
Scientific Programming 13 (2005) 79–91 79
IOS Press

Parallel preconditioned conjugate gradient
square method based on normalized
approximate inverses

George A. Gravvanis∗ and Konstantinos M. Giannoutakis
Department of Electrical and Computer Engineering, School of Engineering, Democritus University of Thrace, GR
67100 Xanthi, Greece
E-mail: {ggravvan, kgiannou}@ee.duth.gr

Abstract A new class of normalized explicit approximate inverse matrix techniques, based on normalized approximate factoriza-
tion procedures, for solving sparse linear systems resulting from the finite difference discretization of partial differential equations
in three space variables are introduced. A new parallel normalized explicit preconditioned conjugate gradient square method in
conjunction with normalized approximate inverse matrix techniques for solving efficiently sparse linear systems on distributed
memory systems, using Message Passing Interface (MPI) communication library, is also presented along with theoretical estimates
on speedups and efficiency. The implementation and performance on a distributed memory MIMD machine, using Message
Passing Interface (MPI) is also investigated. Applications on characteristic initial/boundary value problems in three dimensions
are discussed and numerical results are given.
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1. Introduction

The solution of sparse linear systems is of central importance to scientific and engineering computations and is
the most time-consuming part, cf. [3,4,13]. The solution of sparse linear systems has been obtained by direct or
iterative methods, cf. [2–6,9,13].

Let us consider the sparse linear system resulting from Finite Difference (FD) discretization of three dimensional
boundary value problems, i.e.

Au = s, (1)

where A is a sparse, diagonally dominant, positive definite, symmetric (n× n) matrix of the following form:
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(2)

and m, p are the semi-bandwidths, while u is the FD solution at the nodal points and s is a vector, of which the
components result from a combination of source terms and imposed boundary conditions.

For symmetric positive definite problems, the rate of convergence of the conjugate gradient method depends on
the distribution of the eigenvalues of the coefficient matrix. Hence the preconditioned matrix will have a smaller
spectral condition number, and the eigenvalues clustered around one, cf. [2,6,13]. The preconditioned form of the
linear system Eq. (2) is

M A u = M s, (3)

where M is a preconditioner. The preconditioner M has to satisfy the following conditions: (i) MA should have a
“clustered” spectrum, (ii) M can be efficiently computed in parallel and (iii) finally “M× vector” should be fast to
compute in parallel, cf. [1,3,6–8,13]. The effectiveness of the explicit approximate inverse preconditioning methods
is related to the fact that the approximate inverses exhibit a similar “fuzzy” structure as the coefficient matrix and
are close approximant to the coefficient matrix, cf. [6–8].

The performance and applicability of the new algorithmic schemes for solving 3D elliptic and parabolic P.D.E’s
is discussed and numerical results are given.

2. Normalized optimized approximate inverses

In this section we present a class of normalized approximate inverses based on normalized factorization procedures.
Let us now assume the normalized approximate factorization, cf. [8], such that:

A ≈ Dr1,r2T
t
r1,r2

Tr1,r2Dr1,r2 , r1 ∈ [1, . . . , m− 1), r2 ∈ [1, . . . , p− 1), (4)

where r1, r2 are the “fill-in” parameters, Dr1,r2 is a diagonal matrix and Tr1,r2 is a sparse upper triangular matrix
of the same profile as the coefficient matrix A.

Let M δl
r1,r2

= (µi,j), i ∈ [1, n], j ∈ [max(1, i − δl + 1), min(n, i + δl − 1)], be the normalized approximate
inverse of the coefficient matrix A, cf. [8], i.e.

M δl
r1,r2

=
(
Dr1,r2T

t
r1,r2

Tr1,r2Dr1,r2

)−1 = D−1
r1,r2

(
T t

r1,r2
Tr1,r2

)−1
D−1

r1,r2
= D−1

r1,r2
M̂ δl

r1,r2
D−1

r1,r2
, (5)

The elements of the normalized approximate inverse, by retaining δl elements in the lower and upper part of the
inverse, cf. [6–8], can be determined by solving recursively the following systems:

M̂ δl
r1,r2

T t
r1,r2

= (Tr1,r2)
−1 and Tr1,r2M̂

δl
r1,r2

=
(
T t

r1,r2

)−1
, (6)

The Normalized Optimized Approximate Inverse Matrix –3D algorithmic procedure (henceforth called the
NOROAIM-3D algorithm) for computing the elements of the approximate inverse, using a “fish-bone” pattern, can
be expressed by the following compact form:
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Let nmr1 = n−m + r1, npr2 = n− p + r2.

For i = n to 1

for j = i to max(1, i− δl + 1)

if j > nmr1 then

if i = j then

if i = n then

µ̂1,1 = 1 (7)

else

µ̂n−i+1,1 = 1− ej · µ̂n−j,δl+1 (8)

else

µ̂n−i+1,i−j+1 = −ej · µ̂n−i+1,i−j (9)

else

if j > npr2 and j � nmr1 then

if i = j then

µ̂n−i+1,1 = 1− ej · µ̂n−j,δl+1 −
nmr1−j∑

k=0

hr1−k,j+k+1−r1 · µ̂x,y (10)

call mw (n, δl, i, m + j + k − r1, x, y)

else

µ̂n−i+1,i−j+1 = −ej · µ̂n−i+1,i−j −
nmr1−j∑

k=0

hr1−k,j+k+1−r1 · µ̂x,y (11)

call mw (n, δl, i, m + j + k − r1, x, y)

else

if j � r1 + 1 and j � npr2 then

if i = j then

if j � r2 + 1 then

µ̂n−i+1,1 = 1− ej · µ̂n−j,δl+1 −
npr2−j∑

k=0

fr2−k,j+k+1−r2 · µ̂x1,y1 −
nmr1−j∑

k=0

hr1−k,j+k+1−r1 · µ̂x2,y2 (12)

call mw (n, δl, i, j + k + p− r2, x1, y1)

call mw (n, δl, i, j + k + m− r1, x2, y2)
else
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µ̂n−i+1,1 = 1− ej · µ̂n−j,δl+1 −
j∑

k=1

fj−k+1,k · µ̂x1,y1 −
nmr1−j∑

k=0

hr1−k,j+k+1−r1 · µ̂x2,y2 (13)

call mw (n, δl, i, k + p− 1, x1, y1)

call mw (n, δl, i, j + k + m− r1, x2, y2)

else

if j � r2 + 1 then

µ̂n−i+1,i−j+1 = −ej · µ̂n−i+1,i−j −
npr2−j∑

k=0

fr2−k,j+k+1−r2 · µ̂x1,y1 −
nmr1−j∑

k=0

hr1−k,j+k+1−r1 · µ̂x2,y2 (14)

call mw (n, δl, i, j + k + p− r2, x1, y1)

call mw (n, δl, i, j + k + m− r1, x2, y2)

else

µ̂n−i+1,i−j+1 = −ej · µ̂n−i+1,i−j −
j∑

k=1

fj−k+1,k · µ̂x1,y1 −
nmr1−j∑

k=0

hr1−k,j+k+1−r1 · µ̂x2,y2 (15)

call mw (n, δl, i, k + p− 1, x1, y1)

call mw (n, δl, i, j + k + m− r1, x2, y2)
else

if i = j then

if j � r2 + 1 then

µ̂n−i+1,1 = 1− ej · µ̂n−j,δl+1 −
npr2−j∑

k=0

fr2−k,j+k+1−r2 · µ̂x1,y1 −
j∑

k=1

hj−k+1,k · µ̂x2,y2 (16)

call mw (n, δl, i, j + k + p− r2, x1, y1)

call mw (n, δl, i, k + m− 1, x2, y2)

else

µ̂n−i+1,1 = 1− ej · µ̂n−j,δl+1 −
j∑

k=1

fj−k+1,k · µ̂x1,y1 −
j∑

k=1

hj−k+1,k · µ̂x2,y2 (17)

call mw (n, δl, i, k + p− 1, x1, y1)

call mw (n, δl, i, k + m− 1, x2, y2)

else

if j � r2 + 1 then

µ̂n−i+1,i−j+1 = −ej · µ̂n−i+1,i−j −
npr2−j∑

k=0

fr2−k,j+k+1−r2 · µ̂x1,y1 −
j∑

k=1

hj−k+1,k · µ̂x2,y2 (18)
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call mw (n, δl, i, j + k + p− r2, x1, y1)

call mw (n, δl, i, k + m− 1, x2, y2)

else

µ̂n−i+1,i−j+1 = −ej · µ̂n−i+1,i−j −
j∑

k=1

fj−k+1,k · µ̂x1,y1 −
j∑

k=1

hj−k+1,k · µ̂x2,y2 (19)

call mw (n, δl, i, k + p− 1, x1, y1)

call mw (n, δl, i, k + m− 1, x2, y2)

for j = i− 1 to max(1, i− δl + 1)

µ̂n−i+1,δl+i−j = µ̂n−i+1,i−j+1

The procedure mw(n, δl, s, q, x, y), cf. [6], can then be described as follows:
procedure mw(n, δl, s, q, x, y)
if s � q then

x = n + 1− s; y = s− q + 1 (20)

else

x = n + 1− q; y = δl + q − s. (21)

The computational work of the NOROAIM-3D algorithm is O[nδl(r1 + r2 +1)] multiplicative operations, while
the storage of the approximate inverse is only n× (2δl − 1)-vector spaces, using the optimized storage scheme as
described by the above given procedure mw(n, δl, s, q, x, y), cf. [6]. This optimized form is particularly effective
for solving “narrow-banded” sparse systems of very large order, i.e. δe� n/2, cf. [6–8]. The parallel construction
of similar approximate inverses has been studied and implemented in [7], and is under further investigation.

It should be noted that this class of normalized approximate inverse includes various families of approximate
inverses according to the requirements of accuracy, storage and computational work, as can be seen by the following
diagrammatic relation:

class I class II

A−1 ≡ D−1M̂D−1 ← D−1
r1,r2

ˆ̃M
δl

r1 = m− 1, r2 = p− 1D−1
r1,r2

← D−1
r1,r2

M̂ δl

r1 = m− 1, r2 = p− 1D−1
r1,r2

class III class IV

← D−1
r1,r2

M̂ δl
r1,r2

D−1
r1,r2

← D−2
r1,r2

(22)

where the entries of the class I inverse have been retained after the computation of the exact inverse (r 1 = m − 1,
r2 = p − 1), while the entries of the class II inverse have been computed and retained during the computational
procedure of the (approximate) inverse (r1 = m − 1, r2 = p − 1). The entries of the class III inverse have been
retained after the computation of the approximate inverse (r 1 � m− 1, r2 � p− 1). Hence an approximate inverse
is derived in which both the sparseness of the coefficient matrix is relatively retained and storage requirements are
substantially reduced. The class IV of approximate inverse retains only the diagonal elements, i.e. δl = 1 hence
M̂ δ1

r1,r2
≡ I , resulting in a fast inverse algorithm.

It is known that the larger in magnitude elements of the inverse matrices, in almost every case, are clustered around
the diagonals at distances ρ1m and ρ2p (with ρ1 = 1, 2, . . . , m−1 and ρ2 = 1, 2, . . . , p−1) from the main diagonal
in a “recurring wave”-like pattern, cf. [6–8]. It is reasonable to assume that the value of the retention parameter δl
can be chosen as multiples of m and p.

It should be noted that, if wi = 0, cf. Eq. (2), then the algorithm reduces to one for solving sparse linear systems,
which are encountered in solving 2D boundary value problems by the finite difference method, cf. [5]. When w i = 0
and vi = 0, cf. Eq. (2), then the algorithm is reduced to one for solving tri-diagonal linear systems, which are
encountered in solving two-point boundary value problems.



84 G.A. Gravvanis and K.M. Giannoutakis / Parallel preconditioned conjugate gradient square method

3. Parallel normalized explicit preconditioned conjugate gradient methods

In this section we present a class of parallel normalized explicit preconditioned conjugate gradient schemes, based
on the derived normalized approximate inverse, for solving sparse linear systems on distributed MIMD parallel
systems.

The Normalized Explicit Preconditioned Conjugate Gradient (NEPCG), Normalized Explicit Preconditioned
Conjugate Gradient Square (NEPCGS) and Normalized Explicit Preconditioned Bi-conjugate Conjugate Gradient –
STAB (NEPBICG-STAB) methods for solving sparse linear systems have been presented in [8].

Let us now consider that the coefficient matrix A, the normalized optimized approximate inverse
D−1

r1,r2
M̂ δl

r1,r2
D−1

r1,r2
and all the vectors are distributed in a block-row distribution. In this distribution we partition the

matrices and vectors into blocks of consecutive rows, and assign a panel of elements to each process. The processors
operate with local data, and need synchronization points before computations of inner products and matrix× vector
operations.

Let local n be the number of rows allocated to each processor (i.e. local n:=n/no proc). Then, the Parallel form
of the Normalized Explicit Preconditioned Conjugate Gradient Square (PNEPCGS) method can be expressed by
the following algorithmic procedure:

Let u0 be an arbitrary initial approximation to the solution vector u. Then,
for j = (myrank*local n + 1) to (myrank* local n + local n) (myrank is the rank of each process)

(u0)j = 0, (e0)j = 0, (t0)j = sj −A (u0)j (23)

if δl = 1 then
for j = (myrank*local n + 1) to (myrank* local n + local n)

(r0)j = (t0)j

/(
d2

)
j

(24)

else
gather distributed t0 onto each process
for j = (myrank*local n + 1) to (myrank* local n + local n)

(r0)j =

⎛
⎝ min(n,j+δl−1)∑

k=max(1,j−δl+1)

µ̂j,k (t0)k /dk

⎞
⎠/

(d)j (25)

for j = (myrank*local n + 1) to (myrank* local n + local n)

(σ0)j = (r0)j (26)

p0 =
(
(σ0)j , (r0)j

)
(27)

Gather local p0 to root process, compute their sum and scatter it to all processes
Then, for i = 0, 1, . . . , (until convergence) compute in parallel the vectors u i+1, ri+1, σi+1 and the scalar

quantities αi, βi+1 as follows:
gather distributed σi onto each process
for j = (myrank*local n + 1) to (myrank* local n + local n)

(qi)j = A (σi)j (28)

if δl = 1 then
for j = (myrank*local n + 1) to (myrank* local n + local n)

(ti)j = (qi)j

/(
d2

)
j

(29)

else
gather distributed qi onto each process
for j = (myrank*local n + 1) to (myrank* local n + local n)
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(ti)j =

⎛
⎝ min(n,j+δl−1)∑

k=max(1,j−δl+1)

µ̂j,k (qi)k /dk

⎞
⎠/

(d)j (30)

for j = (myrank*local n + 1) to (myrank* local n + local n)

pi =
(
(σ0)j , (ti)j

)
(31)

Gather local p0 to root process, compute their sum and scatter it to all processes

αi = pi/wi (32)

for j = (myrank*local n + 1) to (myrank* local n + local n)

(ei+1)j = (ri)j + βi (ei)j − αi (ti)j (33)

for j = (myrank*local n + 1) to (myrank* local n + local n)

(yi)j = (ri)j + βi (ei)j + (ei+1)j (34)

for j = (myrank*local n + 1) to (myrank* local n + local n)

(ui+1)j = (ui)j + αi (yi)j (35)

gather distributed σi onto each process
for j = (myrank*local n + 1) to (myrank* local n + local n)

(qi)j = A (yi)j (36)

if δl = 1 then
for j = (myrank*local n + 1) to (myrank* local n + local n)

(ti)j = (qi)j

/(
d2

)
j

(37)

else
gather distributed qi onto each process
for j = (myrank*local n + 1) to (myrank* local n + local n)

(ti)j =

⎛
⎝ min(n,j+δl−1)∑

k=max(1,j−δl+1)

µ̂j,k (qi)k /dk

⎞
⎠/

(d)j (38)

for j = (myrank*local n + 1) to (myrank* local n + local n)

(ri+1)j = (ri)j − αi (ti)j (39)

for j = (myrank*local n + 1) to (myrank* local n + local n)

pi+1 =
(
(σ0)j , (ri+1)j

)
(40)

gather local pi+1 to root process, compute their sum and scatter it to all processes

βi+1 = pi+1/pi (41)

for j = (myrank*local n + 1) to (myrank* local n + local n)

(σi+1)j = (ri+1)j + 2βi+1 (ei+1)j + β2
i+1 (σi)j (42)

The computational complexity of the PNEPCGS method is ≈ O[(4δl + 27) local n mults + 8 local n adds]ν
operations, while the total communication cost, using the butterfly technique for collective communications, is
≈ O[5 · ts · log(no proc)+ 4 · local n · (no proc− 1)tw]ν, where ν denotes the number of iterations required for the
convergence to a certain level of accuracy, ts the message latency, and tw the time necessary for a word to be sent.

Thus, the speedup and efficiency of the PNEPCGS method can be defined as follows:
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Sp =
1

1
no proc + 5ts log (no proc)

O(δl)ntm
+ 4(no proc−1)tw

O(δl)

, (43)

and

Ep =
1

1 + 5tsno proc log(no proc)

O(δl)ntm
+ 4(no proc−1)tw

O(δl)

, (44)

where tm denotes the computational time of one multiplication. Hence, for δl → ∞, S p →no proc and Ep → 1,
that is optimum.

The total number of arithmetic operations required for the parallel computation of the solution u ν is:

O
[
n1/2δl1/2local n log ε−1

]
, (45)

while the total communication cost is:

O

[
n1/2 log ε−1

δl1/2
(ts log(no proc) + local n no proc tw)

]
. (46)

The implementation of the two most dominating operations of the PNEPCGS iterative method, i.e. multiplication
of the normalized optimized approximate inverse with a vector, cf. Eqs (29)–(30), and the inner product of two
vectors, cf. Eq. (31), is given using the MPI communication library. For communication operations, the collec-
tive communication routines MPI Allreduce and MPI Allgather were used for sending and receiving data among
distributed processes, cf. [11,12].

/* perform the multiplication of the normalized optimized approximate inverse with a vector, i.e. t =
D−1

r1,r2
M̂ δl

r1,r2
D−1

r1,r2
× q */

Notation: dl is the “retention” parameter δl

if (dl==1)

for (i=myrank*local n + 1; i<=myrank*local n+local n; i++)

t[i] = q[i]/(d[i] ∗ d[i]);

else

{ /* shift operation for the MPI Allgather routine */

for (i = 1; i <= local n; i + +)

temp[i−1]=q[myrank*local n+i];

MPI Allgather(temp,local n,MPI DOUBLE,q,local n, MPI DOUBLE,MPI COMM WORLD);

for (i = n; i >= 1; i−−)

q[i] = q[i− 1];

for (i=myrank*local n + 1;i<=myrank*local n+local n;i++) {

s1 = 0;

for (j= max(1,i-dl+1); j<=i;j++) /*upper part*/
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s1=s1+m[n+1−i][i+1−j]*(q[j]/d[j]);

for (j=i+1; j<= min(n,i+dl−1); j++) /*lower part*/

s1=s1+m[n+1−j][dl+j−i]*(q[j]/d[j]);

t[i]=s1/d[i]; }

}

/* perform the inner product of two vectors p=(sigma,t) */

for(i=myrank*local n + 1; i<=myrank*local n+local n; i++)

temp1=temp1+sigma[i]*t[i];

MPI Allreduce(&temp1,&p,1,MPI DOUBLE,MPI SUM, MPI COMM WORLD);

It should be noted that the elements of the vectors of each process are stored in their original sequential position.
Thus, a shift operation is required for the MPI Allgather routine in order to place the elements in the beginning of
each vector.

4. Numerical results

In this section we examine the applicability and effectiveness of the proposed schemes for solving characteristic
three dimensional boundary value and initial value problems.

Model Problem I: Let us consider a 3D-boundary value problem with Dirichlet boundary conditions:

uxx + uyy + uzz = F, (x, y, z) ∈ R (47)

u(x, y, z) = 0, (x, y, z) ∈ ∂R, (47a)

where R is the unit cube and ∂R denotes the boundary of R. The right hand side vector of the system Eq. (1) was
computed as the product of the matrix A by the solution vector, with its components equal to unity. The iterative
process was terminated when ‖ri‖∞ 〈10−5.

Numerical results for the new proposed parallel schemes were obtain using a cluster of ten Eq. (10) AMD Athlon
1900 processors running at 1.6 GHz, connected in an 100 Mbps Ethernet network, using MPI.

The speedups and the number of iterations of the PNEPCGS method for several values of the “retention” parameter
δl with n = 8000, m = 21, p = 401 and r1 = r2 = 2 are given in Table 1. In Figs 1, 2 and 3 the speedups and
processors allocated for several values of the “retention” parameter δl, the speedups versus the “retention” parameter
δl for several numbers of processors and the parallel efficiency for several values of the “retention” parameter δl are
presented respectively for the PNEPCGS method with n = 8000, m = 21, p = 401 and r1 = r2 = 2. In Fig. 4 the
performance evaluation measurements of the PNEPCGS method are given with n = 8000, m = 21, p = 401 and
r1 = r2 = 2.

It is observed by the experimental results that the communication cost is responsible for the performance of the
PNEPCGS method for small values of parameter δl, in contrast with large values of δl where speedups and efficiency
tend to become optimum.

Model Problem II: Let us consider the following Parabolic P.D.E. in three space variables:
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Table 1
Speedups and processors allocated of the PNEPCGS method for
several values of δl, with n = 8000, m = 21 and p = 401

“Retention” Speedups Number of
parameter Number of processors iterations

2 4 8 10

δl = 1 0.397 0.326 0.289 0.275 44
δl = 2 0.491 0.427 0.394 0.364 29
δl = m 1.025 1.127 1.145 1.108 27
δl = 2m 1.294 1.621 1.815 1.764 22
δl = p 1.778 3.150 5.317 5.830 15
δl = 2p 1.816 3.264 5.965 6.803 12
δl = 3p 1.854 3.251 6.124 7.059 14
δl = 4p 1.979 3.284 6.344 7.471 14
δl = 6p 1.987 3.323 6.686 8.286 14

0
1
2
3
4
5
6
7
8
9

10

2 4 8 10
Number of Processors

Sp
ee

du
ps
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Fig. 1. Speedups and processors allocated of the PNEPCGS method for several values of δl, with n = 8000, m = 21 and p = 401.

∂u

∂t
−∆u(x, y, z) = 0, (x, y, z) ∈ R, t > 0, (48)

with initial conditions:

u(x, y, z, 0) = g(x, y, z), 0 � x, y, z � 1, (48.a)

and boundary conditions:

u(x, y, z, t) = 0, t > 0, (48.b)

where R is the unit cube, g(x, y, z) is given sufficiently smooth function and ∆ is the Laplace operator. Let us
assume that a network of mesh-sizes hx, hy , hz and ∆t in the X , Y , Z and T directions respectively is superimposed
over R.

Then, the time-dependent functions were approximated by certain schemes, cf. [6,7], which can be written in the
following parametric form:

K
c(k+1) − c(k)

∆t
+

1
h2

F (θc(k+1) − (1 − θ)c(k) = θb(k+1) + (1− θ)b(k),

k = 1, . . . , n, θ ∈ [0, 1], and Kc(0) = e, (49)

where the value of the parameter θ denotes the various “time” – schemes.
In the case of θ = 1 we have the “time-implicit” scheme, using backward time differences. This scheme is

unconditionally valid, i.e. stable and convergent, and independent of the mesh-ratio. A disadvantage of this scheme
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Fig. 2. Speedups versus the “retention” parameter δl of the PNEPCGS method for several numbers of processors, with n = 8000, m = 21 and
p = 401.
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Fig. 3. Parallel efficiency of the PNEPCGS method for several values of δl, with n = 8000, m = 21 and p = 401.

is the error of O(∆t) for the time partial derivative implying that the time step ∆t must be smaller than the mesh
size h. While, when θ = 1/2 we have the “time-implicit” Crank-Nickolson scheme, using central time differences,
which is unconditionally valid and independent of the mesh-ratio.

Hence, the resulting sparse linear system is of the form Eq. (1). The fill-in parameters were chosen to be
r1 = r2 = 2. The initial guess was u(0) = 0.05. The termination criterion for the inner iteration of the NEPCG-type
methods was ‖ri‖∞ 〈10−5, where ri is the recursive residual. The criterion for the termination of the “steady-state”

solution (outer iteration) was max
j

∣∣∣(u
(k+1)
j − u

(k)
j

)
/

(
u

(k+1)
j

)∣∣∣ 〈10−5

Numerical results using the “time-implicit” scheme (backward differences, θ = 1) in conjunction with the
NEPCGS and NEPBICG-STAB method,cf. [8], for several values of the “retention” parameter δlof the approximate
inverse and the time-step ∆t are given in Table 2.

Finally, the parallel normalized explicit approximate inverse preconditioning method can be efficiently used for
solving three dimensional highly non-linear Elliptic and Parabolic P.D.E.’s.
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Table 2
The convergence behavior of the NEPCGS and NEPBICG-STAB method with r1 = 2, r2 = 2 and θ = 1 for various values
of the parameter δl and the time step ∆t

Method n m p ∆t no of outer δl = 1 δl = 2 δl = m δl = p δl = 2p
iter for s.s.s

NEPCGS 343 8 50 0.00100 26 93 79 62 50 42
0.00050 35 103 94 78 62 47
0.00010 70 131 118 114 70 70
0.00005 94 143 128 94 94 94

729 10 82 0.00100 27 118 98 77 59 50
0.00050 35 129 111* 84 66 58
0.00010 70 157** 136 129 70 70
0.00005 95 177 153 133*** 94 94

NEPBICG -STAB 343 8 50 0.00100 26 62 62 57 47 42
0.00050 35 70 67 63 58 43
0.00010 70 96 88 84 70 70
0.00005 94 109 94 94 94 94

729 10 82 0.00100 27 80 74 66 50 46
0.00050 35 89 78 75 61 55
0.00010 70 101 100 101 70 70
0.00005 94 124 112 94 94 94

*The number of outer iterations was 36 iterations.
**The number of outer iterations was 71 iterations.
***The number of outer iterations was 94 iterations.
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Fig. 4. Performance evaluation measurements of the PNEPCGS method, with n = 8000, m = 21 and p = 401.
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