
Scientific Programming 13 (2005) 137–149 137
IOS Press

Design and implementation of a grid
extension for Maple

Dana Petcua, Marcin Paprzyckib and Diana Dubua

aComputer Science Department, Western University of Timişoara, and Institute e-Austria Timişoara, Romania
E-mail: {petcu,ddubu}@info.uvt.ro
bComputer Science Department, Oklahoma State University, USA, and SWPS, Warsaw, Poland
E-mail: marcin@cs.okstate.edu

Abstract. One of the important issues facing the development of the grid as a computational framework of the future is availability
of grid-enabled software. In this context, we discuss possible approaches to constructing a grid-enabled version of a computer
algebra system. Our case study involves Maple: the proposed Maple2g package allows the connection between Maple and the
computational grids based on the Globus Toolkit. We present the design of the Maple2g package and follow with a detailed
discussion of its implementation. Finally, we illustrate performance of Maple2g in a number of experiments.

Keywords: Grid computing, computer algebra system, grid middleware, Maple

1. Introduction

One of the developments that can lead to a wider
practical usage of computational grid technologies is
grid-enabling of computer algebra systems (CAS).
These systems are routinely used by mathematicians
and/or engineers to perform complex calculations and
are dully seen as an important source of their productiv-
ity. However, currently, it is often the case that useful
functionalities are implemented in only one particular
CAS or as stand-alone programs; sometimes running
best on special hardware such as a parallel computer.
In either case, it is desirable to be able to augment the
CAS with functionality from another software module.
It is the grid technology that should facilitate the neces-
sary infrastructure to support this process [8]. We thus
begin this paper by reviewing, in Section 2, the state of
the art of network and grid-aware CAS.

In Section 3 we follow by summarizing the most
important issues in designing a grid-enabled CAS and
possible approaches to addressing them. We proceed
with a practical example of how a CAS can be made grid
enabled and for this purpose Maple became our CAS of
choice. The main reason is that, despite its robustness

and ease of use, we were not able to locate efforts to link
Maple with the grid. Furthermore, it is well known that
Maple excels other CASs in solving selected classes
of problems e.g. systems of nonlinear equations or
inequalities [28]. Finally, Maple has already a build-in
socket library for communicating over the Internet, and
a library for parsing XML. These capabilities match
very well with our goal as they suffice to make Maple
a client for an external computational service (in this
context one should note a recent trend to use the XML
syntax as a de-facto standard in the grid community).

In Section 4 we describe the functionality of
Maple2g, the grid-wrapper for Maple. Maple2g con-
sists of two parts a CAS-dependent and a grid-
dependent one. Therefore, any change in the CAS or
in the grid will be reflected only in one part of the pro-
posed system. Furthermore, the CAS-dependent part is
relatively simple and could be easily ported to support
another CAS or legacy software.

We complete our description of Maple2g, in Sec-
tion 5, with details of implementation of access to grid
services, in particular, of the grid service search facility.

Finally, experimental results provided in Section VI
illustrate the performance of Maple2g, while future
research directions are outlined in the last section.

ISSN 1058-9244/05/$17.00 © 2005 – IOS Press and the authors. All rights reserved

138 D. Petcu et al. / Design and implementation of a grid extension for Maple

2. Current network and grid-enabled CAS

Grid enabling and augmenting mathematical soft-
ware tools with functionality from an external software
module(s) is the subject of a number of recent and on-
going research projects. We will thus summarize the
most important developments in this area. A more de-
tailed overview of parallel, distributed and grid enabled
symbolic algebra software can be found in [21].

2.1. Accessing external services

Several projects (e.g. NetSolve [3], Nimrod/G [1],
Ninf [17]) aim at providing simple ways (APIs, GUIs)
to execute software modules available in scientific li-
braries and/or as stand-alone programs over the Inter-
net/grid. This approach has been commonly labeled
“network-enabled server” (NES) [14]. Fully developed
NES systems are expected to follow the basic tenets of
the grid framework and change the RPC model by in-
corporating resource discovery, dynamic problem solv-
ing capabilities, load balancing, fault tolerance, secu-
rity, etc.

Currently, the NetSolve system [3] seems to be the
most developed NES. It is a grid based server that,
among others, supports Matlab and Mathematica as na-
tive clients for grid computing. NetSolve provides a
web tool that users can query for information concern-
ing all available software modules within the NetSolve
system. Furthermore, NetSolve searches for computa-
tional resources across the network, chooses the best
one available to solve the assigned problem. Then, us-
ing retry for fault-tolerance NetSolve facilitates solu-
tion of the problem, and returns an answer/answers to
the user. A load-balancing policy is used by the Net-
Solve system to ensure good performance by enabling
the system to use available computational resources as
efficiently as possible. Recently, a proxy was built for
the NetSolve client that is capable of interacting with
and making use of Globus resources.

MathLink [29] enables Mathematica to interface
with external programs via an API interface. Such an
external program sends its arguments to a mathemati-
cal computation service and returns result directly into
Mathematica.

MathGridLink [27] permits access to the grid service
and deployment of new services entirely from within
Mathematica. It allows two ways of interaction: one
from the view-point of a Mathematica user who wants
to use an existing service, and the second one from the

viewpoint of a grid user, who wants to access Mathe-
matica as a grid service.

Finally, the Geodise toolkit [6] is a suite of grid-
services which are presented to the user as Matlab func-
tions. User of the Geodise toolkit acts as a client to the
remote computational resources. Users are authenti-
cated, and then authorized to access resources for which
they have rights. They are able to discover available
resources, to decide where to run a job, to monitor its
status, and to retrieve obtained results. Functions im-
plemented in the “language of Matlab” call Java classes
which in turn access the Java CoG API [10].

Note that CASs like Matlab and Mathematica are
used mainly as interfaces for grid services (e.g. in
Geodise or Netsolve) and not as tools offering services
on grids, while MathGridLink envisages support of
both types of activities.

2.2. Availability of interactive mathematical web
services

Let us now consider a particular situation of inter-
active access to web enabled computational resources.
This scenario can be achieved in a limited way using
applets in a web browser. Observe however that com-
puting even the most fundamental mathematical opera-
tions such as an integral can require a complicated soft-
ware module and thus, it is usually necessary to incor-
porate existing mathematical software into a web appli-
cation to achieve the required functionality. To imple-
ment interactive mathematical web content the follow-
ing steps are required [25]: install/maintain the “exter-
nal” computational component, write the wrapper for
this component to enable it to be called from another
program, write an applet to present the interactive ele-
ment together with a (most likely Java) servlet which
will interact with the wrapper, and write the content
and embed the applet or form into the text (with appro-
priate parameters). JavaMath SDK [26] can assist the
user in this process by enabling development (in Java)
of conglomerate systems from existing components. It
gives a template for writing wrappers and an API for
creating and using sessions utilizing these components.
For example the code would be part of a servlet on a
server, and it would make use of Maple running on a
JavaMath server.

To achieve a single generic mechanism that could
then be used for all requests for computations, with no
extra software that needs to be loaded into the CAS
to interface with each new online service, it is neces-
sary to establish a standard for the request-response ex-

D. Petcu et al. / Design and implementation of a grid extension for Maple 139

changes. Part of this development would be a standard
for the representation of mathematical objects to be ex-
changed. MathML [13] is one of the possible ways of
addressing this problem.

As directly related to our work, where one of our
goals is to explore the possibility of adding Maple mod-
ules to the set of grid available services, we note that
MapleNet [12] offers a software platform for effective
large-scale deployment of comprehensive content in-
volving live math computations. MapleNet client is an
applet which encapsulates mathematical content. Its
publisher offers tools to create applet-based exploration
tools, while the server coordinates all the essential soft-
ware infrastructure, including the general web server,
math engines, content, and other databases. Further-
more, MapleNet server manages concurrent Maple in-
stances as necessary to serve client requests for com-
putational and display services, and provides auxiliary
services including user authentication.

2.3. Parallel/distributed CAS versions

While thus far we have mostly discussed the pos-
sibility of making the CAS available as a part of grid
services, obviously it can be beneficial if the CAS is ca-
pable of utilizing the computational capabilities of the
grid itself. In this context observe that, if applicable to a
given problem, coarse grain parallelism can be very ef-
ficient in an interpreted computation environment such
as the CAS. To be able to facilitate development of
coarse-grain parallel grid distributed CAS applications,
a CAS interface to a message-passing library is needed.

gridMathematica [30] allows the distribution of
Mathematica tasks among different kernels in a dis-
tributed environment. It is built on a PVM-like archi-
tecture. A typical installation of gridMathematica has
one master kernel and several computational kernels:
the master kernel handles all inputs, divides computa-
tions into independent subtasks, schedules calculations
for the computation kernels, and collects the results.

There exist more then 30 parallel projects involving
Matlab (for more details and a list of projects see [4]).
They use diverse approaches to achieving their goal(s):
compile Matlab script into a parallel native code, pro-
vide a parallel backend to Matlab using Matlab as a
graphical frontend, or coordinate multiple Matlab pro-
cesses to work in parallel. For example, Matlab*P
2.0 [4] is a parallel Matlab environment using the back-
end support approach. MatlabMPI [7] implements ba-
sic MPI routines like send, recv, size and rank entirely
in Matlab scripts. PVMTB [2] is a complete Matlab

interface to PVM, by means of which Matlab users can
prototype applications in the usual high-level program-
ming environment, while retaining the ability to make
PVM calls.

Distributed version of Maple have been recently re-
ported in [18] and [22]. For example, Parallel Virtual
Maple [18] (PVMaple), was developed to allow several
independent Maple kernels on various machines con-
nected by a network to cooperate in solving a problem.
This is achieved by wrapping Maple into an external
system which takes care of the parallel execution of
tasks. Here, a special binary, the command-messenger,
is responsible for the message exchanges between the
Maple processes, coordinates the interaction between
Maple kernels via PVM daemons, and schedules tasks
among nodes. Initial experiments show sufficient effi-
ciency in solving large problems to follow this path in
Maple2g which has a number of similar functionalities
with the PVMaple [19].

In the context of this paper it has to be stressed
that while there exist attempts at developing distributed
Maple, there were no attempts at developing grid-
enabled Maple (and these are somewhat similar, but
different goals), which is the goal of our current re-
search.

In summary, there exist a large number of projects
that attempt at grid enabling known computer algebra
systems. Their main goals are: (1) to make CAS mod-
ules available through the grid, (2) to allow CAS to
utilize the grid, (3) to provide direct, web-based access
to CAS modules, and (4) to develop parallel and/or dis-
tributed CAS by utilizing the networked/grid environ-
ment and message-passing parallelism. Out of these
goals 1, 2 and 4 are of particular interest to us in this
paper. As indicated above, in the case of Maple, goal
3 has been already mostly achieved and thus will be
omitted.

3. Developing a grid-aware CAS extension

Let us now look in a bit more details into main issues
involved in developing grid enmeshed CAS systems.

Our analysis of the grid aware CAS systems pre-
sented in the previous section indicates, that any such
system must have at least the following facilities
(Fig. 1):

Ability to accept services from the grid: the CAS
must be opened to augment its facilities with ex-
ternal modules, in particular it should be able to

140 D. Petcu et al. / Design and implementation of a grid extension for Maple

Fig. 1. Operating modes between a CAS and a computational grid: (a) CAS as an interface for the grid services; (b) CAS as grid service; (c)
multiple CAS kernels on user and grid sides.

explore computational grid facilities, to connect
to a specific grid service, to use the grid service,
and to translate its results for the CAS interface;

Being a source of grid or web services: the CAS or
some of its facilities must be seen as grid or
web services and allowed to be activated by re-
mote users under appropriate security and licens-
ing conditions; furthermore, deployment of the
services must be done in an easy way from the
inside of the CAS;

Ability to communicate/cooperate over the grid:
similar or different kernels of CASs must be able
cooperate within a grid in solving general prob-
lems; in order to have the same CAS on different
computational nodes a “grid-version” of the CAS
must be available; in the case of different CASs,
appropriate interfaces between them must be de-
veloped and implemented or a common languages
for inter-communication must be adopted.

There exist multiple ways of achieving the above
described functionalities. Rewriting a CAS kernel in
order to grid-enable it is likely to be a complicated,
time-consuming and high-cost solution. Wrapping the
existing CAS kernel in a special code acting as the
interface between the grid, the user and the CAS can be
done relatively easily as an added-functionality to the
CAS. Moreover it can be adapted “on-the-fly” when
new versions of the grid software or the CAS in question
become available. It is therefore the latter solution that
we advocate and pursue here. Let us now describe each
of the three functionalities in more details.

3.1. CAS input from grids – importing grid services
into a CAS

Most CASs have the possibility to launch system
commands or to call external modules written in non-
native languages. Using these facilities special libraries
can be constructed in the CAS language describing, in
an user-friendly manner, calls to the grid middleware

tools (e.g. those provided by the Globus environment).
On the user side, only some minimal facilities to access
the computational grid and the CAS must be installed.
The grid facilities which can be provided to the user
are those currently supported by the grid middleware.

The interface between the grid middleware and the
CAS can be written entirely in the CAS language or
partially in the CAS language and partially in some
other language, more appropriate for the grid middle-
ware (for example, in the case of Globus, such a lan-
guage would be Java CoG). In the first approach the
added-code is oriented towards a particular CAS and is
not portable (Fig. 2). The second approach can be more
flexible in integrating a new CAS (or multiple CASs)
within the user environment and this approach will be
pursued here.

It is worth mentioning, that the Geodise project [6]
has already adopted the second approach. The Geodise
toolbox includes a Java-grid client and a special library
mapping current Globus line commands into the Matlab
environment. Java-grid client interacts with the Globus
server, sending and receiving information from and to
the location service(s), authorization service and meta-
data archive/query service(s). Acting on user request,
via the special Matlab functions, it sends to the Matlab
interface data concerning the available grid services,
and then makes connections to the specific service(s).

3.2. CAS output into grids – deploying CAS services
on grid

Obviously, access to the CAS facilities must be avail-
able to users of the computational grid.

MapleNet [12], allowing the secure access of a thin-
client to a Maple server, gives a good example for
grid-enabling the CAS: the entire functionality of the
CAS can be exposed to the computational grid (while
respecting the license conditions).

Full access to the CAS functionality can further fa-
cilitate access to other grid services. To achieve this the

D. Petcu et al. / Design and implementation of a grid extension for Maple 141

Fig. 2. CAS openness towards grid services: (a) using specific grid-aware function library; (b) using a general CAS-grid interface.

entire CAS kernel has to be rebuild to construct a multi-
threaded version or a wrapper is to be provided in order
to launch separate CAS kernels to support individual
user request.

The CAS functionality can be also exposed only par-
tially by exploring a possibility to implement a visibil-
ity hierarchy with different levels of security (Fig. 3)
on each level.

A CAS installed within the user or within the grid
environment can be used to deploy services in other
languages than the one provided by the CAS. Here,
facilities to export codes, existing in most CASs, are
utilized.

3.3. CAS over the grids – grid-aware distributed CAS
version

The computational power provided by the CAS can
be augmented by using several other CAS kernels (the
same or different CASs). Obviously, this can be uti-
lized only when the problem to be solved can be split
between these kernels or a distributed-memory parallel
method is used in order to solve it. The usage of a stan-
dard message-passing interface for inter-kernel com-
munication allows the portability of the parallel version
of a CAS and, in particular, an easy deployment on
clusters and grids (Fig. 4).

The two extreme approaches to design the interac-
tion with the message-passing interface are minimal,
respectively full, access to the functions of the message-
passing interface. In the first case the set of functions
is restricted to those allowing to send commands and
receive results from remote kernels. In the second case
it is possible to enhance the CAS with parallel or dis-
tributed computing facilities, allowing the access of the
CAS to other parallel codes than the ones written in
the CAS language (the message-passing interface can
be used as an interpreter between parallel codes writ-
ten in different languages, including those of different
CASs).

3.4. A functional approach

In the next section we describe a prototype of a grid-
enabling wrapper for the Maple. Having in mind the
above summarized approaches to grid-enabling CASs,
we have considered the following roles as the most
appropriate for our prototype:

1. the CAS-grid-interface from Fig. 2(b),
2. the CAS-grid-service from Fig. 3(b),
3. the master/worker interfaces from Fig. 4.

The first selection was made so that any change in the
CAS or in the grid will be reflected only in the corre-
sponding part of the wrapper. Moreover this allows the
CAS-dependent part to be relatively simple and easy to
be ported to support another CAS or a legacy software
artifact. The same idea is motivating also the second
selection. Finally, grid enabling should also lead to
the capability for large-scale distributed computing and
thus the last choice.

4. Case study: Maple2g

We proceed with a practical example of how a CAS,
in our case Maple, can be made grid enabled. Maple2g
package allows the connection between Maple and
computational grids based on the Globus Toolkit.

The prototype of a grid-enabling wrapper for Maple,
consists of two parts a CAS-dependent and a grid-
dependent one:

– m2g, the Maple library of functions allowing the
Maple user to interact with the grid/cluster mid-
dleware;

– MGProxy, the middleware, a package of Java
classes, acting as interface between m2g and the
grid environment.

The m2g functions are implemented in the Maple
language, and they call the MGProxy which accesses
the Java CoG API. MGProxy acts as intermediary be-

142 D. Petcu et al. / Design and implementation of a grid extension for Maple

Fig. 3. CAS as grid service: (a) entire functionality exposed as grid-service; (b) partial exposing; (c) using CAS to create stand-alone grid-services.

Fig. 4. Grid-version of a distributed CAS.

tween the Maple and the Globus middleware (as the
CAS-grid interface from Fig. 2(b)).

Maple2g has three operating modes:

1. user mode for external grid-service access;
2. server mode for exposing Maple facilities as grid

services;
3. parallel mode for supporting Maple kernels co-

operating over the grid.

Let us now discuss them in more details.

4.1. User mode: grid-service access in Maple2g

In order to make grid services available to the user of
the CAS the coupling with the services exposed within
the grid has to be performed in a transparent way. This
implies that call to service methods should be done only
in the CAS native language syntax. In order to achieve
this we have incorporated a suite of Maple functions
which allow the m2g package communication with the
services available within the grid.

In the current version of Maple2g we have imple-
mented a minimal set of functions (described in Table 1)
allowing access to the grid services.

MGProxy is activated from inside the Maple environ-
ment by the m2g command m2g MGProxy start. The
user command(s) from the user interface are send to the
MGProxy via a socket interface, when m2g getservice
and m2g jobsubmit are invoked. MGProxy contacts
the grid services, queries the contacted services, and
sends to the Maple interface the results of performed
queries. The m2g results command provides users with

results of computations. Maple commands are passed
in the system as strings and results are presented in the
MathML format.

4.2. Server mode: Maple services on grid

Concerning access to Maple as a service, Maple2g
is similar to the MapleNet [12]. The main difference is
that instead of implementing a “new version” of Maple,
we have used the classical kernel and a wrapper.

In the current version of the Maple2g prototype, the
access to the fully functional Maple kernel is available
from the grid (MGProxy acting as CAS-grid interface
in Fig. 3(b)): we have implemented only an account
check procedure in order to verify the user rights to
access the licensed version of Maple provided on the
grid. Obviously, our system can be modified to restrict
user-access to a subset of Maple commands or function
libraries, but this type of enhancement is outside of
focus of our current interest.

The user interface activates a simple Java applet
which allows the user to send Maple commands as
strings via a socket connection to a local Maple2g pro-
cess awakened in the user mode by the Java applet
initialization.

The connection with the remote Maple kernel is es-
tablished at the initialization stage by sending a specific
string in the format in which m2g jobsubmit sends the
information, specifying in this case the remote MG-
Proxy as a grid-service. MGProxy activates a Maple
process (which enters an infinite cycle of interpreting

D. Petcu et al. / Design and implementation of a grid extension for Maple 143

Table 1
M2g functions enabling Maple to use grid services

Function Description

m2g connect() Connection via Java COG to the grid
m2g getservice(c, l) Search for a service c and give a link to it, retrieve its location l
m2g jobsubmit(t, c) Based on the service location retrieved in the previous step, perform a job submission, in the grid environment,

labeled t: the command from the string c is send to the MGProxy which treats it as a grid-service request
m2g jobstop(t) Stop the job labeled t
m2g status(t) Queries the status of the submitted job labeled t
m2g results(t) Retrieve the results of the submitted job labeled t
m2g MGProxy start() Start the MGProxy
m2g MGProxy end() Stop the MGProxy and the grid connection

commands incoming via the socket interface from the
MGProxy), acts as a server waiting for external calls,
interprets the requests, sends the authentications re-
quests to the Maple twin process, waits for the Maple
results and sends them back to the user. After the con-
nection is established, Maple commands can be send to
the remote Maple kernel (via the MGProxy), returned
in the MathML format.

4.3. Parallel mode: Message passing interface in
Maple

Parallel codes using MPICH as the message-passing
interface can be easily ported to grid environments due
to the existence of a MPICH-G2 version which runs on
top of the Globus Toolkit. On other hand, the latest
Globus Toolkit is build in Java, and the Java clients
are easier to write. This being the case, we selected
mpiJava [16] as the message-passing interface between
Maple kernels. It requires an already installed MPI
version, either MPICH or MPICH-G2.

In Maple2g a small number of commands have been
implemented and made available to the user, for send-
ing commands to other Maple kernels and for receiving
results from them (Table 2).

MGProxy is activated from user’s Maple interface
with several other MGProxy copies by the m2g maple
command. The copy with the rank 0 enters in user mode
and runs in the user environment, while the remaining
copies enter in a server mode. Communication between
different MGProxy copies is supported via the mpiJava.

These facilities are similar to those introduced in the
PVMaple [18] and in the Distributed Maple [22]. The
user run copy of Maple is seen as the master process,
while the other Maple kernels are working in a slave
mode. Note that command sending is possible not
only from the user’s Maple interface, but also from
one kernel to another (i.e. user issued commands can
include send/receive commands exchanging messages
between slaves).

Fig. 5. Communication flow when accessing grid services from
Maple.

As a side-note, we have tested the feasibility of
PVMaple type approach to development of distributed
Maple applications on a small PC cluster. We have
observed a reasonable speedup obtained when split-
ting time-consuming computations. Detailed report as
well as a complete description of functionality of this
component of Maple2g can be found in [20].

5. Accessing grid services from Maple:
Implementation details

Maple functions made available through the Maple2g
package m2g allow the programmatic access to Globus
grid enabled resources. The m2g package translates in-
ternally functions from the syntax familiar to the Maple
user into commands, allowing the initiation and further
communication with the MGProxy middleware.

MGProxy acts as an intermediary between Maple
and the grid and was written in Java, due to its porta-
bility and to the fact that libraries supporting Globus-
based grid computing have been already implemented
in Java. Java Commodity Grid kit [10] integrates soft-
ware for grid computing developed by Globus and the
Java commodity framework, thus facilitating the de-
velopment and deployment of grid services, while also
permitting the use of web services as parts of the grid.

144 D. Petcu et al. / Design and implementation of a grid extension for Maple

Table 2
M2g functions for remote process launch/communications

Function/const. Description

m2g maple(p) Starts p processes MGProxy in parallel modes
m2g send(d, t, c) Send at the destination kernel labeled d a message labeled t containing the Maple command c; d and t are numbers, c is

a string; when ‘all’ is used in destination field, c is send to all Maple kernels
m2g recv(s, t) Receive from the source kernel labeled s a message containing the results from the a previous Maple command which

was labeled with t; when ‘all’ is used in source field, a list is returned with the results from all Maple kernels which have
executed the command labeled t

m2g probe(s, t) Test if a message labeled t has arrive from the source kernel labeled s; the result is ‘true’ or ‘false’; ‘all’ can be used in
the source field to test if a message labeled t has arrive no matter from which source

m2g exit() Kill all MGProxy processes, shutdown the twin Maple kernels
m2g rank MGProxy rank in the MPI World, can be used in a command

m2g size Number of MGProxy processes, can be used in a command

The procedural steps to communicate within the grid
starting from the user’s Maple interface are depicted in
Fig. 5:

1. Activate MGProxy. User commands in Maple
syntax, parsed within the m2g package, initiate
the communication with the middleware which
acts as an intermediary between Maple and the
grids. This is performed via the commands for
external code invocation (including Java) which
are already available in Maple 8.

2. Grid services invocation. The user invokes the
remote services by issuing commands in RSL
syntax.

3. Job submission. MGProxy activates GridJob, a
Java class encapsulating GRAM job that deals
with job submission over the grids.

4. Results retrieval. Results can be requested either
during the communication or after closing the
grid connection.

Table 3 enumerates the main classes of the MGProxy
package. MGProxy can be viewed as the entry point
to the grid. The commands issued by the user from her
Maple interface are passed as strings to the MGProxy
which forwards these messages further to the MapleLis-
tener class responsible for parsing the messages and
calling an appropriate tool for their management.

For the invocation of grid services MapleListener ac-
tivates, according to the request, either the MDSSer-
vice or the GridService. MDSService is responsible
for the retrieval of information regarding grid-available
resources, including software resources. Current ver-
sion of MapleListener is based on the first of the two
approaches for the discovery of services described be-
low. GridService acts as a server for the GridJob which
is the client performing the actual task of submitting
the job; the client-server communication is being es-
tablished via sockets. GridService receives commands

Table 3
Java classes in MGProxy package

Name Description

MGProxy Activate the Maple link
MapleListener Parse the Maple messages
MDSService Retrieve information regarding the grid resources
GridService Server for GridJob
GridJob Client performing the requested job
MapleService Used for Maple as grid service
MPIMaple Used for parallel Maple

to be send over the grid to the available services (from
the MapleListener) until an ‘end of job’ is signaled,
meaning that the connection with the grid is no longer
necessary.

The underlying principles for service retrieval in
Globus, referred to as Monitoring and Discovery Ser-
vice , can be implemented in two alternative ways. Ei-
ther, the MetacomputingDirectory Service can be used,
or the facilities from the new GT3 can be utilized. In
Maple2g we have implemented the first approach.

The Metacomputing Directory Service (MDS) [11]
provides a directory service which has the functionality
of the white and yellow pages directories. It makes
available the information regarding the computational
resources within the grid and the grid network, i.e.
information about the hardware, the software and the
system status. While the white pages offers the infor-
mation concerning the hardware performance, yellow
pages deal with the computers of a particular class or
with a particular property. This later organizational
principle is what we are interested in.

MDS is based on LDAP (Lightweight Directory Ac-
cess Protocol, part of the X.500 standard), a software
protocol for enabling localization of organizations, in-
dividuals, and other resources such as files and devices
in a network, without knowing their particular location.

An LDAP directory is organized in a simple tree hier-
archy and can be distributed among many servery. An
LDAP server that receives a request from a user takes

D. Petcu et al. / Design and implementation of a grid extension for Maple 145

responsibility for the request, passing it to other LDAP
servers as necessary, but ensuring a single coordinated
response for the user.

In order to make use of the LDAP principles within
Globus, several steps have to be performed, namely:

1. Initialization. LDAP schema files must be up-
dated with the description of the attributes asso-
ciated with grid-specific entry classes. The direc-
tory structure described above has therefore to be
adapted such that it would contain the information
regarding the grid resources.

2. Population. The LDAP directory has to be fur-
ther populated with information according to the
hierarchies established at the initialization phase.

3. Querying. Is the essential step as it represents
the request for information. The information is
retrieved from the directory service.

For the Initialization step, there exists a naming
schema for the MDS reported in [15]. The MDSService
class was implemented starting from the MDSService
class proposed in [23].

We have used a combination of LDAP and Globus
commands in order to perform the above operations.
Alternatively, Java APIs can be used. The suite of
commands and their use is depicted in Table 4.

Once the information regarding the existing services
has been obtained the subsequent step is to deploy such
service in order to retrieve the result. Information is
passed in the form of strings, the GridJob class be-
ing responsible for the job submission to the service
provider which in turn sends back the result of com-
putation, again in the String format. This result is fur-
ther retrieved by the Maple user, which can use it in
subsequent operations. The results are valid even af-
ter the connection is closed, thanks to the label which
identifies them.

The GridJob class incorporates the methods de-
scribed in Table 5. It was written starting from the
class proposed in [24]. The GridJob class is responsi-
ble for the job submission. Requests received from the
Maple’s user interface in the RSL syntax are send over
the grid to remote resources. The underlying frame-
work used here is Java CoG. The connection is estab-
lished with the remote server, referred to as the ‘gate-
keeper’, which is responsible for the execution of the
job (i.e. a binary executable or command to be run re-
motely). Both the host and the gatekeeper must com-
ply with the authentication requirements. The Grid Se-
curity Infrastructure (GSI) is used for enabling secure
authentication and communication over an open net-

work. Globus uses GASS for porting and running the
applications requiring I/O files to the Grid environment.
Therefore, GridJob starts the GASS server and sub-
mits all GRAM job requests to this server. The request
is formatted accordingly in the RSL format. Output
of the processed job is returned through the MGProxy
intermediary to Maple into the user’s interface.

6. Experimental results

In order to investigate the performance of the grid-
wrapper we have performed several tests on a small
Globus-based grid environment:

– cluster: 6 local PCs each with a P4 processor run-
ning at 1.5 GHz and 256 Mb of memory, con-
nected in a cluster via a Myrinet switch at full
2Gb/s (located in Timişoara, Romania);

– radio: 2 remote PCs located in Timişoara, with
P4 processors running at 1.2 GHz and 512 Mb
memory, and connected with the cluster via a radio
connection at full 1 Mb/s;

– Internet: 1 remote PC located in Linz, Austria,
with P4 processor running at 2.4 GHz and 512 Mb
of memory, and connected with the cluster at full
2Mb/s.

Furthermore, in the third experiment, a remote web
service was used.

Note, that our experiments are not investigating the
efficiency of problem solving. To this effect we are not
trying to implement the most efficient ways of solv-
ing test problems; we are not trying to optimize task
scheduling, or match the underlying hardware archi-
tecture of components of our mini-grid. Rather, we are
interested in establishing general performance charac-
teristics of Maple2g.

6.1. Experiment 1: Improve Maple’s numerical
facilities using grid services

Maple is a tool for symbolic computations. Dealing
with numerical computations is not its strength. In or-
der combine symbolic computations with fast numeri-
cal computations it is useful to access external numeri-
cal codes. If such a code is registered as a grid service,
using Maple2g one can access it through the sequence
of steps presented in Fig. 6. We have experimented
with two codes:

146 D. Petcu et al. / Design and implementation of a grid extension for Maple

Table 4
Sequence of steps followed in order to populate the LDAP database and search for available services

Command Result

slapd -f <conf file> Activate the LDAP server with the configuration from slapd.conf
ldapadd -h localhost -a -w <passw> -x -D <binddn> -f <.ldif file> Populate LDAP database with the entries specified in the LDIF file
ldapsearch -x -s <scope> -b <baseDN> filter -p <ldapport> Search for the objects specified within the filter starting in the di-

rectory from the baseDN. The scope restricts the search level
grid-info-mds-core Retrieve the information for the above queries such as Globus di-

rectory, base DNs of servers, slapd process ids.
ldap stop Stop the ldap server

Table 5
GriJob methods

Method Description

GridJob(C, p, b) Contructor responsible for the initialization of the contact string variable C, gatekeeper port p and submission
mode b (i.e. whether batch or not)

startGassServer(credent) Starts the Globus GASS Server. Retrieves the output from the GASS server and sends it to the client via
GridService and MapleListener as a string

initJobOutListeners() Initiate/register listeners for non-batch mode jobs
statusChanged(job) Used to notify the implementer when the status of a GramJob has changed. A waiting thread is notified when a

job is finished and when this is the case the URL is returned and output
outputChanged(output) When the output is modified, performs an update
GlobusRun(RSL) The default Globus proxy is loaded and user credentials are setup properly. The GASS server is started. The

RSL is formatted accordingly to the expected structure. A GramJob instance is created and the object sends a
request to the remote host

> with(m2g);
[m2g_connect,m2g_exit,m2g_getservice,
m2g_jobstop,m2g_jobsubmit,m2g_rank,
m2g_maple,m2g_probe,m2g_rank,m2g_recv,
m2g_results, m2g_status,m2g_send,m2g_size,
m2g_MGProxy_end,m2g_MGProxy_start]

> m2g_MGProxy_start(); m2g_connect();
Grid authorization checked
Grid connection established

> m2g_getservice("newton",‘service_locate‘);
["&(resourceManagerContact="myri1.info.uvt.ro")

(count=1)(label="subjob 0")(directory/home/
Diana)(executable=/home/Diana/newton)",

"&(resourceManagerContact="myri8.info.uvt.ro")
(count=1)(label="subjob 0")(directory/home/
Dana/)(executable=/home/Dana/newton)",]

> m2g_jobsubmit(3,service_locate[2]);
Job 3 submitted

> m2g_results(3);
Solving nonlinear system with Newton method:
Input in.txt, Output out.txt

> m2g_MGProxy_end();
Grid connection closed

Fig. 6. Accessing in Maple an external numerical nonlinear solver,
available as grid service.

Newton package: the Maple2g code from Fig. 6, a
solver for system nonlinear equations based on
Newton’s method, written in C, and the Maple’s
fsolve function;

Gauss package: the same Maple2g code was utilized
and a linear system solver based on Gauss’ elimi-
nation written in Java, as well as the Maple’s lin-

solve function.

The test problem was: solve
∑n

j=1 aijx
f(i)
j =

bi, i = 1, . . . , n, where f(i) = 1 in the linear case,
f(i) = i in the nonlinear case, while A and b are ran-
dom matrices.

Table 6 presents the most significant results. The
“user-controlled” Maple kernel was executed on a local
PCs. Note that in each case code solving the problem
was executed on a single computer. The grid-service
was launched on:

Local: the same computer as the Maple main kernel;
Cluster: on the other PC in the cluster (see above);
Internet: on the remote PC (outside of the local net-

work);
Maple: only the local Maple was invoked (no grid).

The results indicate that for large numerical prob-
lems, Maple2g user can efficiently utilize the external
code(s) residing on the grid. The apparent inefficiency
of Maple is related to the particular approach to solve
our problems and should be ignored.

Times obtained for small problems estimate the over-
head introduced by the Maple external code launcher,
the Maple2g, and the Globus middleware and the net-
work. The overhead is almost independent of the prob-
lem size (small differences result from the size of ex-
changed messages).

D. Petcu et al. / Design and implementation of a grid extension for Maple 147

Table 6
Time results (mean values for 5 runs)

Package Dimension Local Cluster Internet Maple

Newton 5 eqs. 18 s 38 s 74 s 0.3 s
20 eqs. 435 s 460 s 496 s 934 s

Gauss 5 eqs. 18 s 37 s 73 s 0.01 s
100 eqs. 535 s 557 s 596 s 822 s

>#Maple code: time to multiply 2 big integers
> L:=[2�25,2�26,2�27]:
> for p in L do a:=2�p-1:
> s:=time(): a*(a+7): print(time()-s): end do:

//C++ code multbi: time to "*" the integers
#include <cln/cln.h>
using namespace cln;
int main() { int i; cl_I p=((cl_I)1<<25;
for(i=0;i<3;i++){ a=((cl_I)1<<p)-1;
{CL_TIMING; a*(a+7);} p=p<<1;}

return(0); }

>#Maple2g code/results using the * service
>with(m2g): s:=time():
>m2g_MGProxy_start(): m2g_connect():
>m2g_getservice("multbi",‘serv_loc‘):
>m2g_jobsubmit(10,serv_loc[1]):
>m2g_results(10);
real time: 5.012 s, run time: 4.486 s
real time: 25.565 s, run time: 20.470 s
real time: 23.541 s, run time: 19.910 s
> m2g_MGProxy_end(): time()-s;

Fig. 7. Multiplying three pairs of big integers of the order of tens
millions decimal digits – Maple code crashing due to memory and
time limitations; C++ code based on CLN library and used as grid
service to multiply the same big integers; Maple2g code using the
grid service to check the multiplication time.

6.2. Experiment 2: Faster arbitrary precision
arithmetic by accessing grid services

In order to confirm the results obtained in the first
series of experiments we considered a second scenario.
Maple works with large integers, which make it use-
ful, among others, in applications involving encryp-
tion/decryption. Its multiplication algorithm is a fast
one, but still there is a limit as to how large are the two
numbers that can be multiplied and how fast this goal
con be achieved.

We present an example of multiplication of two large
integers consisting of 10 million, 20 million and 40
million decimal digits.

We have attempted running the Maple code presented
in Fig. 7 on a cluster PC and encountered the following
situations.

When Maple 7 was used, the multiplication used
the Karatsuba algorithm and the computation time was
around 770 seconds for the first pair and would have
taken several hours for the subsequent pairs.

When Maple 9 was used, the multiplication used the
Schönhage-Strassen algorithm and the multiplication
time was around 9 seconds for the first pair, 21 sec-
onds for the second pair, but the third multiplication
could not have been performed (an error “Stack limit
reached” occurred, caused by the recursive nature of
the algorithm). In the second case, four times more
memory was needed to complete the multiplication.

A solution to overcome this limit of Maple is that of
using an appropriate grid service which can complete
the multiplications.

For testing purpose we have selected the CLN pack-
age [9]; a C++ library, which allows computations with
integers with unlimited precision and which uses the
Schönhage-Strassen multiplication for integers larger
than 12 thousands decimal digits. The C++ code for
the multiplication of the three pairs of big integers is
also included in Fig. 7. The time of multiplications is
somewhat shorter, but comparable to the time obtained
with Maple 9, with the difference, that this time we
were able to complete the task for the largest integer
pair.

Time tests have shown that if the CLN package is
registered as a grid service, the Maple2g code presented
in the same figure can activate it, and the overhead is
approximately 16 seconds if the service is local. Addi-
tional 12 seconds are required if the service is located
remotely somewhere in the cluster, and another 18 sec-
onds are required if the service is located remotely on
computers in the other networks (similar results for the
radio and the Internet connection).

6.3. Experiment 3: Accessing a web service for
symbolic computations

The third scenario involved a web service, the Online
Gröbner Basis (OGB) [5].

Gröbner basis are intensively used in symbolic com-
putations, e.g. to find the solution of systems of poly-
nomial equations or to find the greatest common divi-

148 D. Petcu et al. / Design and implementation of a grid extension for Maple

sor of a set of univariate polynomials. The “Groebner”
package was introduced in the latest versions of Maple.
The gbasis function computes a reduced Gröbner ba-
sis. Maple’s internal algorithm for gbasis is one of the
fastest available for this task, but it still requires a large
amount of time for a small number of polynomials.
Alternative algorithms can be used by accessing web
services like OGB.

OGB is written in PHP. Any valid request from a
client containing a sequence of numbers in a specific
form result in a computation performed by the server.
Finally the results, i.e. the polynomials of the Gröbner
basis, are returned in an HTML format.

We adopted the following approach. A grid ser-
vice, OGBInterface, has been written in Java CoG
to interact with the OGB server. It receives, as an
argument, a string containing polynomials for which
the reduced Gröbner basis is requested. Coefficients
and the degrees of the unknowns are extracted from
the input string and transformed into the sequence re-
quired by the OGB. For example, the Maple input
[a ∗ b ∗ c ∗ d − 1, a ∗ b ∗ c + b ∗ c ∗ d + c ∗ d ∗ a + d ∗
a ∗ b, a ∗ b + b ∗ c + c ∗ d + d ∗ a, a + b + c + d], for
which a Gröbner basis is computed with Maple gbasis
on a cluster PC in around 3 seconds, is transformed into
“http://grobner.nuigalway.ie/grobner/grobner1.php?tf=
1, 1, 1, 1, 2, 1, 3, 1, 4, 1;−1, 1|1, 1, 1, 1, 2, 1, 3, 1; 1, 1,
2, 1, 3, 1, 4, 1; 1, 1, 1, 1, 3, 1, 4, 1; 1, 1, 1, 1, 2, 1, 4, 1|1,
1, 1, 1, 2, 1; 1, 1, 2, 1, 3, 1; 1, 1, 3, 1, 4, 1; 1, 1, 1, 1, 4, 1|
1, 1, 1, 1; 1, 1, 2, 1; 1, 1, 3, 1; 1, 1, 4, 1&&type=2&&
time = 100” (for which the OGB computation lasts less
than one second). Then a Java HttpURLConnection is
open and the prepared string is send to the OGB server.
The results returned in the HTML format are extracted
by the grid service, with its output being the string
representing polynomials forming the reduced Gr öbner
basis.

The overhead introduced by accessing the OGB via
the grid service OGBInterface located on the cluster is
bigger than in the previous experiments due to the OGB
server being located on the Internet.

6.4. Experiment 4: Parallel computations in the grid
environment

While additional details and examples of parallel
usage of Maple2g can be found in citePVMMPI, here,
we continue with the integer multiplication example.
We consider the case of using three Maple 7 kernels to
speedup multiplication of two integers with 10 million
decimal digits. As stated above, the Maple 7 code from

>#Maple code: time to multiply 2 big integers
>p:=2�25: a:=2�p-1: s:=time(): a*(a+7): time()-s:

>#Maple2g code
>Karatsuba:=proc(A,B)
>local N,k,A0,A1,B0,B1,T0,T1,T2,E1,E2:
>N:=max(length(A),length(B)): k:=floor(N/2):
>if(N<10�6) then RETURN (A*B) end:
>with(m2g): m2g_MGProxy_start():
>m2g_connect(): m2g_maple(2):
>A0:=irem(A,10�k): A1:=iquo(A,10�k):
>B0:=irem(B,10�k): B1:=iquo(B,10�k):
>m2g_send(1,100,
cat("A0:=",A0,":B0:=",B0,":A0*B0;"):

>m2g_send(2,200,
cat("A1:=",A1,":B1:=",B1,":A1*B1;"):

>T1:=(A0+A1)*(B0+B1):
>T0:=m2g_recv(1,100): T2:=m2g_recv(2,200):
>E1:=parse(cat(T2,T0)):
>E2:=parse(cat(T1-T0-T2,
>substring(convert(10�k,string),2..k+1))):
>m2g_MGProxy_end();
>RETURN(E1+E2) end;
>p:=2�25:a:=2�p-1:
>s:=time():Karatsuba(a,a+7):time()-s;

Fig. 8. Multiplying two integers of 10 millions decimal digits – Maple
code used for efficiency comparisons; Maple2g code using Karatsuba
algorithm and three Maple kernels to speedup the computation.

Fig. 8 running on a cluster PC uses approximately 770
seconds to finish the multiplication.

Using three Maple kernels running the MAPLE2G

code from Fig. 8 on a homogeneous cluster consisting
of similar PCs connected at 2 Gbs, the running time was
reduced to approximately 320 seconds (efficiency of
80%). A 7% loss in efficiency was due to the use of grid
environment over the cluster instead of the cluster en-
vironment (MPICH-G2 instead MPICH). Another loss
of 6% of efficiency was registered when one kernel has
run remotely over the Internet outside of the local net-
work (respectively 5% when the radio connection was
used).

Finally we modified the code to simulate the first
recursion level of the classical Karatsuba algorithm.
Here, T 0, T 1 and T 2 defined in Fig. 8 are computed
using three distinct processors each; following the al-
gorithm described in Fig. 8. We used the grid environ-
ment consisting of all 9 PCs described at the beginning
of this section. The total execution time has decreased
from 770 seconds in the sequential case to 167 seconds
in the grid-parallel case, i.e. an efficiency of 51%. We
expect that when additional resources in the grid envi-
ronment are used, the total execution time will decrease
further.

D. Petcu et al. / Design and implementation of a grid extension for Maple 149

7. Concluding remarks

Developing grid-enabled computer algebra systems
is a necessary part of the emergence of true value of
grid computing. Several approaches to construct such
systems were discussed in this paper.

Following one such path, we developed Maple2g, a
wrapper for Maple, enabling it to access the grid ser-
vices and to be accessed as a grid service. Furthermore,
Maple2g allows distribution of computational effort to
several Maple kernels running on a parallel computer,
a cluster, or a grid.

Currently, Maple2g exists as a demonstrator system
with all of the functionalities described above imple-
mented. In the near future it will be further developed
to include facilities existing in other systems, in order
for it to become comparably robust as NetSolve (in is-
sues like load balancing, fault tolerance, security) or
Geodise (in issues like monitoring and authentication).

We will also perform experiments on the grid on a
large domain of problems. Experimental results will
help guide further development of the system. Deploy-
ment of grid services from Maple in other languages
than Maple using the code generation tools must be
take also into consideration. The next MGProxy ver-
sion will allow the cooperation between different CAS
kernels residing within the same or on different sites of
the computational grid.

References

[1] D. Abramson, J. Giddy and L. Kolter, High performance
parametric modelling with Nimrod/G: A killer application
for the global grid?, in Proc. IPDPS, 2000, 520–528,
http://www.csse.monash.edu.au/˜davida/papers/ipdps.pdf

[2] J.F. Baldomero, Parallel Virtual Machine Toolbox, in: Proc.
MATLAB, S. Dormido, ed., 1999, pp. 523–532, http:
//atc.ugr.es/ javier-bin/pvmtb eng.

[3] H. Casanova and J. Dongarra, NetSolve: a network
server for solving computational science problems, In-
ter.J. Supercomputer Appls. & HPC 11(3) (1997), 212–223,
http://icl.cs.utk.edu/netsolve/.

[4] R. Choy and A. Edelman, Matlab*P 2.0: a unified parallel
MATLAB, Proc. 2nd Singapore-MIT Alliance Symp., 2003,
in print.

[5] M. Gettrick, OGB: Online Gröbner Bases, http://grobner.
it.nuigalway.ie.

[6] M.H. Eres, G.E. Pound, Z. Jiao, J.L. Wason, F. Xu, A.J. Keane
and J.S. Cox, Implementation of a grid-enabled problem solv-
ing environment in Matlab, Proc. WCPSE, 2003, in print,
http://www.geodise.org.

[7] J. Kepner, Parallel programmimg with MatlabMpi, Proc.
HPEC, 2001.

[8] I. Foster and C. Kesselman, The Grid. Blueprint for a new
computing infrastructure, Morgan-Kaufmann, 1999.

[9] B. Haible, CLN, a class library for numbers, 2004, ftp://
ftp.ilog.fr/pub/Users/haible/gnu/ cln-1.18.tar.bz2.

[10] Java CoG Kit, http://www-unix.globus.org/cog/java/.
[11] G. von Laszewski and I. Foster, Usage of LDAP in

Globus, CSE 225 (High Performance Distributed Computing),
http://www. globus.org/mds/globus in ldap.html.

[12] MapleNet, http://www.maplesoft.com/maplenet/.
[13] MathML, The W3C’s Math Homepage, http://www.w3.org/

Math/.
[14] S. Matsuoka and H. Casanova, Network-enabled server sys-

tems and the computational grid, in Proc.GF4-WG3, 2000,
http://www.eece.unm.edu/˜apm/WhitePapers/GF4-
WG3-NES-whitepaper-draft-000705.pdf.

[15] MDS 2.2 Schemas. Definition of Schema, http://www.
globus.org/mds/Schema.html.

[16] mpiJava, http://www.npac.syr.edu/projects/pcrc/HPJava/
mpiJava.

[17] H. Nakada, M. Sato and S. Sekiguchi, Design and implemen-
tations of Ninf: towards a global computing infrastructure,
Future Generation Computing Systems, Metacomputing Issue
15(5–6) (1999), 649–658.

[18] D. Petcu, PVMaple:A distributed approach to cooperative
work of Maple processes, in: LNCS 1908, J. Dongarra et al.,
Springer, 2000, pp. 216–224.

[19] D. Petcu, D. Dubu and M. Paprzycki, Towards a Grid-aware
Computer Algebra System, in: LNCS 3036, eds. M. Bubak et
al, Springer, 2004, pp. 490–494.

[20] D. Petcu, D. Dubu and M. Paprzycki, A Grid-based Parallel
Maple, in: LNCS 3241, D. Kranzlmüller et al., eds, Springer,
2004, pp. 215–223.

[21] D. Petcu, D. Ţepeneu, M. Paprzycki and T. Ida, Symbolic
Computations on Grids, in: Engineering the Grid: status and
perspective, B. di Martino, J. Dongarra, A. Hoisie, L. Yang
and H. Zima, eds, Nova Science Publishers, Inc, to appear in
Spring 2005.

[22] W. Schreiner, C. Mittermaier and K. Bosa, Distributed Maple –
parallel computer algebra in networked environments, J. Sym-
bolic Computation 35(3) (2003), 305–347.

[23] V. Silva, Querying the Grid with the Globus Toolkit Mon-
itoring and Discovery Service, http://www-106.ibm.com/
developerworks/grid/library/gr-mds.

[24] V. Silva, Grid Job submission using the Java CoG Kit,
http://www-106.ibm.com/developerworks/library/gr-gridcog.

[25] A. Solomon, Distributed computing for conglomerate math-
ematical systems, in: Integration of Algebra and Geome-
try Software Systems, M. Joswig and N. Takayama, eds,
http://www.illywhacker.net/papers/webarch.ps.

[26] A. Solomon and C.A. Struble, JavaMath: an API for in-
ternet accessible mathematical services, in Proc. 5th Asian
Symp.on Computer Mathematics, World Scientific, 2001,
http://javamath.sourceforge.net/.

[27] D. Tepeneu and T. Ida, MathGridLink – Connecting Mathe-
matica to the Grid, in Procs. 6th Intern. Mathematica Sympo-
sium (IMS 2004), Banff, Alberta, Canada, August 2004.

[28] M. Wester, A critique of the mathematical abilities of
CA systems, in: Computer Algebra Systems: A Practi-
cal Guide, M. Wester, ed., John Wiley & Sons, 1999,
http://math.unm.edu/˜wester/cas review.html.

[29] Wolfram Research, MathLink, http://www.wolfram.com/
solutions/mathlink/.

[30] Wolfram Research, gridMathematica, http://www.wolfram.
com.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

