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Abstract. This paper describes the Pegasus framework that can be used to map complex scientific workflows onto distributed
resources. Pegasus enables users to represent the workflows at an abstract level without needing to worry about the particulars
of the target execution systems. The paper describes general issues in mapping applications and the functionality of Pegasus.
We present the results of improving application performance through workflow restructuring which clusters multiple tasks in a
workflow into single entities. A real-life astronomy application is used as the basis for the study.

1. Introduction

Many applicationstoday are being built by large sci-
entific collaborations such asthosein physics[1,2], as-
tronomy [3], biology [4], earthquake science [5], and
many others. The applications often involve the pro-
cessing of large data sets in many discrete steps (from
calibration of the raw data, various data transforma-
tions, visualization, etc.) To support the scale of the
applications, many resources are needed in order to
provideadequate performance. Theseresourcesare of-
ten drawn from a heterogeneous pool of geographically
distributed compute and data resources. The resources
are often contributed by various institutions that are
part of the collaborations. Running thelarge-scale, col-
laborative applicationsin such environments has many
challenges. Among them are: systematic management
of the applications, their components and the data, as
well as successfully and efficiently running on the dis-
tributed resources.

In order to manage the process of application devel-
opment and execution, it is often convenient to separate
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the two concerns. For example the application can be
devel opedindependently of thetarget execution system
using a high-level representation. Then, once the tar-
get execution environment isidentified, the application
can be mapped onto it. One paradigm that has been
explored in recent years is the notion of a workflow
which can capture the behavior of the application. At
the application-level the workflows are abstract in the
sense that the workflow describes only the application
componentsand their dependencies (reflecting the data
dependencies in the application). The data and com-
putations in an abstract workflow are also described at
an abstract, or logical level in that their names refer
to alogical entity that can then be mapped to one or
more physical instance. The abstract workflow repre-
sentation simplifies the application development pro-
cess. It enables a systematic approach to application
description; it providesflexibility in that individual ap-
plication components can be replaced with alternative
implementations; and it forms the basis for managing
the resulting data products by supplying a provenance
chain[6] that can be examined at alater date. However,
since the abstract workflow description does not indi-
cate which resources will be used for the execution, it
isinsufficient for the execution of the workflow.
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At theexecution-level, theworkflowsneed to be con-
crete or executable and describe not only the specific
tasksto be executed but also the resourcesthat would be
used in the execution of the tasks. Aswewill describe
in this paper, the process of mapping from the abstract
to the executable workflow can be automated. During
that mapping the original workflow undergoes a series
of refinements geared towards transforming the work-
flow to an executabl e description and towards optimiz-
ing the performance of the overall application. Mak-
ing the workflow executable may for example involve
data stage-in and stage out steps, whereas improving
the performance of the workflow may involve reduc-
ing the workflow to the minimum number of steps or
scheduling several workflow tasks as one unit.

In this paper, we concentrate on the workflow map-
ping aspect of the problem. We assume that the ap-
plication is already represented in an abstract work-
flow form that identifies the application components
and their dependencies, aswell asthe datathey use and
produce, but that does not specify particular resources
to be used. We examine various aspects of themapping
problem from generalizing the type of mapping deci-
sions that need to be made (Section 2) through the de-
scription of the mapping software Pegasus (Section 3).
We al so touch upon the operational complexities of the
system and its design. In Section 4 we examine an as-
tronomy application in detail and analyze how the per-
formance of the application can be improved via task
clustering techniques. Section 5 presents related work
and Section 6 summarizes the benefits of the workflow
approach and the Pegasus system.

2. Decisionsthat need to take place in wor kflow
mapping

We can define an abstract workflow as a directed
acyclicgraph (DAG) composed of tasksand datadepen-
dencies between them. In our work we have used three
different methods to create an abstract workflow. The
first technique is appropriate for application develop-
erswho are comfortablewith the notions of workflows
and have experiencein designing executableworkflows
(workflows already tied to a particular set of resources.
They may choose to design the abstract workflows di-
rectly according to a predefined schema. The second
method uses Chimera[ 7] to build the abstract workflow
based on the user-provided partial, logical workflow
descriptions specified in Chimera's Virtual Data Lan-
guage(VDL) [7]. Thirdly, abstract workflowsmay also

be constructed using assistance from intelligent work-
flow editors such as the Composition Analysis Tool
(CAT) [8,9]. CAT usesformal planning techniquesand
ontologies to support flexible mixed-initiative work-
flow composition that can critique partial workflows
composed by users and offer suggestionsto fix compo-
sition errors and to complete the workflow templates.
Workflow templates are in a sense skeletons that iden-
tify the necessary computational steps and their order
but do not include the input data. When using the
CAT software, an input data selector component uses
aMetadata Catalog Service (MCS) [10,11] to popul ate
the workflow template with the necessary data. MCS
performs a mapping from specific metadata attributes
to particular datainstances. The three methods of con-
structing the abstract workflow can be viewed as appro-
priate for different circumstances and scientist back-
grounds, from those very familiar with the details of
the execution environment to those that wish to reason
solely at the application level.

In any case, al three workflow creation methods
result in an abstract workflow representation that needs
to be mapped onto the available resources to facilitate
execution. The workflow mapping problem can be
defined as finding a mapping of tasks to resources that
minimizes the overall workflow execution time. The
workflow execution consists of the running time of the
tasksand thedatatransfer tasksthat stagedatainand out
of the computation. In general, this mapping problem
isNP-complete, so heuristics must be used to guidethe
search towards a solution.

2.1. Scheduling and mapping horizon

Scientific workflows are often large, consisting of
thousandsor hundredsof thousands of individual tasks.
At the same time the availability and characteristics of
the execution resources may vary over time. Clearly,
mapping the entire workflow and then committing all
the tasks to the selected resources may not be benefi-
cial. For example, by the time the latter portions of
the workflow are ready to execute, the resource assign-
ments may no longer be efficient or even feasible. In-
stead one can plan out the entire workflow but submit
only the portions of the workflow that can beruninthe
near future. We can denote how far into the future to
release the workflow as the scheduling horizon. This
horizon encompasses tasks that can be sent to the ex-
ecution system. As the execution progresses and the
execution environment changes, the initial workflow
mapping may need to be adjusted.
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M apping the entire workflow ahead of the execution
may be very costly and not appropriatefor caseswhere
the execution environment changes rapidly. In such
cases it may be beneficial to derive a mapping hori-
zon indicating how far into the future (how far into the
workflow) to map the tasks. As the workflow is ex-
ecuted, the workflow horizon is increased further and
the mapping of the resulting portions of the workflow
is being conducted.

The horizons can be expressed in anumber of ways,
for example as the number of tasks to be released for
execution (or mapped) or the set of tasksthat fall within
acertain timeinterval on the predicted execution time-
line. As can be seen in Section 3.3 the horizons can
also be set based on the workflow levels.

In general we can imagine that one can dynamically
set the mapping and scheduling horizons based on the
cost of mapping the workflow onto theresources, which
could be related to the mapping algorithm used and/or
to the size of the workflow and the behavior of the exe-
cution environment. Figure 1 depicts possible horizon
setting in four different situations. Based on the cost
of the mapping, one may set a long or short mapping
horizon. For example, if the cost is high and not linear
with the number of tasks, we may want to map only
small portions of the workflow at one time. If the ex-
ecution environment is fairly static, then it is safe to
release the mapped portion of the workflow as soon as
they areready to execute. The horizonsmay also differ
with a greater mapping horizon allowing for apossibly
better overall schedule and the shorter scheduling hori-
zon improving the execution time of the workflow as
in the case for dynamic environmentswhere the cost of
the mapping is manageable.

2.2. Resource allocation

An important parameter of the problem is the in-
formation available to conduct the mapping. Thisin-
formation is obtained dynamically from the execution
environment. Among such informationis:

— Theset of availableresources, their characteristics
(load, job queue length, job submission servers,
datatransfer servers, etc.)

— Thelocation of thedatareferenced inthe workflow
(thedatamay bereplicated and available at several
locations)

— The location and characteristics of the software
(including the environment that needs to be set
up for the software, any libraries that need to be
present, etc.)

Given this information, the mapping needs to con-
sider which resources to use to execute the tasks in the
workflow aswell as from which locationsto access the
data. These two issues are inter-related because the
choice of execution site may depend on the location
of the data and the data site selection may depend on
where the computation will take place. If the data sets
involved in the computation are large, one may favor
moving the computation closeto the data. On the other
hand if the computation is significant compared to the
cost of datatransfer the compute site selection could be
considered first.

The choice of execution location is complex and in-
volves taking into account two main things: feasibility
and performance.

Feasibility: (Isasite suitable for execution?)

— Doesthe user have access to that site? This ques-
tion could be ssimple, for example, can the user au-
thenticate now? Or it could be more complex, will
the user have access to a resource for the duration
of the run of the workflow tasks?

— Does the resource have the necessary software or
can the software be staged in?

— Does the resource have enough disk space, mem-
ory, etc?

Giventheanswer to these questions, we can construct
aset of feasible resources. Then, given this set we can
start analyzing the performance tradeoffs.

Performance tradeoffs:

— Data reuse. Is it better to re-produce the data
or access them? For example, some intermediate
data products or even the final products may be
aready available on some storage system, so we
need to evaluate whether it is more efficient to
access that data or to recomputeit.

— Which site to access the data from? As already
mentioned, data may be replicated, the decision
about which location to usetoretrieve the datamay
depend on the bandwidths between the data source
and the execution site, the performanceof the stor-
age system and the performance of the destination
datatransfer server.

— Software stage-in. Isit better to use a site which
aready hasthe software or pre-stage the software?
For example, there may be a site that has high-
availability and performance, but that does not
have the necessary software, would it be worth-
while to stage in the software.
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Fig. 1. Setting scheduling and mapping horizons based on mapping costs and the behavior of the execution environment.

— Which compute resource to use for the computa-
tion? In some sense the decision of which com-
pute resource to use is simpler than which data to
access. There has been much work of the years
in scheduling tasks onto resource, using analyti-
cal models [12], empirical models based on past
performance [13] and simulation [14]. There are
however afew aspectsof adistributed environment
such as the Grid [15] and of the applications that
make the problem more complex. Among them
are the sharing of resources among many users,
the dependency between tasks and the possibleuse
and production of large data sets. As part of the
resource allocation problem one may also need
to consider paralel applications and their specia
needs such as how many processors and what type
of network interconnectsare needed to obtain good
performance.

2.3. Optimizing wor kflow execution through wor kflow
restructuring

Once the target systems for a portion of the work-
flow are identified, there are still optimizations that
can be taken into consideration to improve the overall
workflow performance. Theseinvolverestructuringthe

workflow so that the jobs can be run on the systems as
efficiently as possible.

In some cases it is possible and efficient to reduce
theworkflow based on the availability of theintermedi-
ate data products. For example, it is possible that sev-
eral scientistswithin acollaborationarerunning similar
workflows and thus some of the data products referred
to in the workflow may already exist. In that case the
workflow can be automatically reduced by removing
the redundant computations.

Ancther possible restructuring aims at increasing
the granularity of computation and thus reducing the
scheduling overhead. The granularity can be increased
by combining (clustering) several tasks and treating
it as a single unit for the purposes of mapping and
scheduling. The question then is: how many tasks
destined for a specific location should be clustered to-
gether?

The third type of restructuring involves scheduling
jobs onto multi-processor systems. On these systemsit
may be more efficient to request more than one proces-
sor at atime, since the delay in the scheduling queues
may besignificant. If therearemultipletasksscheduled
for the mutli-processor system, it may be beneficial to
cluster them together and run them as one schedula-
ble unit. Thiswould result for example in allocating a
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given number of processors and using them to run the
tasks possibly in a master/slave fashion.

For the latter two optimizations, it may be desirable
to cluster the jobs prior to or along with the resource
assignment. We examinethe benefits of task clustering
in Section 4.

In general the amount of decisionsonewould liketo
make in order to optimize workflow execution is great
so in practice, in current workflow mapping systems
such as Pegasus, only asubset of decisionsistaken into
account at any onetime.

3. Pegasusdesign

Pegasus [1,4,16], which stands for Planning for Ex-
ecution in Grids, is a framework that maps complex
scientific workflows onto distributed resources such as
the Grid. Since no single system can optimize a wide
variety of workflows and environments, we designed
the framework in away that allows users to customize
various aspects of the system.

3.1. Target execution system overview

In order to understand the functionality of Pegasus
it is important to describe the execution environment
in which the workflows are to be executed. We as-
sume that the environment is a set of heterogeneous
hosts connect via a network, often a wide area net-
work. The hosts can be single processor machines,
multi-processor clusters and high-performanceparallel
systems.

Figure 2 shows atypical execution host, with a head
node visible to the network, possibly some other hosts
that form a pool of resources and a storage system. In
order to be able to schedul e jobs remotely, the resource
needs to have appropriate software deployed. In our
work, we use the Globus Toolkit [17] to provide:

— Remote job submission and management (viathe
GRAM jobmanager [18]).

— Remote data stage-in and stage out (via
GridFTP [19]). GridFTP alows for high-perfor-
mance, secure data transfer in the wide area net-
works.

— Information about the state of theresources (viathe
Monitoring and Discovery Service (MDS) [20]).
MDS provides information about the number and
type of available resources, static characteristics
such as the number of processors and dynamic
characteristics such as the amount of available
memory.

— Information about the dataavail abl eat theresource
(via Replica Location Service's (RLS) [21] Lo-
cal Replica Catalog (LRC)). RLSis a distributed
replica management system consisting of loca
catalogs that contain information about logical to
physical filename mappings and distributed in-
dexes that summarize the local catalog content.

In order to collect and organize information about
multiplesites, we use theindexing capabilitiesof MDS
and RLS (the Replication Location Index — RLI). This
collective information is utilized by Pegasusin the re-
source and replica selection decisions.

In order to use Pegasus in such an environment, a
resource, which could be a user’s desktop, needs to be
setup to provide Pegasus itself, DAGMan and Condor-
G [22], the latter two provide the workflow execution
engine and the capability to remotely submit jobsto a
variety of Globus-based resources. We name this re-
source a submit host. The submit host al'so maintains
information about the user’s application software in-
stalled at the remote sites (in the Transformation Cat-
aog (TC) [23]) and about the execution hosts of in-
terest to the user (in the Pool Configuration file). The
Pool Configuration file is dynamically constructed us-
ing data provided by MDS and additional information
provided by theuser. Inadditiontothegeneral resource
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information usually found in MDS it contains the in-
formation about the remote GridFTP, RLS servers, etc.
The submit host can also serveasalocal execution plat-
form for small workflows or for debugging purposes.

3.2. Pegasus functionality

Pegasus transforms an abstract workflow to an exe-
cutable (concrete) workflow through a series of refine-
ments. Theabstract workflow (Fig. 3 showsan example
abstract workflow) is composed of tasks described in
terms of logical transformations and logical input and
output filenames. The abstract workflow is indepen-
dent of the resources. Pegasus' goal is to find a good
mapping of the tasks to the available resources neces-
sary for execution. In Section 2 we described the many
choices that can be made when alocating resources.
Here we detail the approach taken by Pegasus.

Figure 4 depicts the steps taken by Pegasus during
the workflow refinement process.

3.2.1. Defining the set of available and accessible
resources
First, Pegasus consults MDS and the Pool Configu-
ration file to check which resources are available. Ad-
ditionally, Pegasus may try to authenticate to these re-
sources using the user’s credentials. Thus, the possible
set of resources may be reduced to a minimum.

3.2.2. Workflow reduction

The next step may modify the structure of the ab-
stract workflow based on the available data products.
Pegasus consults the Replica Location Service to de-
termine which intermediate data products are already
available. Based on this information, Pegasus may re-
duce the workflow to contain only the tasks necessary

to generate the final data products. In the extreme case,
if the final data products are already available, no tasks
will be scheduled except perhaps a datatransfer (to the
user-specified location) and registration of the desired
data products. An example reduction is discussed as
part of Section 3.4.

3.2.3. Resource selection

At this point we have the minimal abstract work-
flow in terms of the number of tasks. The workflow
reduction was made based on the assumption that it is
more efficient to access the data then to recompute it.
Given the minimal workflow, asite (resource) selection
is performed. This selection can be done based on the
available resources and their characteristics as well as
the location of the required input data. The type of
site selection performed is customizable as apluggable
components within Pegasus. The system incorporates
a choice of a few standard selection algorithms: ran-
dom, round-robin and min-min. These algorithms can
be applied to the selection of the execution site as well
asthe selection of thedatareplicas. The selection algo-
rithms make use of information available in MDS, the
Pool Configuration file (resource characteristics), the
Transformation Catal og (the location of the application
software components), and RL S (the location of data).
It isalso possible to delay data replica selection until a
later point, in which case RLS is not consulted at this
time. Additionally, users may wish to add their own al-
gorithms geared towards their application domain and
execution environment. These algorithms may also
rely on additional or different information servicesand
these can be plugged into Pegasus as well.

3.2.4. Task clustering

Pegasus provides an option to cluster jobs together
in cases where a number of small granularity jobs is
destined for the same computational resource. In Sec-
tion 4 we examine the value of clustering, here we
briefly described its mechanics. During clustering we
consider only independent tasks, so that they can be
viewed by the remote execution system as asingle en-
tity. These tasks also need to be destined for the same
execution system. Thetask clusters can be executed on
aremote system either in a sequence or if feasible and
appropriate they can be executed using MPI [24] in a
master/slave mode. In the latter case an initial number
of processors is requested and the clustered tasks are
being dispatched (sent to the remote site) to them asthe
constituent task execution is completed.
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3.2.5. Adding data stage-in, stage-out and
registration tasks

The abstract workflow contained only nodes repre-
senting computations. Since the workflow can be ex-
ecuted across multiple platforms and since data need
to be staged in and out of the computations, Pegasus
augments the workflow with tasks that explicitly per-
formdatatransfers. If during site selection datareplica
selection was not performed it can be done at this point.
Again, the user has the option of using Pegasus pro-
vided algorithms or supply their own. These ago-
rithms are used to determine which of possibly many
data replicas will be used as a data access locations.
Once the location is determined, a node is placed in
the workflow and a dependency to the corresponding
computation is added. Additionally, where appropri-
ate, intermediate and final data products may be regis-
tered in the data catal ogs such asthe RL S or ametadata
catalog to enable subsequent data discovery and reuse.
The data registration is also represented explicitly by
the addition of registration tasks and dependencies to
the workflow.

3.2.6. Submit file generation

At this point all the compute resource and data se-
lection has been performed and the workflow has the
structure corresponding to the ultimate execution struc-
ture that includes computation, data transfer and regis-
tration. The final step is to write it out in a form that
can beinterpreted by aworkflow execution enginesuch
as for example DAGMan. Once this is accomplished,
the resulting submit files can be given to DAGMan and
Condor-G for execution. DAGMan will follow the de-
pendencies in the workflow and submit available tasks

to Condor-G whichinturnwill dispatch thetasksto the
target resources.

The sequence of refinements depicted in Fig. 5 is
currently static, but one can imagine constructing the
sequence dynamically based on user and/or application
requirements.

3.3. Setting the mapping horizon

As we mentioned in Section 2.1, it is often benefi-
cial to set amapping and/or scheduling horizon which
determines which parts of the workflow will be refined
and which tasks scheduled at any giventime. Although
the space of possible solutionsislarge, weimplemented
a basic horizon setting mechanism within Pegasus. In
this case the scheduling horizon is equal to the map-
ping horizon. In our initial implementation the map-
ping horizon is set statically based on the structure of
the workflow. The mapping horizon is simply deter-
mined by the level s of the workflow as described bel ow.
Clearly thistypeof horizon definitionisnot efficient for
all applications so the user can provide their own hori-
zon setting function that partitions the workflow into
subworkflowsand maintai nsthe dependenciesbetween
them.

Once the subworkflows are set, Pegasus and DAG-
Man are then used to refine the partitions in the order
of dependencies. Figures 5 and 6 illustrate the process
for a level-based partitioning. The levels refer to the
depth of the tasks in the workflow. Figure 5 shows a
3-level workflow being partitioned. The resulting new
workflow, which we term aMegaDAG consists of three
partitions sequentially dependent on each other. Intu-
itively we would like to refine the first partition and
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then schedule and executeit before proceedingtorefine
the remaining partitions. In the examplein Fig. 5 the
partitioningisstatic, but we could also generatethefirst
partition (PW A), refine and execute it and only then
recursively partition the remainder of the workflow.

In order to support the static partitioning and refine-
ment, Pegasus constructsaMegaDAG, shownin Fig. 6.
This DAG is a “recipe” of the refinement and execu-
tion of the original workflow. The ovals correspond
to the workflow partitions. The directivesin each oval
indicate the actions to be taken when a workflow ex-
ecution system (in this case DAGMan) processes the
tasks. First, we see a call to gencdag on the first parti-
tion (A). Gencdag stands for the concrete (executable)
DAG generator and corresponds to the Pegasus’ work-
flow refinement process (asillustrated in Fig. 4). Once
Pegasus/gencdag generates the submit files for the par-
ticular partition, DAGMan is called to execute that par-
tition. If the process of refinement or execution fails, it
can beretried agiven number of times. After DAGMan

successfully finishes the execution of the refined parti-
tion A, the next directives are followed (refinement and
execution of partition B), etc.

Inorder to assurethat thedirectivesinthe MegaDAG
arefollowed, we use DAGMan (instance#1, represent-
ing the first invocation of DAGMan). It calls gencdag
ontheworkflow partitions (for examplepartition A) and
then invokes another instance of DAGMan (instance
#2) to execute the newly generated executable work-
flow (Su(A)). Once the second instance of DAGMan
successfully compl etesthe execution of the refined par-
tition A, the first instance of DAGMan continues with
the invocation of gencdag on partition B and so on.

Figure 7 demonstrates the process from the point
of view of the user. The user submits the abstract
workflow to the system, which in turns generates the
MegaDAG and submits it to DAGMan for execution.
As aresult tasks are released to Condor-G which sub-
mits them to the remote resources for execution.
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3.4. Partition-level failure recovery

Pegasus and DAGMan can be a powerful combina-
tion that enables a certain degree of remapping in case
of faillure. As explained above, in the MegaDAG each
task consists of aworkflow partition mapping step fol-
lowed by a DAGMan execution of the mapped work-
flow. If either of these steps fails due to a mapping
failure or due to the execution, the entire task can be
retried. An example of a situation where this is par-
ticularly useful is shown in Fig. 8. We start off with
a partition containing a subworkflow in a shape of a
diamond, consisting of 4 tasks. As mentioned before,

Pegasus reduces the workflow based on the available
data products. In this case Pegasus found that file fo
and f3 are already available. Because the two files
are available, tasks B and C do not need to be exe-
cuted and consequently neither does task A. The re-
sulting executable workflow is shown next. It consists
of four nodes, the first two stage in files f5 and f5 to
the execution location R;. Then task D is to be exe-
cuted at location R1 and finally the dataiis to be staged
out to the user-specified location. Given this mapping,
DAGMan proceedswith the execution of the workflow.
Let’s assume that file f5 is successfully staged in, but
for some reason there is a failure when accessing or
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Table1
Characteristics of the tasks/transformations in the montage workflow
Level  Transformation Name  Description No. of jobsat  Runtime of each job at
the level the level (in seconds)
1 mProject Reprojects a single image to the image parameters and foot- 180 6
prints defined in a header file.
2 mDiffFit Finds the difference between two images and fits a plane to 1010 14
that difference image
3 mConcatFit Does a simple concatenation of the plane fit parameters from 1 44
multiple mDiffFit jobsinto asingle file
4 mBgModel Models the sky background using the plane fit parameters 1 32
from mDiffFit and computes planar corrections for the in-
put images that will rectify the background across the entire
mosaic
5 mBackground Rectifies the background in asingle image 180 0.8
6 mimgtbl Extracts the FITS header geometry information from a set of 1 35
files and stores it in an image metadata table
7 mAdd Co-adds a set of reprojected images to produce a mosaic as 1 60

specified in atemplate header file

transferring f3 and the data transfer software (in our
case GridFTP) returns an error Given this failure the
DAGMan execution of the partition fails as does the
entire original MegaDAG node representing the refine-
ment and execution of the partition. Upon this failure
the MegaDAG node is resubmitted for execution and
the refinement (gencdag(A) and execution(Su(A)) are
redone. In the final step we see the executable work-
flow that resulted from the Pegasus/gencdag mapping.
We notice that Pegasus took into account that f was
already successfully staged in and at the sametime, the
reduction step did not reduce task C because f3 needs
to be regenerated (assuming there was only one copy
of f3 available). Inthis case we also assumethat f; is
availablethustask A still does not need to be executed.
Given this new mapping DAGMan is invoked again to
perform the execution.

4. Application study
4.1. Montage wor kflow

Montage[3,25] is an application that constructs cus-
tom science-grade astronomical image mosaics on de-
mand. Figure 9 showsthe structure of asmall Montage
workflow. The figure only shows the graph of the ab-
stract workflow. The concrete workflow would contain
datatransfer and registration nodesin addition to those
shown in the figure.

The workflow can be divided into levels as men-
tioned in Section 3.3. The numbersinside the vertices
in the graph show the level number of the job in the
workflow. Table 1 gives a description of the workflow
and the number of the jobs for a representative 2 de-

gree mosaic centered around the celestial object M 16.
The inputs to the workflow include the input imagesin
standard FITSformat (afile format used throughout the
astronomy community), and a “template header file”
that specifies the mosaic to be constructed. The work-
flow can be thought of as having three parts, includ-
ing reprojection of each input image to the coordinate
space of the output mosaic, background rectification of
thereprojected images, and coaddition to formthefinal
output mosaic.

4.2. Target execution system model

In Section 3 we described the functional aspects of
the target execution system. Here we examinethe sys-
tem from the point of view of remotejob scheduling and
execution performance. In particular, we study how
to improve the overall workflow performance by re-
ducing the scheduling overheadsincurred by the work-
flow tasks. The system consists of a user submitting
an application for execution on multiple grid resources
(sometimesreferred to as sites below) which are possi-
bly geographically distributed and belong to different
administrative domains as shown in Fig. 10.

Each site in the Fig. 10 belongs to a different ad-
ministrative domain and consists of a cluster of (in this
case) homogeneous machines. In this configuration,
only one particular machine (called the head node) on
each site is used for submitting jobs to that site. For
each site, the big oval on the left hand side depicts the
head node for the site and the smaller circles depict the
worker nodesfor the site. Each site might be shared by
many Users.

As we described previously, in order to develop an
application for the Grid environment, the user con-
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Fig. 10. Pegasus and DAGMan schedule and submit jobs to multiple sites.

structs an application workflow in the form of an ab-
stract workflow, then uses Pegasus to do the resource
allocation for the jobs in the workflow and to generate
the Condor submit files. These submit files specify the
head node of the remote site to which the job hasto be
submitted and any required input files. Condor DAG-
Man takes the workflow specification and submits the
ready jobs to the local Condor queue while maintain-
ing the dependencies between the jobs in the workfl ow.

Condor-G is used to schedule the submitted jobs in the
workflow on the remote resources. In thisscenario, the
Condor software has to be installed on the user’s local
machine and the Globus software has to be installed
on the head nodes of the various sites. The Globus
installation at the remote sites takes care of receiving
the job specification and submitting it to the local re-
source management system such as PBS [26], Condor,
LSF[27], etc.
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In this model, the delay that a job encounters after
being submitted to the local Condor queue and before
starting execution on a remote resource is composed
mainly of the following two components:

1. Thetime spent waiting in the local Condor queue
before being submitted to aremote site.
2. Thetime spent waiting in the remote site queue.

Oneissue that comes up in real Grid deploymentsis
the overloading of the head node with too many jobs.
To avoid this situation, one can limit the number of
jobs submitted to a particular remote site. Typically,
in our experiments we tell Condor to limit the num-
ber of jobs sent to a remote site to 50. Ideally, this
limit would be dynamic and based on the load on the
head node. Setting the limit too low can increase the
workflow completion time dramatically and setting it
too high can cause the head node of the remote site
to crash because of overload. During our experiments
we observed that the limit of 50 worked well in most
cases. However, due to this limit, a job destined for
a particular remote site may have to wait in the local
Condor queue until the number of jobsthat can be sub-
mitted to that particular site falls below the maximum
allowed. Each remote site uses a resource management
system such as PBS, LSF, or Condor to queue up the
submitted jobsand start their executionastheresources
become available. Thus, the job may have to wait in

the remote queue before the resources become avail-
able. In the following section, we study the effect of
the above-mentioned delays on the completion time of
the Montage application and examine ways to reduce
the delays to optimize the overall workflow execution.

4.3. Experiment

4.3.1. Sandard execution

In our experiments, the submit machine was located
a ISl and the jobs were scheduled to execute on the
TeraGrid's NCSA cluster. In our work we use only
one remote cluster in order to eliminate the effects of
datatransfer between remote clusters. The NCSA Ter-
agrid Linux cluster consists of 887 cluster nodes run-
ning the SUSE linux OS. 256 nodes are dual 1.3 GHz
Intel Itanium 2 processors and 631 are dual 1.5 GHz
Intel Itanium 2 processors. The cluster nodes are man-
aged by the PBS resource management system and the
Maui [28] scheduler is used to schedul e tasks onto the
nodes. The NCSA Teragrid cluster contains a GRAM
gatekeeper that can be used for submitting tasks re-
motely to the PBS queue and several GridFTP servers
for transferring data. Shared file systemsthat arevisible
from al the nodesin the cluster can be used for sharing
data between tasks. DAGMan submits the ready jobs
in the workflow to the local Condor queue and waits
for any further events. Condor-G submits the specified



E. Deelman et al. / Pegasus: A framework for mapping complex scientific workflows onto distributed systems 231

10000 ' : . . | }
: | : : total time
running time ---------
1000 | R |
3] ml
§ 100 ;:-‘——— JOR SRCLUNUUNOR LAV ol SO0V Y B 2 |
i
H
: "
10 SREL R IR S T |
F 3 -
;
H
;
H
L i

0 200 400 600

800 1000 1200 1400 1600
job id
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on alogarithmic scale.

number of jobs from thelocal queueto the Globusjob-
manager on the head node of theremote site. For exam-
ple, thereare 180 top-level jobsintheworkflow that are
ready for execution but only 50 of them are submitted
to the remote cluster. The remaining 130 have to wait
in the local condor queue until any already submitted
job finishes execution. Figure 11 shows the total num-
ber of jobsin the system, the number of jobs submitted
to the remote system, and the number of jobs actually
executing as time progresses. This figure shows the
wide difference between the total number of submitted
jobs, the number of jobs actually submitted to the re-
mote site, and the number of jobs actualy running at
agiven time. Thisdifferenceis dueto the limit on the
maximum number of jobs that can be submitted to the
remote site and the limited number of machines that
are available at the remote site. Figure 11 also shows
that the number of submitted jobs to the remote site is
always less than or equal to the specified limit of 50
even though there may be 10 times more jobs ready for
execution in the local Condor queue.

Figure 12 showsthe total time each job had to spend
in the system (indicated by the line marked total time—
top line in the figure), the time it spends on the remote
site (indicated by the line marked remote site time —
middleline), thetimeitisactually running onamachine
ontheremotesite (indicated by thelinemarked running

time — bottom line). The time each job spends in the
systemiscomposed of thetimethejobs spent waitingin
thelocal queueandthetimeit spendsontheremotesite.
The time each job spends on the remote site consists
of the time it spends waiting for a machine to become
available and the time it is actually running. The time
spent in the local queue is not explicitly marked in the
figure but can be calculated as the difference between
thetotal time and thetime spent on theremotesite. The
execution timeis very small in comparison to the total
timeandisbarely noticeableat the bottom of the graph.
The X-axisin Fig. 12 consists of thejob identifiersand
the Y-axis is the time in seconds (on the logarithmic
scale).

4.3.2. Sequential clustering

Aswe seefrom Fig. 12, amajority of thejobsin the
workflow spent most of their time (upto 90%) waiting
in the local Condor queue before being submitted to
the remote site for execution. Since the jobs have to
wait in the local Condor queue because we set a limit
of 50 jobs being sent to aremote site at any given point
of time, one possible alternative to reduce this waiting
time is to cluster the jobs in the workflow so that we
reducethe number of jobs as seen by Condor. Thisalso
reducestheload on the head node of theremotesite. By
clustering, we merge two or more jobs in the original
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particular time.

workflow into asinglecluster. Thiscluster issubmitted
to Condor as asingle job. When it starts executing on
the remote resource, it executes all its constituent jobs
sequentially.

Clustering of jobs in the workflow increases the
computational granularity of jobs submitted to Condor.
Clustering effectively modifies the workflow graph.
However, all the dependenciesof the original workflow
should be preserved in the new graph. Each cluster
should be a convex subgraph of the original workflow
i.e. each directed path between the jobs in the cluster
should be fully included in the cluster.

Our current approach to clustering consists of as-
signing levels to the jobs in the workflow and forming
clustersfromthejobs at the samelevel. Thejobsinthe
workflow that have no parent jobs are assigned level
1. The jobsthat become ready for execution when the
level 1 jobs have completed successfully are assigned
level 2 and so on. The jobs within each level are in-
dependent of each other and can be clustered together
without violating any of the dependenciesin the work-
flow. Figure 9 shows the jobs in the Montage work-
flow and the level s assigned to thejobsin the workflow
(indicated by the numbersinside the vertices).

In our next experiment, we took the same workflow
and clustered 60 jobsat the samelevel inasinglecluster.
The clustered workflow now has 35 jobs instead of

about 1500 in the original workflow. Figure 13 shows
thetotal number of submitted jobsinthesystem,andthe
number of jobsactually running at any particular instant
of time after the clustered workflow has been submitted
to DAGMan for execution. Since the number of ready
jobs at any point of time now is less than the limit of
50, they do not have to wait in the local Condor queue.
Consequently the total number of submitted jobsin the
systemis equal to the number of jobs submitted to the
remotesite. EachjobinFig. 13isacluster of jobsfrom
the original workflow.

There are a few important differences between the
timing resultsin Figs 11 and 13. Most importantly, the
workflow now completesin 2400 seconds whereas ear-
lier it took more than 6000 seconds to complete even
though the number of jobs running, and hence the num-
ber of allocated machines at any particular instant of
timeareroughly thesame. Thus, theresourceavailabil-
ity at the remote site has not changed but the time each
job spendsin the system hasreduced asseenin Fig. 14.
The second most important observationisthat sincethe
number of jobs as seen by Condor is less as compared
tothe earlier case and | essthan the job submission limit
of 50 jobs per remote resource, the jobs now do not
have to wait in the local Condor queue. Each job is
submitted to the remote site as soon asit becomesready
for execution. Aswe had seen earlier, most of the jobs
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in the workflow spent a large portion of their timein
the system waiting in the local Condor queue. Thus,
by eliminating this wait time, we were able to reduce
the workflow completion time by more than 50%. Fig-
ure 14 shows the distribution of time each job spends
in the system (similar to what was shown in Fig. 12).
Each job now spends all of its time on the remote site,
either waiting in the queue or executing.

As Figs 13 and 15 show that clustering helpsin re-
ducing the completion time of the workflow. It does so
by reducing the number of jobsin the workflow so the
waiting time for jobs in the local queue is eliminated.
This aso helpsin decreasing load on the head node of
the remote site since it takes some CPU and memory
resource to track each submitted job. It aso helpsin
decreasing the load on the local machine since instead
of hundreds or thousands of jobsin the Condor queue;
there are now only few of them. Increasing the com-
putational granularity of jobs improves the efficiency
with which the remote resources are used.

4.3.3. MPI clustering

Even after clustering we still have the limit of 50
submitted jobs per remote resource (or some other set
limit that prevents the remote head node from over-
loading). Thisimpliesthat the system can only submit
50 clusters for execution on the remote resource even

though there may be more resourcesavailable. Inorder
to utilize all the available resources on the remote site
(and keeping in mind that the target system is a cluster
that supports parallel execution), we make each cluster
an MPI job. Therefore, each cluster can use more than
one resource for execution. In our clusters al the jobs
in a cluster are independent of each other and so it is
simple to write a MPI wrapper which can execute the
jobsin the cluster using the master/slave approach.

For the next experiment, we cluster the jobs in the
original workflow with 60 jobs per cluster asbefore. In
this case, each cluster is an MPI job that uses 10 pro-
cessors for execution. Thus n running clusters would
use n * 10 remote processors for execution. Figure 15
showsthe number of jobsin the system and the number
of running jobs as time progresses. In this figure, we
do not differentiate between the total number of jobs
in the system and the number of jobs submitted to the
remote site since there is little difference between the
two. Aswe can see, the maximum number of jobs run-
ning simultaneously is 8 and therefore 80 processors
or machines (assuming 1 processor per machine) were
being used for workflow execution at that point. This
would not have been possible earlier as we would have
been able to use only 50 processors for 50 submitted
clusters. In addition, the workflow completion time
reduces to about 1420 seconds.
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Figure 16 showsthe total time spent and the running
time for each cluster in the workflow. In the earlier
case of sequentia clustering, the average wait time for
each cluster on the remote site was approximately 50
secondsbut in this case of clustering with MPI, thewait
timeisaround 100 seconds. Thisincreasein wait time
isexpected since now each cluster isrequesting 10 pro-
cessors Whereas earlier it was requesting only asingle
processor. In case of sequential clustering, each cluster
requires only a single processor for execution and so
may get scheduled faster when the remote scheduler
takes advantage of the backfilling opportunities.

4.4. Discussion

We studied the overhead associated with executing
an application workflow over the Grid resources using
standard Grid Middleware components such as Condor
and Globus. We found that for small-grained applica-
tion such as Montagethis overheadis mostly composed
of the queuing delay each job in the workflow encoun-
terson the local machine aswell as on the remote pool.
We presented an approach which clusters jobs in the
workflow as a possible solution to eliminate or reduce
these delays. In our results, the clusters were formed
based on the level of atask in a workflow. We used
two possible execution modesfor theresulting clusters:
sequential and MPI. The MPI-based clustering is able

to utilize more resources on the remote site and hence
should be used if more resources are available than the
number of jobsthat can be submitted to theremote site.

Clustering can aso improve or even make feasible
the execution of very large workflows which normally
cannot execute efficiently because of the lack or over-
loading of resources. For example, there are benefitsto
clustering in cases where sites have alimit on the num-
ber of machinesthat aparticular user can use at any par-
ticular instant of time. Clustering can bevery helpful in
that case becauseit reduces the number of jobsthat are
sent to a cluster without reducing the amount of work
done. Clustering can also be used to reduce the load
on the local machine and the head node of the remote
site. Because clustering reduces the number of work-
flow nodesthat the execution system needs to manage,
it also enables the execution of very large workflows.
For example M ontage workfl ows contai ning thousands
of nodes at the various levels are amost impossible to
execute without using clustering. The Montage work-
flow used in Section 4.2 is used to create a 2 degree
mosai ¢ and has about 1500 nodes. A concrete Montage
workflow that creates a 6 degree mosaic can contain
morethan ten thousand nodes. Dueto the shared nature
of the resources, such alarge workflow can take days
to complete in the absence of failures. However when
properly clustered, the workflow can be completed in
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less than two hours. Fewer jobs in the workflow also
mean less opportunity for failure.

We studied the effect of clustering on a Montage
workflow that is afine computational granularity work-
flow. The runtime of jobs in the Montage workflow
is very smal aslisted in Table 1. The effect of clus-
tering on coarse-grained workflow is not yet clear al-
though we suppose that the benefits of clustering will
be dimished. In addition, clustering increases the run
times of jobs submitted to the remote sites and thus can
lose scheduling opportunities provided by backfilling.
Therefore, the number of jobs per cluster should be
determined based on the runtimes of the jobs and the
availability of the remote resources.

5. Related work

There have been a number of effortswithin the Grid
community to devel op general -purposeworkflow man-
agement solutions.

WebFlow [29] is amultileveled system for high per-
formance distributed computing. It consists of three
layers. The top layer consists of a web based tool for
visual programming and monitoring. It provides the
user the ability to compose new applicationswith exist-
ing components using a drag and drop capability. The

middlelayer consists of distributed web flow serverim-
plemented using java extensions to httpd servers. The
lower layer uses the Java CoG Kit to interface with the
Grid [30] for high performance computing. Webflow
uses GRAM as the interface between webflow and the
Globus Toolkit. Thus, Webflow also provides a visual
programming aid for the Globus toolkit.

GridFlow [31] has a two-tiered architecture with
global Grid workflow management and local Grid sub
workflow scheduling. GridAnt [32] uses the Ant [33]
workflow processing engine. Nimrod-G [34] is a cost
and deadline based resource management and schedul -
ing system. The Accelerated Strategic Computing Ini-
tiative Grid [ 35] distributed resource manager includes
a desktop submission tool, a workflow manager and a
resource broker. In the ASCI Grid software compo-
nents are registered so that the user can ask “run code
X" and the system finds out an appropriate resource to
run the code. Pegasus uses asimilar concept of virtual
data[2] wheretheuser canask “get Y” whereY isadata
product and the system figures out how to compute Y.
Almost al the systems mentioned above except Grid-
Flow usethe Globus Toolkit for resource discovery and
job submission. The GridFlow project will apply the
OGSA [36] standards and protocols when their system
becomesmore mature. Both ASCI Grid and Nimrod-G
uses the Globus MDS service for resource discovery
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and a similar interface is being devel oped for Pegasus.
GridAnt, Nimrod-G and Pegasus use GRAM for re-
mote job submission and GSI [37] for authentication
purposes. GridAnt has predefined tasks for authentica-
tion, file transfer and job execution, while reusing the
XML -based workflow specificationimplicitly included
in ant, which also makesit possibleto describe parallel
and sequential executions.

The main difference between Pegasus and the above
systems is that while most of the above system focus
on resource brokerage and scheduling strategies, Pe-
gasus uses the concept of virtual data and provenance
to generate and reduce the workflows based on data
products which have already been computed. It prunes
the workflow based on the assumption that it is always
more costly to compute the data product than to fetch it
from an existing location. Pegasus also automates the
job of replicaselection so that the user does not haveto
specify thelocation of input datafiles. Pegasuscanalso
map and schedule only portions of the workflow at a
given time, using partitioning techniques. In combina-
tionwith DAGMan, Pegasus can provide partition-level
failure recovery capabilities.

6. Conclusions

In this paper we described the Pegasus framework,
its ability to be customized to accommodate various
scheduling and replica selection agorithms, and its
ability to provide partition-level failure recovery. We
evaluated the benefits of task clustering for an appli-
cation with a relatively low computational granular-
ity. This paper has shown experimental results of us-
ing Pegasus in the astronomy domain in the context
of running on the TeraGrid. We selected this particu-
lar domain because it posses challenges to the work-
flow mapping system. The Montage workflows are
typically large, often with hundreds and thousands of
tasks and the tasks have a low computational granu-
larity which exposes the overheads of the job submis-
sion and scheduling systems. Pegasusis currently be-
ing used in a number of other application domainsin-
cluding gravitational-wave physics [38], high-energy
physics [1], biology [4], earthquake science and oth-
ers[39]. Thedetails about the various domains as well
as additional details on Pegasus' functionality can be
foundin[4].

From the point-of-view of the user, Pegasus can
runworkflowsacross multiple heterogeneousresources
distributed in the wide area, while at the same time

shielding the user from the Grid details. From the
point-of-view of performance, there are great benefits
to the workflow and Pegasus approach to application
description, mapping, and execution. The workflow
exposes the structure of the application and its max-
imum parallelism. Pegasus can then take advantage
of the structure to set the mapping horizon to adjust
to the volatility of the target execution system. This
feature is beneficia both in cases where resources or
data may become suddenly unavailable and in cases
where new resources come online. In the latter case,
Pegasus can opportunistically take advantage of these
newly available resources. The exposure of the maxi-
mum parallelism also enables Pegasus to cluster tasks
together to reduce the overheads of target scheduling
systems. Pegasus workflow reduction capabilities can
also improve overall workflow performance.

Pegasusis an evolving system. We are continuously
improving the decision-making capabilities as well as
developing algorithms for resource and replica selec-
tion, and task clustering. Onedirectionthat isof partic-
ular interest is resource reservation. Although it is not
currently supported by many systems, as resource man-
agement technologies improve, the ability to reserve
resourceswill becomean important tool in not only im-
proving performance of workflowsbut also in enabling
new, time critical and/or interactive applications.
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