Scientific Programming 13 (2005) 205-217 205
10S Press

Parallel framework for cooperative processes

Mitica Craus and Laurentiu Rudeanu
Department of Computer Engineering, Technical University “Gh.Asachi”, 700050 lasi, Romania
E-mail: craus@cs.tuiasi.ro, Irudeanu@yahoo.com

Abstract. This paper describes the work of an object oriented framework designed to be used in the parallelization of a set of
related algorithms. Theideabehind the system we are describing isto have are-usable framework for running several sequential
algorithmsin a parallel environment. The algorithms that the framework can be used with have several things in common: they
have to run in cycles and the work should be possible to be split between several “processing units’. The parallel framework
uses the message-passing communication paradigm and is organized as a master-slave system. Two applications are presented:
an Ant Colony Optimization (ACO) parallel algorithm for the Travelling Salesman Problem (TSP) and an Image Processing (1P)
parallel agorithm for the Symmetrical Neighborhood Filter (SNF). The implementations of these applications by means of the

parallel framework prove to have good performances: approximatively linear speedup and low communication cost.

1. Introduction

Theideabehind the paradigm we are describingisto
have are-usableframework for running several sequen-
tial algorithms in a parallel environment. The start-
ing point was the need to study the behavior of severa
ant colony algorithms, i.e. to observe the relevance of
certain conditions, parameter values, and to test new
ideas. Because we were mainly concerned with ant
colonies we had in mind the previous work and at-
tempts of parallelization [1-4] with their shortcomings
and advantages. Our intention was to choose a model
of parallelization which would best suit the sequential
ant algorithm and to overcome — to some extent — the
main drawbacks of existing implementations for that
model. The central problem was the communication
overhead, which for big instances dramatically affects
the performance, namely the speed-up.

After thiswe realized that the design could be easily
extended in such a way that it can also be applied to
other algorithms, not only to ant colonies. Wewanted to
end up with a parallel framework flexible enough to be
configured for any user-provided “ external” algorithm.

The algorithms with which the framework can be
used have some things in common: they have to run
in cyclesand it should be possible to divide their work
among several “processing units’. Genetic algorithms,
for example, are suitable for being used with the frame-
work.

The paper is organized in the following way. First
we state the goals of the framework with respect to run-
ning algorithmsin parallel. Afterwardswe present our
design and implementation. As examples we present
an Ant Colony algorithmfor Travelling Salesman Prob-
lem and an Image Processing algorithm for the Sym-
metrical Neighborhood Filter.

2. Goals

Thetwo mainaimsof our effortsare: to createacom-
fortable level of abstraction and to optimize communi-
cation. The former means that the framework should
allow the programmer to replace one algorithm with
another with aminimum of effort. That would allow us
to try out many different implementationswith little ef-
fort. In order to achievethisfirst goal class design and
application architecture (which will be detailed in the
nest section) haveto be dealt with: the actual algorithm
to be parallelized would inherit from a generic class
for algorithms and the problem-specific tools and data
structures would have to match that specific algorithm.

Achieving the second goal would result in good
speedups even for larger problem instances. In order
to minimize the communi cation without atering the al-
gorithm’s idea we had to maintain detailed bookkeep-
ing information and to use an updating algorithm that
makes use of logical clocks, asit will bediscussed later
on.

ISSN 1058-9244/05/$17.00 © 2005 — |0OS Press and the authors. All rights reserved

206 M. Craus and L. Rudeanu / Parallel framework for cooperative processes

3. General description of the parallel framework

As previoudly stated, the framework uses message-
passing communication (the MPI library). Briefly, the
parallel framework works as follows.

At first the problem instance is read and the control
is passed to slaves by signaling them to start the algo-
rithm and the master waits for requests coming from
every slaveto updatethe data. Each slave workswith a
local instance of the sequential algorithm that operates
over alocal copy of the central data structures. In the
beginning each slave learns about the input data (i.e.
the problem instance), initializes the local copy of data
structures together with the sequential algorithm and
then waits for a start signal. When this happens the
slave passes the control further to the sequential algo-
rithm instance, providing it with acallback mechanism
whichisto be used whenever the algorithm decidesit is
time to pass the control back to the framework (for ex-
changing data with the master and other bookkeeping
operations). We will call this a checkpoint and we will
describeit in more detail sinceit isacritical operation
for the efficiency of communication. Basicaly com-
muni cation between processors only takes place during
these checkpoint moments.

4. Checkpoint

Itisknownthat communicationisthe most time con-
suming operation in a parallel message-passing sys-
tem. Sinceinour caseall communicationoccursduring
checkpointsthis operation is critical for the communi-
cation overhead and for the efficiency. That is why it
is important to implement it as carefully as possible.
More specifically, we are concerned with two issues:
how to schedule the checkpoints and what to do inside
a checkpoint, that is, what kind of datais necessary to
be sent over the interconnection network.

It is important to point out that in order to make an
efficient parallel implementation; the particular parallel
environment has to be considered. The underlying ar-
chitecture of the parallel machine and interconnection
network have major impact over the measured perfor-
mance of the algorithm (mainly communication time
and idle time). Since it is difficult to estimate these
systemtraitsin atheoretical formula, sometests should
be run in order to have an idea about how the system
behaves. We will get back to this later in this section.

60
50
40
30
20
10

Time

Fig. 1. The time of unscheduled versus scheduled communication
onaSunFire 15 K.

4.1. How the checkpoints are made

4.1.1. The policy for sending messages

The slaves request in turns data exchanges with the
master; the effect of this scheduling of updatesis that
between two consecutive checkpoints of the same pro-
cessor al other slaves have already made their changes
visiblein the global data structures of the master. This
slave-requested data exchanges that occur at different
moments make the system asynchronous and it also
makes it benefit of a “pipeline effect”, meaning that
while one processor is sending messages chances are
that the others are performing computation steps.

Thisisnot theonly reason the checkpointsare sched-
uled in this manner. Aswe have said before, the partic-
ular parallel machine’s behavior in sending messages
hasagreat deal of influence over the performanceof the
parallel program. If all slaves have to asynchronously
send messages to the master, one might see two ways
of doing it. Either by letting them try at the same
time, with no particular schedule, and let the system
and the interconnect handle (presumably in an effi-
cient way) the situation (no scheduling), or by making
them take turns in transferring data, and seriaize the
dataexchangesby having the master acknowledgeeach
pending request(scheduling). Choosing between these
two ways is not as straightforward as it might seem.
Theformer is expected to deliver the best performance,
though the results of the tests we have run showed
quite the opposite. For tests and practical implementa-
tion we have used a Sun Fire 15 K HPC service hav-
ing a backend with 48 processors. Each slave sent a
message of 500,000 double values to the master with
and without scheduling and the communication times
were compared. Thetwo sets of valueswere printed in
Fig. 1. It can be seen that as the number of processors
increases the time for scheduled sending of messages

M. Craus and L. Rudeanu / Parallel framework for cooperative processes 207

18

14 p

time(sec)
P~
T

0.6

02 ~

—%—

—
0 2 2

X—x
—x—%"

MPI'_Gather()
scheduled p2p

,x/"/

0 5 10

15 20 25
CPUs

Fig. 2. Thetime of MPI Gather versus scheduled communication on a Sun HPC.

(the second way) drops to nearly half the time needed
for unscheduled communication.

In order to collect al the changesthat have occurred
in the slave processors into a central master proces-
sor we cannot oversee the primitives which an MPI li-
brary hasto offer for collective communication. More-
over one might assume that these primitiveswould deal
with collective operations much more efficiently than
the user could possibly do using only simple point
to point communication primitives (send and receive
operations); in our case the collective operation that
would beappropriatefor useisof course MP1 Gather ().
However we found out that — on the systems we have
had access to — the scheduled communication we have
described earlier delivered a much better performance
than MPI1 Gather() did. In the tests each slave proces-
sor sent a message to a master processor, first using
MPI Gather() and then using our scheduled point to
point communication. The tests were carried out with
various messages lengths and with an increasing num-
ber of processors. Communication times were mea-
sured and in each case our system behaved better. The
results obtained for message lengths of 500,000 double
values are depicted in Fig. 2. The tests were run on a
Sun HPC system with 24 processors and the Sun MPI
library was used as the MPI implementation.

In our opinion these considerations are significant
and provideastrong case for choosing the | atter, sched-

uled communication scheme over the former, unsched-
uled.

However it is not safe to assume that the above con-
clusion would hold in any context, so the choice of
scheduling the data exchanges is ultimately left as a
parameter to the user. A test program similar to the
simple program we have made to evaluate the benefit
of scheduling the transfers can help the user in making
the decision. If the parameter is left unchanged the
default behavior for the framework is to use scheduled
communication.

4.1.2. What to do inside a checkpoint

Now that we know how to efficiently schedule the
data exchanges between the slaves and the master (the
so called“ checkpoint” we have mentioned), let usfocus
on the second issue, that is, what to send during such a
checkpoint.

Both the framework and the sequential algorithmare
aware of the generic concept of a change. This des-
ignates the elementary item in agorithm’s data struc-
tures that can be modified. For the ACO agorithm for
example a change would be a real number represent-
ing the amount of pheromone that is to be laid on an
edge of the graph. During a checkpoint collections of
changes are exchanged: the dave sends its modifica-
tionsto master which in turn replieswith the collection
of changes that the slave is unaware of. On the Slave

208 M. Craus and L. Rudeanu / Parallel framework for cooperative processes

sendChangesToSlave(slave)
begin
//get the collection of changes for slave
changeCollection = { } //changes to be
//sent to slave
for ch in all items in the data structures do
if ch.clock > slave.clock //update
add ch to changeCollection
end for
//send the changes to slave
sendChanges(changeCol lection, slave)
//update the logical clocks
currentClockValue++ //increment current
//clock value
for ch in changeList do
ch.clock=currentClockValue
end for
slave.clock=currentClockvalue
end

Fig. 3. The procedure that the master executes in order to send
updates to aslave.

sideit is easy to decide what is needed to be sent in the
next checkpoint: the agorithm simply adds everything
that it has modified to acollection of changes (whichis
emptied before each cycle begins). On master’s side,
however, there is a special module called the “book-
keeper” which makes use of the logical clocks to be
able to determine the items in the data structure (i.e.
the above mentioned changes) that are to be sent to a
particular slave, should the checkpoint time come. In
order to decide which changes are to be sent, an item
that can changealso containsalogical clock, which can
be seen as a “version number” that gets incremented.
Also each slave processor has a similar logica clock
associated with it.

In order to get the list of changes and send it to a
dlave, the master executes the procedurein Fig. 3.

This way a dave receives only the changes whose
clock values indicate that they were made after last
checkpoint of that slave. Since then other slaves have
certainly undertook checkpoints and have sent their
changesto the master, changes which haveto be trans-
mitted tothe slavethat iscurrently undertaking acheck-
point. Another way to do this would be to alocate a
gueue of outgoing changes for each dave and to place
each incoming change in the other dlaves’ queues.

In Fig. 4 below there is an outline of the runflow in
the framework. The master passes the control to slaves
by signaling themto start executing the sequential ago-
rithm and then waits for checkpoint requests. Theslave
initializesits structuresand then passesa callback func-
tion to the sequential algorithm before letting it take
over. When the algorithm completesacycleand hasits
partial resultsready it callsthis callback function, pass-
ing the control back to framework. The slave is then

(Slave) (Sequential Algorithm)
start signal I I

| | start J
| | | cycle
| | callback function 1
send patch Y 1
checkpoint
I get patch T ;l
I I
cycle

Fig. 4. How the master and the slaves work in the two-level parallel
framework.

submitting a checkpoint request to master. When it re-
ceivesthe acknowledgeit packsthe changesto be sent,
sends them and then receives and unpacks the changes
from master, applying them to local structures. When
the checkpoint is over the callback function returns and
the sequential algorithm carries on.

As part of the checkpoint, the solution obtained by
the daveinthe last cycle — or a quantitative evaluation
of it —is aso passed to the master.

What else can be done inside a checkpoint? Basi-
cally anything that is considered important by the algo-
rithmwhichisdealt with by theframework. The proce-
dures for sending and receiving collections of changes
are supplied by the sequential algorithm and the check-
point procedure can be overridden. In thisway the pro-
tocol for data exchange can be customized to meet any
specific demands. For examplethere are several paral-
lel implementation of ACO meta-heuristic[1,5] that in
order to minimize the communication overhead chose
to schedul e the data exchanges between the server and
the master to take place once every predefined number
k of cycles. If it's needed this can also be done in
our case by making the sequential algorithm call the
callback function (segAlgReady()) every k cycles. An-
other example is the global updating rule in ant algo-
rithms, which might exist or not. In our case this can
be managed by changing the function that handles the
checkpoint requests in the master.

5. Framework implementation

The framework has an object oriented design and
was implemented in C++, using the MPI library. Be-

M. Craus and L. Rudeanu / Parallel framework for cooperative processes 209

side the master and slave classes there are several com-
ponents that interact and are related to the specific al-
gorithm. The framework should be able to switch an
algorithm with another one with a minimum of effort
on behalf of the programmer, thereforetherehasto bea
way to changethe“family” of objectsto becreated once
the sequential algorithm has changed. One way to ac-
complish thisis by the use of an abstract factory which
user supplied concrete factories will inherit from. The
abstract factory the framework isworkingwithiscalled
SeqAlgFactory. The user should create a concrete
factory as a subclass of this abstract factory and pass it
as an initialization parameter to the framework. Inside
the concrete factory there have to be functions for cre-
ating objects of the related types described above: the
sequential algorithm, the input data for the algorithm,
the “bookkeeper”, the “change” and the “patcher”. In
this section we give a short description of these classes.

The classes CmdUnit and ProcessingUnit encapsu-
late master and slave functionality, respectively. They
work much like atemplate, defining the behavior of the
framework. Thesetwo arethemain classesand provide
a frame where the sequential algorithm and all related
objectsfitin.

The CmdUnit interface is described bellow:

void init(SegAlgFactory* sf): This function takes
care of initializing the master processing unit. Nor-
mally the user does not need to change this function.
The parameter sf, of type SegAlgFactory, has to be
provided by the user.

void run(): Once this function is called the master
processor enters in running state; when the slaves be-
come activetoo the framework is starting the execution
of the sequential algorithm.

void abort(): Forces the framework to stop the exe-
cution of the sequential algorithm. The halting process
is“graceful” and the data structures are reset so that a
clean restart of the algorithm is possible.

void terminate(): This callback is being invoked by
the framework after the sequential algorithm has fin-
ished. The user can define this function to run custom
tasksat the end of the sequential algorithm, likefinding
the best solution etc.

void ckptAck(int pid) : Acceptsapending checkpoint
request coming from the slave denoted by pid.

void getTotalWork(): Theuser shouldimplement this
in order to have a quantitative estimation of the total
work to bedoneby the sequential algorithm. Itisuseful
for determining the work share for each dave.

TheProcessingUnit classiscomposed from thefunc-
tions below:

int init(SeqAlgFactory*): Initializes the save pro-
cessing unit, in the way that CmdUnit::init() takes care
of initialization in the master. The parameter SeqAl-
gFactory parameter has to be provided by the user.

void run(): Itissimilar to the function with the same
name in master: it sets the slave processor in running
state and synchronizewith the others. When all of them
are ready the framework is starting to the execution of
the sequential algorithm.

void abort() and void terminate() These two func-
tions are similar to ones found in CmdUnit.

void seqAlgReady(): A callback that is invoked by
the framework at the end of each algorithm’s cycle and
takes care of performing a checkpoint with the master
processor. Normally the user should not need to touch
this unless a special behavior is needed.

int getWorkShare(): Gives an estimation of the work
share attributed to this unit, based on the master’s esti-
mation of the total amount of work

void requestCkptAck(): Posts a checkpoint request
to the master and waits for acknowledge.

The SegAlgFactory class is responsible for pro-
viding the instance of sequential algorithm, subclass
of SegAlg, and the tools related to it: the Patcher
and the BookKeeper objects. The following func-
tions have to be provided when the user is using the
framework with a specific algorithm: SeqAlg* create-
SegAlg(), Patcher* createPatcher() and BookKeeper*
createBookKeeper(SegAlg* alg, Patcher™ p).

SeqgAlg is the sequential algorithm the framework is
workingwith (i.e. thatisto beparallelized). A subclass
of this class should be provided by whoever wants to
make use of the framework. The description of this
classfollows.

long int getTotalWork(): A user estimation of the
total work to be done (in parallél).

void addCycleChange(Change*): Adds a new
change to the set of changes made so far in the current
cycle.

Iterator* getCycleChanges(): Returns the changes
made so far in the current cycle.

void init(): A callback whichisinvoked by theframe-
work before the sequential algorithm startsin order to
allow for custom initialization. This has to be defined
by the user.

void readInstance(const char*): Reads the problem
instance from afile. Theinstance is closely related to
the specific algorithm, that’swhy the user hasto define
thisfunction.

long int getTotalCycles(): Givesthe total number of
cycles needed by the sequential algorithm. Thishasto
be defined by the user.

210 M. Craus and L. Rudeanu / Parallel framework for cooperative processes

void cycle(): The behavior of the sequential algo-
rithm is mainly given by this function. This hasto be
defined by the user.

void applyChange(Change *): Updatesthelocal data
structures with a change that was just received as a
result of acheckpoint operation. Thishasto be defined
by the user.

The Patcher class is used for efficiently packing
and unpacking the collection of algorithm-dependant
changes to be sent over the network. Hereisalisting
of the functionsit provides:

void addChange(Change*): Enqueuesanew change
to the set of changes to be sent.

void removeAllChanges(): Clears al previousy
added changes.

Iterator* getChanges(): Returns the current set of
changes queued in this object (not yet sent).

void setChanges(lterator*): Sets the whole collec-
tion of changes to be sent by this object.

Iterator* getPatchFromPid(int pid) and void send-
PatchToPid(lterator* it, int pid) : The user hasto im-
plement thesetwo functionsin order to definethe proto-
col to serialize/deserialize the sets of changesfor trans-
fer them from a processor to another. Thisis atime
consuming operation and for efficiency reasons it can
not have a generic implementation: since the Change
objects are defined by the user, the functions that pack
and unpack the sets of changes also have to be defined
by the user.

The BookKeeper class handles the bookkeeping of
changes and other data structures in the master. Below
isalist of the functionsit provides.

void initStructures() and void freeStructures(): These
two functions are called by the framework to initialize
and destroy any specific data structures the bookkeeper
might have.

void handleCkptRequest(int pid): This takes care of
a checkpoint request coming from the slave processor
denoted by pid. Basically what it needsto do isto get
the changes from the slave (by calling receivePatch())
and to reply with the proper list of changes for that
slave (sendChangesToSlave()).

Iterator* getChangesForPid(int pid): Obtains the
list of changesthat the slave with id pid needsto know
about.

sendChangesToSlave(int pid): Sends the set of
changes obtained by getChangesForPid() to dave pid
and then calls updateClocks() updatesthe logical clock
values for the same dave.

void updateClocks(int pid): Updatesthe clocks after
adlavewith id pid has performed a checkpoint.

void receivePatch(int): Delegatesto the patcher ob-
ject to receive the set of changes from the slave.

Iterator *getReceivedChanges(): Returns the set of
changes that has just been received from the slave via
receivePatch().

void applyReceivedChanges(): This calls the user
defined function applyChange() for each change that
was received.

Inthe functions abovewe have encountered the class
Iterator for several times; it is useful for iterating
through a sequence of generic Element objects. For
example the Change is also an Element. The semantic
is straightforward and here is the content of these two
classes.

void addElement(Element *elem)

void removeElement(long int)

int hasMoreElements()

Element* getNextElement()

long int getCount(): Returns the number of itemsin
the iterator.

void rewind(): Rollstheiterator back to thefirst item
in the collection.

void empty()

Iterator *dupData(): Copies the elements of this
iterator into a new one.

void destroy()

An Iterator workswith generic Element objects. The
Element classisvery simple, but may be subclassed by
the user as needed. It exposes only one function:

long int getld(): This identification number is for
indexing purposes.

One case where Element is subclassed is the Change
class. In addition to the functions inherited from
Element this class has some functions for managing
the clock value:

long int getClockValue(): Returns the current clock
value associated with this change.

void setClockValue(long int): Setsanew clock value
for this change.

void incClockValue(): Increments the value of the
current clock value for this change.

6. Case study I: Ant colony algorithm for the
travelling salesman problem

As we have said earlier, one of the agorithms we
have chosen to parallelize using the designed frame-
work isthe Ant Colony (ACO) agorithmfor Travelling
Salesman Problem (TSP).

M. Craus and L. Rudeanu / Parallel framework for cooperative processes 211

6.1. Artificial ant colonies and the basic application
to TSP

TSP is the classic problem of finding the shortest
circuit through a set of n cities, visiting each city of the
tour exactly once. A symmetric TSP can berepresented
by a complete weighted graph G with n nodes, the
weights representing the distances between the cities.
The Euclidean variant of the TSP defines the cities
as points in a plane and weights the edges with the
Euclidean distances between the corresponding cities.
Theresulting graph is complete. TSP isknownto bea
NP-hard combinatorial problem.

The Ant Colony Optimization (ACO) isageneraliza-
tion of the Ant System algorithms, which wereinspired
by the social behavior observed in real ant colonies.
The interesting aspect of their behavior was their abil-
ity to find the shortest path from the place where food
was found to the nest. The investigations showed that
the ants managed to do this by communicating indi-
rectly viapheromonetrailsthat they left behind. These
pheromonetrails act as aform of indirect communica-
tion among ants (called stigmergy) because they attract
other ants thus generating a positive feedback called
autocatalytic effect [6-8]. The idea of ACO is best
illustrated by showing one of the first applications of
the ant algorithm — the Ant System algorithm — which
was targeted to find good solutions for the TSP, Here
is a short description of how it works. The edges of
the graph have pheromone val ues, which the ants mod-
ify. Initially a number of ants are randomly positioned
among the nodes. The ants move from one node to an-
other following a state transition rule, until each ant has
completed ahamiltonian tour. During acycle each ants
visitseach city (node) exactly once. Thestatetransition
rule is a heuristic based on the weight and the amount
of pheromone of the edge between thetwo cities. Each
ant moveis called an iteration and when every ant has
completed its tour we say that a cycle has ended. The
intensity of pheromonestrailson the edgesthat the ants
used in their tours are updated as it will be explained
below. In some implementations, the pheromones on
the edges of the best tour are strengthened once more
according to a global updating rule. Before the next
cycle begins a small fraction of the pheromones on
all graph edges is evaporated to encourage the ants to
search for new paths rather than to exploit the ones
they already know. After this operation is completed
the ants can start the next cycle from the nodes where
they the ended the previous cycle. After a predefined
number of ant cycles (or when a stopping condition

becomes valid) best result among the ants qualifies as
the optimal solution.

The basic idea explained above will be presented in
amoreformal way in the remaining part of this section.

Let 7;;(t) betheintensity of the pheromonetrail on
edge (i,j) a time ¢ and let b;(¢) be the number of ants
incity i attimet, i = 1,n;thenm = Y7, b;(¢) isthe
total number of ants.

The ant movement from the current node to the next
is governed by the state transition rule: for every un-
visited neighbor of the current node, a probability of
migration is computed. For an ant £ which at time ¢ is
in node : the probability of the ant to migrate to node j
attimet+1isdefinedin Eq. (1). Thechoiceof thenode
to use as destination for the ant move is made using
a “whedl of fortune” probabilistic mechanism which
uses the probabilities that we've explained above.

[r5 (0] * 25 (£)]°
Z ['ﬁl(t)]a[nml(t)]ﬁ
PZ.’; (t) = 1eatlowed(n) @D
j € allowed(k)
0 otherwise

— allowedy,(t) is the set of cities not visited by ant
kattimet.

- 1, (t) isaloca heuristic and for TSP it's called
visibility; it is usually defined as the distance
between the nodes (the weight of the graph edge
corresponding to the two nodes).

- «, [aretwo parameterswhich control therelative
importance of pheromonetrail versus visibility.

At timet + n, a the end of the cycle, all ants will
have completed their tours and the intensity of the
pheromonetrail on edge (i, j) will be increased with a
value corresponding to al ants which have walked on
edge (4, j) during the cycle. Theformulafor thisvalue
isgiven by Eq. (2).

Aij(t,t+n)=> Ak(tt+n))
k=1

Afj (t,t+n) istheintensity of the pheromonetrail laid
by ant k£ on edge (¢, j) in time interval [t, t+n] and is
given by Eg. (3).

LQk if ant & uses edge (i, j)
0 otherwise

k —
At t4n) = { ©)
At the end of the cycle, after the evaporation process
iscompleted, the intensity of pheromonevalue on edge
(4, 7) will be:

Tii(t+n) =1 —p) 7;(t) + Ayt t+n) (4

212 M. Craus and L. Rudeanu / Parallel framework for cooperative processes

where p is a coefficient representing pheromone evap-
oration (0 < p < 1).

The outline of the Ant System algorithm is given
below.

Initialize: place the m ants randomly among
the cities
for t=1 to number of cycles do
for k=1 to m do
repeat until ant k has completed a tour
Probabilistic choice for the next city
j to be visited
end repeat
Evaluate the solution: calculate the
length
Lk of the tour generated by ant k
end for
Save the best solution found so far
Update the trail levels on all edges (i,3)
used by the ants in the current cycle
Evaporate the pheromone on all edges
Apply the global updating rule (if defined)
end for
Print the best solution found

Thenew ACO metaheuristic further extendsthe con-
cepts defined by this simple Ant System algorithm,
making it possible to be used in solving any combi-
natorial optimization problem whose solutions can be
represented as pathsin a graph.

6.2. Other approaches/previous work

There are quite afew parallelizations of ACO algo-
rithms in the literature. We describe the most impor-
tant of them briefly: In [3] Stutzle points out the fact
that thereis no ruleto efficiently parallelize ACO algo-
rithms because this process greatly depends on the un-
derlying computing platform and on the interconnec-
tion network. He suggests the use of the MIMD archi-
tecture in the process (for example, a cluster of work-
stations), and then he focuses on parallel independent
runsof the same sequential algorithm. Theauthor com-
pares the quality of the solution obtained by executing
several independent short runs of an ant algorithm with
the solution quality of the execution of one long run
equaling the sum of the running times of the short runs.
In some specific conditions the short runs prove to be
better. Also, with no communication between them,
they can be easily run in parallel with virtually linear
speedup.

In [1] an MPI implementation with master-slave
architecture is presented, and this is similar to our
approach. However for the sake of simplicity syn-
chronous communication has been used, which affects

the performance, because of the time needed for the
processorsto synchronize. Inorder toimprovethecom-
muni cation overhead, they have chosen to perform in-
formation exchanges between the master and the slaves
once every some predefined number of iterations. This
choice reduces the communi cation overhead but it also
maodifies the usual behavior of the algorithm.

A similar, master slave synchronous approachis de-
scribed in [5] by Bullnheimer and Strauss, though they
don’'t have a practical implementation. Instead they
use N-MAP, atool that can simulate the execution of
message passing algorithms and analyze their perfor-
mance (the ratio of computation, communication and
idle times). They have achieved a speedup that in-
creases proportionally with the instance size. However
the communication model that was used assumes that
simultaneous transmission of messages is possible and
that it takes aslong asthe delivery of asingle message.
Thisis generally not true, of course. The authors have
also felt compelled to minimize the communication
overhead by performing data exchanges once every k
iterations of the algorithm. This kind of data exchange
certainly hasapositive effect on efficiency and speedup
but they are also aware of thefact that it distorts the ant
algorithm as the antsin a processor don’t interact with
othersat all duringthose k iterations. Furthermore, the
way inwhich thisinfluencesthe quality of the solutions
is not analyzed.

In [9] the authors take note of the fact that in a
master-slave approach, with centralized datastructures,
a bottleneck can occur at the master. A solution for
this problem is to have a hierarchy of master processes
instead of a single one. At the bottom level of the
hierarchy each master takes care of anumber of slaves.

In [2] adescription of the implementation using the
shared memory model and the OpenMP as a parallel
environment is given. The authorstry to show that the
shared memory model is more adequate to the prob-
lem (parallelization of ant colonies) than the message
passing model. Synchronization and timing issues are
taken into account and also the necessary amount of
effort.

An implementation using OpenMP would have at
least one weak point: it hinders the programmer to
have control over the slave threads by imposing the
synchronization of all threads at the end of the parallel
section. Thisresultsin idle times for synchronization
of the threads and moreover al child threads would
try to update the central data structures simultaneously.
Whether or not this is the best choice greatly depends
on the underlying parallel system and — as we have

M. Craus and L. Rudeanu / Parallel framework for cooperative processes 213

seen earlier —in some casesit is preferableto do things
the other way around. We have chosen to control the
threads and the timing of data exchanges ourselves,
with a bit of extrawork.

6.3. Implementation

We have explained the choice of message-passing
model and MPI over shared memory and OpenMP in
the previous section. After having decided upon the
most suitable model to adopt, the way in which the
work will be shared among processors has still to be
discussed. In our case we could distribute either the
verticesor the antsto processors. Thefirst choiceis not
very appropriate because imbalance can occur: if there
were a vertex with a high degree then the processor
that contained it would have more work to do than the
others. Therefore we have chosen the latter alternative
(the ants are to be evenly distributed to processors).

Since each ant acts independently of the others lin-
ear speedups can be obtained. In practice, however,
the communication incurred by the management of the
pheromonetrails as global information is an important
overhead. Sinceall ants use and update the pheromone
trails, access to the latter is clearly the key point to
efficient parallel implementations.

It isnecessary for the pheromonevaluesto be shared
by all ants even if the ants are hosted by different pro-
cessors. Throughout the cycle however the antsin one
processor have no contact with the other ants. The
“global” pheromone matrix is maintained by the mas-
ter.

In the beginning, all workers read the problem in-
stance and aretold by the master about their work share
(i.e. the number of ants). Each worker (slave) has its
own local copy of the pheromone matrix, which ants
modify during the cycle. The local matrix is synchro-
nized with the master’s, as we have discussed, at the
end of each ant cycle, through checkpoint operations.
The synchronization is by no means accomplished by
sending whole matrices over the network as for large
instances this could result in serious data traffic on the
interconnect and therefore high communication over-
head; instead the patcher object is called in to pack
and send (or to receive and unpack) the collections of
changes. The collections of changes for al antsin a
processor are lumped together by the patcher object in
asingletransfer in such away that therewill be at most
one change object for any modified edge, even if more
than one update of its pheromoneval uewere performed
(by different ants), thus minimizing communication.

30
25

Speedup
[N
o
1

1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
CPUs

0 1

Fig. 5. The speedup achieved with the two-level parallel framework
for TS.

The generic change we have mentioned earlier when
describing the design of the framework is represented
by an edge and a rea value reflecting amount of
pheromone to be added to the specified edge.

There is no need to take into consideration the
pheromone evaporation when building the patch with
changesto be sent over the network, as the evaporation
process can be handled locally by each CPU.

The generic classes described in Subsection 5 were
subclassed as follows:

— SegAlg: AcoAlg.

— BookKeeper: AcoBookKeeper.
— Change: AcoChange.

— Patcher: AcoPatcher.

As afinal note, we have already showed in Subsec-
tion 4 some of the ways the framework can be cus-
tomized, by modifying or even overriding different
functions.

6.4. Experiments

In order to test the framework and the paralleliza-
tion of ACO for TSP, a TSP instance with 229 cities
(gr229.tsp) fromthe TSPLIB library was used. For tests
and practical implementation of the parallel framework
wehaveused aSun Fire 15 HPC service having aback-
end with 48 processors. The tests have been carried
out with an increasing number of processors, from 2
up to 36 processors. Each valueis an average over five
runs and the sequential time was measured to 234.978
seconds.

Thediagramin Fig. 5 below depicts the speedup that
was achieved.

214 M. Craus and L. Rudeanu / Parallel framework for cooperative processes

7. Case study I1: Parallel image processing:
symmetrical neighborhood filter

The framework application we are presenting in this
section is from the field of image processing and it is
about applying a convergent filter onto an image. We
are not claiming that in this case the best choice for
parallelization is to use our framework, but this rather
wants to be another usage example of the framework
for anew kind of application (image processing).

7.1. How SNF works

The Symmetrical Neighborhood Filter (SNF) is used
inimage segmentation algorithms, which cluster pixels
into homogenous regions. Before starting to classify
the pixelsby adjacency and similar properties, thenoise
inherent to real images (due to physical equipment,
lighting conditions, physical imperfections) has to be
reduced in order to not have single pixel outliers. The
SNFfilter smoothesout theinterior of aregiontoanear-
homogenouslevel and not only it preservestheexisting
edges but also sharpens blurred edges (as opposed to
most existing preprocessing filters, which smooth the
interior of regions at the cost of degrading the edges).

The SNF works the following way: for each pixel
the gray values of symmetric neighbor pairsaround the
center pixel are compared with the pixel’s gray value.
The valuefor apair is chosen to be the closest value —
of the two values in the pair — to the center pixdl, if
thisvalueiswithin e of the center pixel, or the value of
the center pixel itself otherwise. An average valueis
computed over the center pixel and the computed values
of the 4 pairs, and then the center pixel’s gray value
is set as the mean between that average and the center
pixel’s current gray value. If the new value doesn’t
differ from the previous one the center pixel is called
to be fixed.

Thefilter isconvergent andisappliedfor apredefined
number of times or until a termination condition is
fulfilled (eg: until a percentage of the pixels become
fixed)

7.2. Other approaches

Several previous successful paralelization attempts
(for SIMD machines, systolic arrays and pipelined
computers) are mentioned in [10]. The authors aso
have their own implementation, with an obvious data
exchange pattern where a processor is taking care of
a region of the matrix representing the image, of size

Pi-1.j-1 : | Pilj : | P+l
| : | :
| |
ghostNW : i ghostN | i ghostNE
| |
_.EH D B
__ P m— -
o
ghostW q ghostE
Pi j1 w Pi,j Pi, j+l
T IJ _I [
ghostSW, | ghostS | ghostSE
B
Pitl.j-1 1 ' O Pislj : Pitl, j+1

Fig. 6. The ghost regions [10].

A with n being the size of the (square) matrix and p
is the number of processors. For computing the gray
values for the pixels on the border of the region a pro-
cessor needs to know those pixels' neighbors. They
name those pixel regions as ghost regions and for a
region by size ¢ x r held by a processor they define 8
ghost regions: for North, South (r pixels each), Eadt,
West (¢ pixelseach) and also four one-pixel regionsfor
North-East, North-West, South-East and South-West,
as shown in Fig. 6. The pixels in the ghost regions
are in neighbor regions and are actually processed by
a“neighbor” processor (which, in turn needs to know
about pixels on the border of the current processor).
Thereforewhen aniteration of thefilter isfinished each
processor needs to synchronize with its neighbor pro-
cessorsto exchangethe new values—if any —that were
computed for the pixelsin the ghost regions. If a pixel
was or becomes fixed there is no need to synchronize
it.

In the communication scheme they use, a processor
exchanges*” ghost regions” withitseight neighbors after
each iteration of the filter.

7.3. Implementation

The strategy for data exchangeis very similar to the
one described in [10] as this is a natural and obvious

M. Craus and L. Rudeanu / Parallel framework for cooperative processes 215

approach: the pixels that a processor has “touched”
in the last application of the filter have to be spread
to the neighbor processorsin order for them to update
their ghost regions. The implementation of this data
exchange, however, differsin some respects.

In terms of our framework, the set of changes that
aworker has made in the last cycle and needs to com-
municate to master in a checkpoint is the current set of
non-fixed pixels on the border, i.e. those that got their
gray value updated and are located on the border. The
other modified pixels will be kept ready for the next
iteration and only after the last cycle they will be sent
to the master in order to re-assembly the whole matrix.

The bookkeeper in the master knows about what
pixelseach worker isinterested in keepingin synch and
whenit receivesthelists of changesfrom all processors
it knows to assembly response-patches containing the
combined lists of values which were modified by other
processors and for which the worker is interested in.
Moreover, as a slave can deduce how the image was
split among processors, itisabletotell which pixelsare
not interesting to any of its neighbors and it can filter
them out from the set of changesin order to lower the
communication cost. This is the case with the pixels
on the out-border of the big image, which are not near
any of the neighbor regions.

For this application the new classesthat werederived
from the ones described in Section 5 are as follows:

— SegAlg: SnfAlg: contains the logic for updating
thegray valuesfor thepixelsintheregionallocated
to the current worker.

— BookKeeper: SnfBookKeeper: manages the up-
date lists for each worker, based on their interest
lists. The image is stored in a matrix of integers
P, where each element P;; containsthe gray level
for pixel at coordinate (¢, j) intheinitial image. In
our approach the image is split in chunks of rows
(or columns) instead of square regions. Theinter-
est lists that are built in the master’s bookkeeper
are based on what rows/columns each processor
has.

— Change: SnfChange: contains a pair of coordi-
natesfor the pixel along with an integer represent-
ing the new gray value that was computed.

— Patcher: SnfPatcher: for handling the updates of
the ghost and border regions in each processor.

At checkpoint time each worker first sendsitslist of
cycle changes (pixels on the border that were modified
inthe past cycle, as discussed above) packedinasingle
message to the master node. In the second step it

' speedﬁp ——

T T T T T T T T
1 1 1 1 1 1 1 1

1 1 1
0 5 10 15 20
CPUs

N
ol

Fig. 7. The speedup achieved with the two-level parallel framework
for SNF.

receives the list of changes that need to be applied to
the local region in order to update the pixels in the
ghost regions that were modified by other processors.
Therefore instead of eight data transfers only two are
necessary. We have not studied whether or not this
brings a performance gain over the approach in [10].

7.4. Experimental results

The tests of the SNF algorithm within our parallel
framework were done on a Sun HPC service having a
backend with 24 processors. The test runs have been
carried out with an increasing number of processors,
from 4 up to 24 processors. The tests consisted of
applying the SNF filter on arandomly generated image
of 1024 x 768 pixelsin size, with 16 bit gray levels.
Thefilter was configured to stop after 50 iterations and
had the parameter e (described in section A) set to 20.
The diagram in Fig. 7 below depicts the speedup that
was achieved.

8. Conclusions, actual and future work

Thealgorithmstested by meansof our parallel frame-
work have good performance: the approximatively lin-
ear speedup (for up to 22 CPUs) and low communica-
tion cost. It is assumed that the pronounced degrad-
ing of the speedup, that occurs over 22 processors in
the case of ACO, is happening when the sum of com-
munication times of all slaves during a cycle reaches
values close enough to the average processor compu-
tation time for one cycle. Thisis the point when wait
times begin to occur inside processing units when they
reach checkpoints, because at that time there are till
one or more processors which haven't finished their
checkpoint. The reason we think it comes to such a
bottleneck situation is that as the number of processors

216 M. Craus and L. Rudeanu / Parallel framework for cooperative processes

growsthe checkpoint communi cationtime doesn’t nec-
essarily decrease to make it possible for the increasing
number of checkpoints to fit within the per-processor
cycle computation time, which usually gets shorter (in
the case of a parallel ACO algorithm more processors
mean |ess ants per processor to move around, therefore
less work to do). This means that a processor that is
trying to perform a checkpoint while another still has
not finished its own checkpoint would have to wait un-
til it receives the acknowledge signal from the master,
signaling that the ongoing checkpoint hasfinished; oth-
erwise it would have to try to overlap the checkpoaints,
which as we have shownis not alwaysagoodideaasit
doesn’t necessarily lead to better communication time.

These suppositionshavedriven usto devel op amulti-
level model, which tries to go around the discussed
bottleneck issues. Theseis part of our actual and future
work.

We briefly describe athree-level parallel framework.
Therearethreetypesof processing nodes: asinglemas-
ter, several submasters and severa slaves. The mas-
ter communicates with the submasters and each sub-
master communicates with a predefined set of slaves.
The system is useful only if the number of submasters
is at least 2 and there is at least one submaster with
more than one slave. The number of submasters (and
therefore the number of daves) is a parameter in the
program and is known before runtime. Based on the
rank number, each processor is ableto tell whether itis
a slave, a submaster or a master. Also each dave can
deduce the rank of its submaster and each submaster
can computethelist of the slaves it has to take care of.
At firgt, the problem instance is read and the central
data structures are initialized. The control then passes
to the slaves which start the al gorithm while the master
and the submasters are waiting for requests to update
the data. Each slave workswith alocal instance of the
sequential algorithm that operates over alocal copy of
thecentral datastructures. 1t receivestheinput data(the
problem instance) and initializes the local data struc-
tures together with the sequential algorithm. It then
passes the control further to the sequential algorithm
instance, providing it with a callback mechanism to be
used whenever the algorithm decides it’s time to pass
the control back to the framework, for updating the data
structures with what other slaves have computed and
other bookkeeping operations. Inside a checkpoint the
slave sendsthe datait hasmodified toits submaster, asa
list of generic change objects. The submaster has some
temporary data structures for forwarding the data be-
tween the slaves and the central master. A bookkeeper

in each submaster stores the list locally, builds a com-
pletelist of changesthat need to be sent to that specific
slave and then sends it. The dave then carries on exe-
cuting another cycle of the sequential algorithm. When
al or atunable percent of a submaster’'s slaves have
completed their checkpoints, the submaster initiates a
checkpoint with the central master. It efficiently packs
all thechangesit had received fromthe dlavesinthelast
cycle and sendsthem to the master. The master applies
the list of changes to its structures and also packs the
data that the submaster is unaware of and sends them
to the submaster (that contains changes made by other
slavesin other submasters). So the checkpoint between
aslave and asubmaster is similar to the checkpoint that
takes place between a submaster and the master.

The first tests for the three-level framework have
proven that the multi-level model can overcome the
limitations of the basic master-slave model.

Acknowledgements

The authors would like to acknowledge the sup-
port of the European Commission through grant num-
ber HPRI-CT-1999-00026 (the TRACS Programme at
Edinburgh Parallel Computing Centre) and the HPC-
Europa consortium. As well, the authors would like
to acknowledge the support of the the Romanian HPC
Center ColL aborator.

References

[1] D.A.L.Piriyakumar and P. Levi, A New Approach to Exploint-
ing Parallelism in Ant Colony Optimization, 2001.

[2] P Delisle, M. Krajecki, M. Gravel and C. Gagne, Parallel
Implementation of an Ant Colony Optimization Metaheuristic
with OpenMP, in Proceedings of the 3rd European Workshop
on OpenMP (EWOMP?1), (Barcelone, Espagne), 2001.

[3] T. Stutzle, Parallelization strategies for ant colony optimiza-
tion, Lecture Notes in Computer Science 1498 (1998), 722—
731

[4] E.G. Tabi, O. Roux, C. Fonlupt and D. Robillard, Parallel
ant colonies for combinatorial optimization problems, Lecture
Notes in Computer Science 1586 (1999), 239-247.

[5] B. Bullnheimer, G. Kostis and C. Strauss, Parall€lization
Strategies for the Ant System, in: High Performance Algo-
rithms and Software in Non-linear Optimization, (), R.D.L.
et al., ed., Vol. 24 of Applied Optimization, Kluwer, 1998,
pp. 87-100.

[6] M. Dorigo and G.D. Caro, Ant algorithms for discrete opti-
mization, Artificial Life (5) (1999), 137-172.

[71 M. Dorigo and L.M. Gambardella, Ant colony system: A co-
operative learning approach to the travelling salesman prob-
lem, IEEE Transactions on Evolutionary Computation 1(1),
1997.

(8l

(9

M. Craus and L. Rudeanu / Parallel framework for cooperative processes 217

A. Colorni, M. Dorigo and V. Maniezzo, Distributed Opti-
mization by Ant Colonies, in Proceedings of Ecal91 — Euro-
pean Conference on Artificial Life, (Paris, France), 134-142,
Elsevier Publishing, 1997.

V.D. Cung, S.L. Martins, C.C. Ribeiro and C. Roucairol, Es-
says and Surveys in Metaheuristics, ch. Strategies for the Par-

(1]

alel Implementation of Metaheuristics, p. 644, Hardbound,
2001.

D.A. Bader, J. JaJa, D. Harwood and L.S. Davis, Parallel al-
gorithms for image enhancement and segmentation by region
growing with an experimental study, The Journal of Super-
computing 10(2) (1996), 141-168.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

