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Abstract. Impact cratering is an important geological process of special interest in Astrobiology. Its numerical simulation
comprises the execution of a high number of tasks, since the search space of input parameter values includes the projectile
diameter, the water depth and the impactor velocity. Furthermore, the execution time of each task is not uniform because of the
different numerical properties of each experimental configuration. Grid technology is a promising platform to execute this kind
of applications, since it provides the end user with a performance much higher than that achievable on any single organization.
However, the scheduling of each task on a Grid involves challenging issues due to the unpredictable and heterogeneous behavior
of both the Grid and the numerical code. This paper evaluates the performance of a Grid infrastructure based on the Globus toolkit
and the GridWay framework, which provides the adaptive and fault tolerance functionality required to harness Grid resources, in
the simulation of the impact cratering process. The experiments have been performed on a testbed composed of resources shared
by five sites interconnected by RedIRIS, the Spanish Research and Education Network.

1. Introduction

Impact cratering is an important geological pro-
cess of special interest in Astrobiology that affects the
surface of nearly all celestial bodies such as planets
and satellites. The detailed morphologies of impact
craters (see [23] for a detailed description) show many
variations from small craters to craters with central
peaks. Furthermore, a water layer at the target influ-
ences lithology and morphology of the resultant crater.
Therefore, marine-target impact cratering simulation
plays an important role in studies which involve hypo-
thetical Martian seas [22].
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Our target application analyzes the threshold diam-
eter for cratering the seafloor of a hypothetical mar-
tian sea during the first steps of an impact. Results of
this analysis can be used to develop a search criteria
for future investigations, including techniques that will
be used in future Mars exploration missions to detect
buried geological structures using ground penetrating
radar surveys, as the ones included in the ESA Mars Ex-
press and planned for NASA 2005 missions. The dis-
covery of marine-target impact craters on Mars would
also help to address the ongoing debate of whether
large water bodies occupied the northern plains of Mars
and help to constrain future paleoclimatic reconstruc-
tions [22]. In any case, this kind of study requires a
huge amount of computing power, which is not usually
available within a single organization.

In order to determine the range for the critical di-
ameter of the projectile which can crater the seafloor,
we will perform a high number of simulations. Each
computational task solves the equations of motion for
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compressible media combined with the equations of
state, over a subset of input parameter values, namely:
projectile diameter, the water depth and the impactor
velocity. Additionally, the execution time of each com-
putational task is not uniform because of the different
numerical properties of each experimental configura-
tion.

Grid technology provides a way to access the ge-
ographically distributed resources needed for execut-
ing compute-intensive Parameter Sweep Applications
(PSA), like the one described above. In spite of the
relatively simple structure of a PSA, its reliable and ef-
ficient execution on computational Grids involves sev-
eral issues, mainly due to the nature of the Grid itself.
In particular, one of the most challenging problems that
the Grid computing community has to deal with is the
fact that Grids present unpredictable changing condi-
tions, namely: high fault rate and dynamic resource
availability, load and cost. Adaptive scheduling has
been widely studied in the literature [1–3,26,27] and
is generally accepted as the cure to the dynamism of
the Grid. Moreover, the different execution times for
different tasks makes critical the use of an adaptive
approach. The GridWay framework [17] achieves the
robust and efficient execution of PSAs by combining
adaptive scheduling and execution, to reflect the dy-
namic Grid characteristics; and re-use of common files
between tasks, to reduce the file transfer overhead. The
aim of this paper is to describe and analyze the re-
sults obtained in the simulation of the impact cratering
process in a Grid infrastructure based on Globus and
GridWay.

In Section 2 we present the highly heterogeneous
testbed used in this work. The functionality and inter-
nals of the GridWay framework are briefly described
in Section 3. The target application is outlined in Sec-
tion 4. We demonstrate that a Grid testbed based on
Globus and GridWay provides the functionality and re-
liability needed to execute the simulation tasks. The
performance results are described in Section 6, where
some performance metrics in order to evaluate the Grid
computing platform are proposed: the Grid speedup
metric, which quantifies the benefits of being part of a
Grid, and the resource load variability, which could be
used to adjust the components of the Grid infrastructure
in order to achieve higher efficiencies. Finally, some
conclusions are presented in Section 7.

2. The research testbed

The management of jobs within the same department
is addressed by many research and commercial sys-

tems [8]: Condor, Load Sharing Facility, Sun Grid En-
gine, Portable Batch System, LoadLeveler, etc. Some
of these tools, such as Sun Grid Engine Enterprise
Edition [16], also allow the interconnection of mul-
tiple departments within the same administrative do-
main. Other tools, such as Condor Flocking [9], even
allow the interconnection of multiple domains, as long
as they run the same distributed resource management
software. However, they are unsuitable in computa-
tional Grids where resources are scattered across sev-
eral administrative domains, each with its own security
policies and distributed resource management systems.

The Globus toolkit [10] provides the services and
libraries needed to enable secure multiple domain op-
eration within different resource management systems
and access policies. Globus is a core Grid middle-
ware that provides the following components, which
can be used separately or together, to support Grid ap-
plications: Grid Security Infrastructure (GSI), Grid Re-
source Allocation Manager (GRAM), Global Access to
Secondary Storage (GASS), Monitoring and Discov-
ery Service (MDS), GridFTP and Replica Management
Services.

Table 1 shows the characteristics of the machines
in the research testbed, based on the Globus toolkit
2.X [10]. The testbed joins resources from five sites,
all of them connected by the Spanish Research and
Education Network, RedIRIS. The geographical distri-
bution and interconnection network of sites are shown
in Fig. 1. This organization results in a highly het-
erogeneous testbed, since it presents several resources
(PCs, clusters, SMP servers), processor architectures
and speeds, Resource Management Systems (RMS),
network links, etc. In the following experiments,
cepheus is used as client, and holds all the input files
and receives the simulation results. In the case of clus-
ters, we have limited to 5 the number of simultaneously
used nodes, in order not to saturate these systems since
they are at production level.

3. The GridWay framework

The Globus toolkit [10] supports the submission of
applications to remote hosts by providing resource dis-
covery, resource monitoring, resource allocation, and
job control services. However, the user is responsible
for manually performing all the submission stages in
order to achieve any functionality: selection, prepa-
ration, submission, monitoring, migration and termi-
nation [24,25]. Hence, the development of applica-
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Table 1
Characteristics of the machines in the research testbed

Name Site Nodes Processors Speed Mem. RMS

hydrus DACYA-UCM 1 1×Intel P4 2.5 GHz 512 MB fork
cygnus DACYA-UCM 1 1×Intel P4 2.5 GHz 512 MB fork
cepheus DACYA-UCM 1 1×Intel PIII 600 MHz 256 MB fork
aquila DACYA-UCM 1 1×Intel PIII 700 MHz 128 MB fork
babieca LCASAT-CAB 30 1×Alpha Ev67 450 MHz 256 MB PBS
platon REDIRIS 1 2×Intel PIII 1.4 GHz 512 MB fork
heraclito REDIRIS 1 1×Intel Cel. 700 MHz 256 MB fork
ramses DSIC-UPV 12 2×Intel PIII 900 MHz 512 MB PBS
khafre CEPBA-UPC 1 4×Intel PIII 700 MHz 512 MB fork

Fig. 1. Geographical distribution of the sites in Spain and interconnection network provided by RedIRIS.

tions for the Grid continues requiring a high level of
expertise due to its complex nature. Moreover, Grid
resources are also difficult to efficiently harness due to
their heterogeneous and dynamic nature. In a previous
work [17], we have presented a new Globus experimen-
tal framework that allows an easier and more efficient
execution of jobs on a dynamic Grid environment in a
“submit and forget” fashion. The GridWay framework
provides resource selection, job scheduling, reliable
job execution, and automatic job migration to allow a
robust and efficient execution of jobs in dynamic and
heterogeneous Grid environments based on the Globus
toolkit [10].

3.1. GridWay architecture

The architecture of the GridWay framework is de-
picted in Fig. 2. The user interacts with the frame-

work through a programming or command line inter-
face, which forwards client requests (submit, kill, stop,
resume) to the dispatch manager. The dispatch man-
ager periodically wakes up, and tries to submit pend-
ing and rescheduled jobs to Grid resources. Once a
job is allocated to a resource, a submission manager
and a performance monitor are started to watch over its
correct and efficient execution (see [17] for a detailed
description of these components).

The framework has been designed to be modular,
thus allowing extensibility and improvement of its ca-
pabilities. The following modules can be set on a per
job basis:

– The resource selector module, which is used by
the dispatch manager to build a prioritized list of
candidate resources following the preferences and
requirements provided by the user.
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Fig. 2. The GridWay architecture.

– The performance evaluator module, which is used
by the performance monitor to periodically eval-
uate the application performance, usually by ana-
lyzing a performance profile generated by the run-
ning application or by a monitor started along with
the application.

3.2. Job execution

Job execution is performed in three steps by the fol-
lowing modules:

– The prologue module,which is responsible for cre-
ating the remote experiment directory and trans-
ferring the executable and all the files needed for
remote execution, such as input or restart files cor-
responding to the execution architecture. These
files can be specified as local files in the experi-
ment directory or as remote files stored in a file
server through a GridFTP URL. For the files de-
clared by the user as shared, a reference is added
to the remote GASS cache, so they can be re-used
by other jobs submitted to the same resource.

Fig. 3. Timeframes of the opening cavities at 1 second time using
the 60 m impactor with 200 m water depth and a velocity of 10 Km/s
for the impactor.

– The wrapper module, which is responsible for ex-
ecuting the actual job and obtaining its exit code.

– The epilogue module, which is responsible for
transferring back output files, and cleaning up the
remote experiment directory. At this point, refer-
ences to shared files in the GASS cache are also
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Fig. 4. Timeframes of the opening cavities at 1 second time using
the 80 m impactor with 200 m water depth and a velocity of 10 Km/s
for the impactor.

removed.

3.3. Grid scheduling policy for PSAs

GridWay achieves an efficient execution of PSAs by
combining: adaptive scheduling, adaptive execution,
and reuse of common files [19]. In fact, one of the main
characteristics of the GridWay framework is the com-
bination of adaptive techniques for both the scheduling
and execution [18] of Grid jobs:

– Adaptive scheduling: Reliable schedules can only
be issued considering the dynamic characteristics
of the available Grid resources [2,3,6]. In gen-
eral, adaptive scheduling can consider factors such
as availability, performance, load or proximity,
which must be properly scaled according to the
application needs and preferences. GridWay pe-
riodically gathers information from the Grid and
from the running or completed jobs to adaptively
schedule pending tasks according to the applica-
tion demands and Grid resource status [19].

– Adaptive execution: In order to obtain a reason-
able degree of both application performance and
fault tolerance, a job must be able to migrate
among the Grid resources adapting itself to events
dynamically generated by both the Grid and the
running application [1,20,26]. GridWay evalu-
ates each rescheduling event to decide if a mi-
gration is feasible and worthwhile [17]. Some
reasons, like job cancellation or resource failure,
make GridWay immediately start a migration pro-
cess. Other reasons, like “better” resource dis-
covery, make GridWay start a migration process
only if the new selected resource presents a higher

enough rank. In this case, the time to finalize and
the migration cost are also considered [21].

– Reuse of common files: Efficient execution of
PSAs can only be achieved by re-using shared
files between tasks [6,13]. This is specially im-
portant not only to reduce the file transfer over-
head, but also to prevent the saturation of the file
server where these files are stored, which can occur
in large-scale PSAs. Reuse of common files be-
tween tasks simultaneously submitted to the same
resource is achieved by storing the executable file
and some files declared by the user as shared in
the GASS cache [19].

In the case of adaptive execution, the following
rescheduling events, which can lead to a job migration
if it is considered feasible and worthwhile, are consid-
ered [17,18]:

– Grid-initiated rescheduling events:

∗ “Better” resource discovery (opportunistic mi-
gration [21]).

∗ Job cancellation or suspension.
∗ Resource or network failure.

– Application-initiated rescheduling events:

∗ Performance degradation.
∗ Change in the application demands.

In this work, we do not take advantage of all the
GridWay features for adaptive execution, since they are
not supported by the application. In order to fully sup-
port adaptive execution, the application must provide a
set of restart files to resume execution from a previously
saved checkpoint. Moreover, the application could op-
tionally provide a performance profile to detect per-
formance degradations in terms of application intrinsic
metrics, and it could also dynamically change its host
requirements and preferences to guide its own schedul-
ing process. We only consider adaptive execution to
provide fault tolerance by restarting the execution from
the beginning (see the following section).

3.4. Fault tolerance

GridWay provides the application with the fault de-
tection capabilities needed in such a faulty environ-
ment:

– The GRAM job manager notifies submission fail-
ures as GRAM callbacks. This kind of failures in-
cludes connection, authentication, authorization,
RSL parsing, executable or input staging, creden-
tial expiration and other failures.
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# Resource selection parameters

# Standard I/O

# Experiment files

# Executable parameters

#

#
# Job template for impact cratering simulation

SHARED_FILES="eostables.zip"

RESTART_FILES=""

OUTPUT_FILES="frames.tgz frames.$GW_TASK_ID.tgz"

    vibr.$GW_TASK_ID vibr.inp"

    material.$GW_TASK_ID material.inp, \

INPUT_FILES="asteroid.inp.$GW_TASK_ID asteroid.inp, \

RANK_EXPR="rank.sh"

HOST_REQS="reqs.ldif"

STDERR_FILE="stderr.$GW_TASK_ID"

STDOUT_FILE="stdout.$GW_TASK_ID"

STDIN_FILE=""

EXECUTABLE_ARGUMENTS=""

EXECUTABLE_FILE="impact.$GW_ARCH"

Fig. 5. Job template for the impact cratering application.

– The job manager is probed periodically. If the
job manager does not respond, then the GRAM
gatekeeper is probed. If the gatekeeper responds,
a new job manager is started to resume watching
over the job. If the gatekeeper fails to respond, a
resource or network failure occurred. This is the
approach followed in Condor/G [11].

– The standard output of prologue, wrapper and epi-
logue is parsed in order to detect failures. In the
case of the wrapper, this is useful to capture the
job exit code, which is used to determine whether
the job was successfully executed or not. If the job
exit code is not set, the job was prematurely termi-
nated, so it failed or was intentionally cancelled.

When an unrecoverable failure is detected, GridWay
retries the submission of prologue, wrapper or epilogue
a number of times specified by the user and, when
no more retries are left, it performs an action chosen
by the user among two possibilities: stop the job for
manually resuming it later, or automatically generate a
rescheduling event.

3.5. Related projects

The AppLeS project [2] has previously dealt with
the concept of adaptive scheduling on Grids. AppLeS

is currently focused on defining templates for charac-
teristic applications, like APST for parameter sweep
and AMWAT for master/worker applications. Also,
Nimrod/G [3] dynamically optimizes the schedule to
meet the user-defined deadline and budget constraints.
On the other hand, the need for a nomadic migra-
tion approach for adaptive execution on Grids has
been previously discussed in the context of the GrADS
project [20]. The tools developed by the above projects
have been successfully applied to several applications,
like drug design with Nimrod/G [4], computational bi-
ology with AppLes [5], and numerical relativity with
GrADS and Cactus [1].

The aim of the GridWay project is similar to that of
the above projects: simplify distributed heterogeneous
computing. However, it has some remarkable differ-
ences. Our frameworkprovides a submission agent that
incorporates the runtime mechanisms needed for trans-
parently executing jobs in a Grid by combining both
adaptive scheduling and execution. Our modular ar-
chitecture for job adaptation to a dynamic environment
presents the following advantages:

– It is not bounded to a specific class of application
generated by a given programming environment,
which extends its application range.
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Fig. 6. Dynamic throughput, in terms of average turnaround time per job.

Fig. 7. Schedule performed by GridWay, in terms of jobs allocated to each resource.

– It does not require new services, apart from Globus
basic services, which considerably simplify its de-
ployment.

– It does not necessarily require code changes,
which allows reusing of existing software.

– It is extensible, which allows its communication
with the Grid services available in a given testbed.

We would like to mention that the experimental
framework does not require new system software to be
installed in the Grid resources. The framework is cur-
rently functional on any Grid testbed based on Globus.
We believe that this is an important advantage because

of socio-political issues; cooperation between differ-
ent research centers, administrators and users is always
difficult.

4. Impact cratering simulations

The impact process can be described as a transfer of
energy process. The initial kinetic energy of the projec-
tile does work on the target to create a hole –the crater–
as well as heating the material of both projectile and
target. We focus our attention in high-velocity impacts
which can be separated into several stages dominated
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Fig. 8. Schedule performed by GridWay, in terms of jobs allocated to each site.

Fig. 9. Throughput, in terms of average turnaround time per job (left-hand axis and values on top of columns) and distributed speed-up (right-hand
axis and values inside columns), for each site and for the whole testbed (rightmost column, labelled as “All”).

by a specific set of major physical and mechanical pro-
cesses.

The main stages are contact and shock compression,
transient cavity growth by crater material ejection, and
finally, transient cavity modification. Impact crater-
ing begins with a sufficient compression of target and
projectile materials. The energy released by decelera-
tion of the projectile results in the formation of shock
waves and its propagation away from the impact point.
The projectile’s initial kinetic energy redistributes into
kinetic and internal energy of all colliding material.
The internal energy heats both the projectile and target

and, for strong enough shock waves, this may result in
melting and vaporization of material near the impact
zone.

To describe the impact process we solve equations
of motion for compressible media using a hydrocode.
The standard set of equations of motion expresses 3
basic law: mass, momentum, and energy conservation.
It must be combined with the equations of state (EOS),
a system of relationships which allow us to describe
the thermodynamic state for materials of interest. In its
basic form, an EOS should define what is the pressure
in the material at a given density and temperature. In
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an extended form, an EOS should define also the phase
state of the material (melting, vapor, dissociation, ion-
ization process) as well as all useful derivatives of basic
parameters and transport properties (sound speed, heat
capacity, heat conductivity, etc.).

Numerical simulations use the Eulerian mode of
SALE-B, a 2D hydrocode modified by Boris Ivanov
based on SALES-2 [12]. The original hydrocode, Sim-
plified Arbitrary Lagrangian-Eulerian (SALE), permits
to study the fluid-dynamics of 2D viscous fluid flows
at all speeds, from the incompressible limit to highly
supersonic, with an implicit treatment of the pres-
sure equation, and a mesh rezoning/remapping philos-
ophy [7]. The PDE solved are the Navier-Stokes equa-
tions. The fluid pressure is determined from an EOS
and supplemented with an artificial viscous pressure
for the computation of shock waves. SALES-2 can
also model elastic and plastic deformation and tensile
failure.

We deal in this study with vertical impacts, as they
reduce to 2D problems using the radial symmetry. All
simulations were conduced with spherical projectiles.
The non-uniform computational mesh of the coarse
simulations consists of 151 nodes in horizontal direc-
tion and 231 nodes in vertical direction and the total
nodes describes half of the crater domain because of
axial symmetry. The mesh size progressively increases
outwards from the center with a 1.05 coefficient to have
a larger spatial domain. The central cell region around
the impact point where damage is greater, more ex-
tended than the crater area, is a regular mesh 80 nodes
resolution in both x and y direction, and also describes
half of the damaged zone. We use a resolution of 10
nodes to describe the radial projectile.

For a fixed water depth, we used 8 cases of projectile
diameter in the range of 60 m to 1 Km, and 3 cases of
impactor velocity: 10, 20 and 30 Km/s. Calculations
were performed for 3 cases of water depth: 100, 200
and 400 m. Once fixed the projectile velocity and
the water depth of the hypothetical ocean, we search
to determine the range for the critical diameter of the
projectile which can crater the seafloor [15]. Therefore,
in this study we have to compute 72 cases. Its execution
on a Grid environment allows to obtain the diameter
range of interest within the research cycle time

Figures 3 and 4 show the timeframes of the opening
cavities at 1 second time using the 60 and the 80 m
impactor, respectively, with 200 m water depth and
a velocity of 10 Km/s for the impactor. The shape
difference between the 60 m case and the 80 m case
illustrates the water effect. Due to the water layer, in
that case, the impactor diameter has to be larger than
80 m to crater the seafloor.

5. GridWay programming model

The GridWay application programming and com-
mand line interface allow scientists and engineers to
express their computational problems in a Grid envi-
ronment. The capture of the job exit code allows users
to define complex jobs, where each depends on the out-
put and exit code from the previous job. They may even
involve branching, looping and spawning of subtasks,
allowing the exploitation of the parallelism on the work
flow of certain type of applications [14].

Figure 5 shows a fragment of the job template used
in the following experiments. Files are specified as
“source destination” pairs separated by commas, where
the destination file can be omitted if it has the same
name as the source file.

The experiment files consist of the executable
(∼0.5 MB), some parameter files (12 KB) for each task,
and a table with values for the EOS equations (1.3 MB,
when compressed) shared by all the tasks. The final
name of the executable is obtained by resolving the
variable $GW ARCH at runtime for the selected host.
Similarly, the final names of the parameter files are
obtained by resolving the variable $GW TASK ID at
runtime for the current task. Once the job finishes, the
standard output (0.5 MB) and the files with the figures
of the simulation timeframes in PNG format (0.5 MB)
are transferred back to the client.

The experiments have been performed with a re-
source selection script that queries MDS for potential
execution hosts, attending the following criteria:

– Host requirements are specified as a LDAP filter,
which is used by the resource selector to query
MDS and so obtain a preliminary list of potential
hosts. In the experiments below, we impose a
minimum main memory of 100 MB, enough to
accommodate each task:

(Mds-Memory-Ram-Total-sizeMB>=100)

The resource selector also performs an user autho-
rization filter (via a GRAM ping request) on those
hosts.

– A rank is assigned to each potential host following
the preferences specified by the user in a ranking
expression, which is a script that receives the mon-
itoring data of the resources and outputs the rank
value. Since our target application is a computing-
intensive simulation, the ranking expression ben-
efits those hosts with less workload and so bet-
ter performance. The following expression was
considered:



28 E. Huedo et al. / Development and execution of an impact cratering application on a computational Grid

Table 2
Mean, standard deviation and coefficient of variance (CV) for the transfer and execution times on each resource

Transfer time Execution time
Name Site Mean Dev. CV Mean Dev. CV

hydrus DACYA-UCM 0:00:32 0:00:21 67% 0:28:51 0:27:43 96%
cygnus DACYA-UCM 0:00:42 0:00:29 69% 0:37:17 0:20:56 56%
aquila DACYA-UCM 0:00:33 0:00:08 25% 0:50:20 0:24:54 49%
babieca LCASAT-CAB 0:05:32 0:02:42 49% 0:47:06 0:50:24 107%
platon REDIRIS 0:00:29 0:00:07 22% 1:48:00 1:39:09 92%
heraclito REDIRIS 0:00:36 0:00:11 31% 1:10:04 0:53:49 77%
ramses DSIC-UPV 0:00:26 0:00:47 177% 0:38:31 0:54:24 141%
khafre CEPBA-UPC 0:01:06 0:00:01 2% 1:22:26 1:19:15 96%

Table 3
Mean, standard deviation and coefficient of variance (CV) for the
wall times on each resource

Wall time
Name Site Mean Dev. CV

hydrus DACYA-UCM 0:29:22 0:27:51 95%
cygnus DACYA-UCM 0:37:59 0:21:06 56%
aquila DACYA-UCM 0:50:52 0:25:03 49%
babieca LCASAT-CAB 0:52:38 0:49:20 95%
platon REDIRIS 1:48:29 1:39:13 91%
heraclito REDIRIS 1:10:40 0:54:01 76%
ramses DSIC-UPV 0:38:57 0:54:33 140%
khafre CEPBA-UPC 1:23:32 1:19:15 95%

rank =

⎧⎨
⎩

FLOPS if CPU15 � 1;
FLOPS· if CPU15 < 1,
CPU15

(1)

where FLOPS is the peak performance achiev-
able by the host CPU, and CPU15 is the average
load in the last 15 minutes.

6. Computational results and performance
evaluation

The execution time for each task is different and,
what is more important, unknownbeforehand, since the
convergenceof the iterative algorithm strongly depends
on input parameters and the testbed resources are het-
erogeneous. Moreover, there is an additional difference
generated by the changing resource load and availabil-
ity. Therefore, adaptive scheduling is crucial for this
application. Figure 6 shows the dynamic throughput,
in terms of average turnaround time per job (i.e. the
elapsed time divided by the number of completed jobs),
as the experiment evolves. Total experiment time was
4.64 hours (4 hours, 38 minutes and 33 seconds), so the
achieved throughput was 3.87 minutes (3 minutes and
52 seconds) per job, or likewise, 15.51 jobs per hour.

Figures 7 and 8 show the schedule performed by
GridWay, in terms of number of jobs allocated to each
resource and site, respectively. Most of the allocated

jobs were successfully executed, but others failed and
were dynamically rescheduled. Given these results, we
can calculate the fault rate for each resource or site.
The two failing resources (sites) show a fault rate of
25% and 45%, respectively, which result in an overall
fault rate of 21%. These failures are mainly due to a
known Globus problem (bug id 950) related to the NFS
file systems and the PBS resource manager used in the
clusters, which causes the job manager not to be able
of getting the standard output and error of the job. This
problem is mitigated, but not avoided, on babieca,
where a patch related to this bug was applied.

Figure 9 shows the achieved throughput, also in
terms of average turnaround time per job, by each site
and by the whole testbed for the above schedule. In
the right axis, the distributed or Grid speed-up, i.e. the
performance gain obtained by each site, is also shown.
We introduced Grid speed-up as a valuable metric for
resource users and managers on each site in order to
realize the benefits of being part of a Grid. Perfor-
mance metrics like this can help to curb their selfish-
ness sharing resources on the Grid [25]. It is defined as
follows:

Ssite =
Tsite

TGrid
, (2)

where TGrid is the Grid turnaround time,i.e. the waiting
time from the application execution request until all
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the tasks are completed and all the results are available
when all the resources in the testbed are used, and Tsite

is the site turnaround time, i.e. the turnaround time
when only the resources of a given site are used. This
metric should be obtained or estimated in a distributed
way for each site.

Table 2 shows the mean, standard deviation and co-
efficient of variance (CV) for the transfer and execution
times on each resource. Table 3 shows the same statis-
tics for the wall times on each resource. These values
are nearly the same as for the execution time, since that
is the dominating term.

In the case of the transfer time,we can see differences
due to the heterogeneity of network links and resource
configurations. For example,khafre runs the 2.2 ver-
sion of the Globus toolkit, which has a polling period
for the GRAM job manager of 30 seconds (whereas
the 2.4 version polling period is 10 seconds). That pro-
duces a mean transfer time of one minute (two polling
periods) with a very low standard deviation. The results
also report a very high standard deviation in babieca,
which has a nearly flat probability density function,
that revealed several problems in the GRAM job man-
ager. It is interesting to note that the best mean trans-
fer time corresponds to platon, although it is located
in a different site from the client. This is due to the
file reuse policy implemented by GridWay, as platon
is a SMP node with two processors that executes two
simultaneous tasks sharing common files.

In the case of the execution time, there are two
sources of variance: the dynamism and heterogeneity
of the Grid resources and the different time needed
by each task to converge. Processor speeds have the
greater impact on the mean, while the use of RMS like
PBS in some clusters or the existence of SMP nodes
make the standard deviation to be greater.

7. Conclusions

The Globus toolkit provides a way to access the dis-
tributed resources needed for executing the compute
and data intensive applications required in several re-
search and engineering fields. However, the user is
responsible for manually performing all the submis-
sion steps in order to achieve any functionality, and
the adaptive execution of applications is not supported.
The GridWay framework provides the runtime mecha-
nisms needed for submitting applications and dynami-
cally adapting their execution.

The suitability of a Grid environment based on the
GridWay framework and the Globus toolkit has been
demonstrated for the execution of a high throughput
computing application that simulates impact cratering.
The application comprises the execution of a high a
number of tasks that exhibit different execution times
due to both the heterogeneity and dynamism of the Grid
resources and the convergence properties of the algo-
rithm. Such computing platform will help to develop a
search criteria for future investigations and exploration
missions to Mars. Moreover, if they are successful in
their hunt, they would also help to address the ongoing
debate of whether large water bodies existed on Mars
and, therefore, they would help to constrain future pa-
leoclimatic reconstructions.

The Grid speed-up has been introduced as a valu-
able metric for resource users and managers in order
to realize the benefits of sharing resources over the
Grid. On the other hand, the study of the execution and
transfer time provides a measure of the variability in
the resource load and could be monitored when adjust-
ing the components of a Grid in order to improve its
performance.
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