.

Dynamic loop scheduling can also be employed
within a processor group if the analysis procedure in-
volves parallel loops. This is the case in fitting a GRB
dataset with VFCAR models. Loop scheduling is used
to execute the FCAR Bandwidth loop and the Boot-
Strap Test loop.

3.4. Processor organization

Figure 3 illustrates the organizationof the processors
in the proposed strategy. The analysis job is submitted
to a heterogeneous cluster, and the cluster scheduler
commits the number of processors requested by the job.
One of the processors is designated as the coordinator
C, which is responsible for: (1) organizing the rest of
the processors into groups of workers W and appointing
a foreman F in each group; (2) retrieving the datasets
from disk and distributing these to the groups; and (3)
scheduling the analysis of the datasets by the groups.
The scheduling proceeds as follows.

The foreman of a group sends to the coordinator a
request for information about the datasets which the
group should analyze next. When the coordinator re-
ceives the request, it consults the loop scheduling tech-
nique to determine the upper limit on the number of
observations to be scheduled next. If the requesting
group has datasets that are not yet analyzed, the coor-
dinator selects the datasets in the group whose com-
bined observations approximate the upper limit. The
coordinator responds to the requesting foreman with
the selection, and the foreman relays the selection to its
group. The processors in group examine the selected
datasets one at a time. The owner of a selected dataset
first broadcasts the dataset to the rest of the group, then
the group collectively invokes the analysis routine. The
foreman participates in the analysis, and the group can
invoke dynamic loop scheduling if the analysis involves
parallel loops.

If the requesting grouphas no remainingdatasets, the
coordinator identifies a source group and selects from
that group the datasets to be migrated to the requesting
group. This selection is sent to the requesting fore-
man, who relays the information to its group. Based
on this information, the foreman will send a message
to the owners of the datasets to begin the transfer oper-
ations, then all processors in the requesting group post
receive operations. Once the transfers are complete,
the datasets are examined as described previously.

4. Preliminary tests

The proposed strategy for the simultaneous analy-
sis of multiple datasets on a heterogeneous cluster is
currently implemented in Fortran 90 and utilizes the
Message Passing Interface (MPI) library for communi-
cations. The choice of the programming language was
influenced largely by the earlier decision of the statisti-
cian to develop the VFCAR analysis procedures in For-
tran 90. The executables were produced by the Port-
land Group Fortran compiler, linking with the MPICH
implementation of the MPI library.

Preliminary tests of the strategy in analyzing 555
datasets of GRB time profiles (total of 398238 obser-
vations) by the VFCAR model were conducted on 64
processors of the MSU ERC EMPIRE cluster. The
results that follow are for a particular run in which
the processors were spread across racks 8, 10, 14, 15
and 16 of EMPIRE, with the racks contributing 20,
16, 16, 8 and 4 processors, respectively. Rack 8 has
1.0 GHz processors, while the rest of the racks have
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Fig. 3. Organization of processors for the simultaneous analysis of multiple datasets on a cluster: C = coordinator, W = worker, F = group
foreman (also a worker).

1.266 GHz processors. The coordinator C formed five
groups: Grp 1 with 7 processors split between racks 8
and 16; Grp 2 with 8 processor in rack 15; Grp 3 with
16 processor in rack 14; Grp 4 with 16 processor in
rack 10; and Grp 5 with 16 processor in rack 8. The co-
ordinator resided in rack 16. Aside from the imbalance
in computational powers of groups, the cluster was also
running other jobs along with the tests and the analy-
sis has to write some files. Thus, the load imbalance
induced by network contention was unpredictable.

The tests were aimed primarily gain preliminary in-
sights into the characteristics of the strategy in order
to identify areas for improvement, and secondarily to
compare the performance gains achieved by the strat-
egy with various loop scheduling techniques. For the
second objective, only the following techniques were
attempted for the sake of brevity in the testing pro-
cess: no load balancing after the initial distribution
of datasets (STAT), factoring (FAC) [14], fixed size

chunks based on the number of chunks generated by the
factoring (mFSC), and a variant of adaptive weighted
factoring (AWF-C) [10,11]. The chunk size in mFSC
is W/(no. of chunks in FAC); thus, mFSC has the same
scheduling cost as FAC. Results for other techniques
will be reported in the future. The same scheduling
technique was used to balance the load among proces-
sor groups, as well as within a group to execute the
FCAR Bandwidth loop and the Bootstrap Test loop.

The tests were conducted as a single parallel job, so
the same set of processors was used by all the tech-
niques. The performance metric is the Cost=P × TP ,
where TP is the parallel time. The cost gives the ag-
gregate time devoted by all of processors (including
the coordinator C) to the run. To assess the benefit of
dynamic load balancing achieved by a given technique,
the percent cost improvement %CI is computed as
%CI=100×(CostSTAT -CostDLB)/ CostSTAT , where
CostSTAT is the cost of the analysis without dynamic
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Fig. 4. Comparison of (a) the distribution of datasets among groups after load balancing, and (b) the group elapsed times.

load balancing and CostDLB is the cost using the dy-
namic load balancing technique “DLB”, both costs
being measured on the same set of processors.

Figure 4(a) and (b) summarize the performance of
the strategy using the STAT, mFSC, FAC and AWF-C

load balancing techniques. The processor groups have
different sizes, Grp 5 has 1.0 GHz processors, Grps 2–4
have 1.266 GHz processors and Grp 1 has both types
of processors. The initial distribution of datasets is
the same as the final distribution for STAT. Except for
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STAT, datasets migrated from Grps 4 and 5 to Grps 1–
3. The cost improvements %CI over STAT of mFSC,
FAC and AWF-C are 24.3, 14.9 and 32.7, respectively.

The preliminary results support the following pre-
liminary conclusions regarding the strategy. The total
number of observations stored in a processor group is
not a good measure of the work load for the datasets
owned by the group. The procedure employed to
initially distribute the datasets among the processor
groups has limited effectiveness as a static load balanc-
ing heuristic, especially if the processors are not ho-
mogeneous, since the heuristic uses information about
dataset sizes and group sizes only. The load imbal-
ance factors induced by the initial dataset distribution,
the differences in dataset analysis times and processor
group sizes, are corrected, to varying levels of effec-
tiveness, by using dynamic loop scheduling techniques
for dataset redistribution during runtime. Of the tech-
niques used in the experiment, the AWF-C achieved the
highest cost improvement over STAT.

5. Concluding remarks

This paper describes a load balancing strategy for
the statistical computing problem of the simultaneous
analysis of multiple datasets, on a cluster environment.
The problem presents some interesting load balancing
challenges, including the limited degree of concurrency
in the analysis procedure, large disparities in the com-
putational loads of datasets, and unpredictable irregu-
larities in a cluster environment. The strategy exploits
the fragmentation of the processors assigned to the job
across several physical racks, by organizing the pro-
cessors residing in a rack into a processor group – a
single computational unit cooperatively executing the
analysis procedure. This organization benefits from
improved communication efficiency, and at the same
time addresses the limited degree of concurrency in-
herent in the analysis procedure. The organization also
allows multiple instantiations of the procedure, thereby
enabling the utilization of a large number of proces-
sors for solving the statistical computing problem. The
strategy also employs a dynamic loop scheduling ap-
proach to balance the loads of processor groups. Such
an approach is capable of addressing load imbalance
factors that may be induced by the heuristic used during
the initial distribution of datasets among the processor
groups, or by the disparities in the computational loads
of datasets, or by unpredictable irregularities in a clus-
ter environment. Dynamic loop scheduling can also be

utilized by a processor group if the analysis procedure
involves parallel loops.

Results of preliminary tests of the strategy as applied
to the analysis of gamma-ray burst time profiles using
the vector functional coefficient autoregressive time se-
ries model on a heterogeneous Linux cluster highlight
the effectiveness of the strategy. The authors will con-
tinue the analysis of additional gamma-ray burst time
profiles; the scientific results derived through this anal-
ysis will be reported elsewhere. Investigations on the
the performance of the strategy with loop scheduling
techniques that are more sophisticated than those tested
in this work are ongoing. The authors also plan to un-
dertake the analysis of other of datasets, such as those
from the areas of finance and meteorology, using the
strategy.
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