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Abstract. In this work we make a strong case for remote memory access (RMA) as the effective way to program a parallel
computer by proposing a framework that supports RMA in a library independent, simple and intuitive way. If one uses our
approach the parallel code one writes will run transparently under MPI-2 enabled libraries but also bulk-synchronous parallel
libraries. The advantage of using RMA is code simplicity, reduced programming complexity, and increased efficiency. We support
the latter claims by implementing under this framework a collection of benchmark programs consisting of a communication and
synchronization performance assessment program, a dense matrix multiplication algorithm, and two variants of a parallel radix-
sort algorithm and examine their performance on a LINUX-based PC cluster under three different RMA enabled libraries: LAM
MPI, BSPlib, and PUB. We conclude that implementations of such parallel algorithms using RMA communication primitives
lead to code that is as efficient as the message-passing equivalent code and in the case of radix-sort substantially more efficient.
In addition our work can be used as a comparative study of the relevant capabilities of the three libraries.

1. Introduction

In the past years several parallel computing models
have been proposed such as the CGM [7], LogP [6],
BSP [24], and QSM [15] for the design of parallel al-
gorithms and the programming of parallel computers.
At the same time a number of parallel libraries have
become available that allow portable programming on
a variety of parallel hardware platforms. Most of the
these libraries are totally independent of these program-
ming models; libraries based on the Message Pass-
ing Interface (MPI) such as the freely available LAM
MPI [17] and MPICH [22], or commerical ones such
as WMPI [5], and other libraries such as the Parallel
Virtual Machine (PVM) [9] fall into this category all of
which offer extensive library features of several hun-
dred function calls. Other libraries such as the Oxford
BSP library [21], BSPlib, The Oxford BSP Toolset [16,
23], and PUB-Library [2] (Paderborn University BSP-
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Library) are tied to a specific programming model and
are quite compact thus offering a mere 30–40 function
calls.

Parallel programming is still viewed as a complex
task not only because it involves understanding and re-
solving issues such as task parallelism and data distri-
bution but also because it requires effective processor
communication and synchronization. Users of pop-
ular parallel programming libraries such as the ones
based on the Message Passing Interface (MPI) are of-
fered an extensive collection of message passing alter-
natives to realize two-way interprocessor communica-
tion. For example sending information under MPI can
be performed by no less than eight different blocking
or non-blocking function calls. Receipt of information
can be dealt with by a variety of approaches as well
that also depends on the sending method used. The
choice of multiple methods to perform a single task
leads many times to programmer overload and confu-
sion, increasing programming complexity, deadlocked
programs, and results in program inefficiencies as the
most efficient way to communicate information may

ISSN 1058-9244/04/$17.00  2004 – IOS Press and the authors. All rights reserved



170 A.V. Gerbessiotis and S.-Y. Lee / Remote memory access

not be used. MPI for example offers the programmer
more than 200 library functions even though most pro-
grammers use only a small subset of these functions.

Remote memory access (RMA) one-sided commu-
nication has been available since the introduction of
the Cray SHMEM routines [4]. Because of the sim-
plicity of these routines, their elegance and their effi-
ciency, RMA was quickly and successfully adapted into
bulk-synchronous parallel libraries such as the Oxford
BSP library, BSPlib, and PUB-Library. Subsequently
it was incorporated into MPI under the MPI-2 stan-
dard. The current support of RMA under MPI libraries
varies, however. Some freely available libraries such
as LAM MPI support it but others do not. Because of
this nonuniformity of support programmers stay away
from this style of parallel programming because, it is
thought, it could lead to non-portable code. Although a
programmer is offered at least eight ways to send infor-
mation through message passing in MPI, there is only
one way to send information through RMA by utilizing
a put instruction; a symmetric get instruction is also
available. In BSPliband PUB-Library, the programmer
also has two choices for a put (or get).

In this paper we make a strong case for remote mem-
ory access as an effective way to program a parallel
computer. We support our case by first proposing a
robust, simple, intuitive, and extensible programmatic
framework that supports RMA in a library indepen-
dent, simple, and portable way using the C program-
ming language; extending this framework for C++ and
Fortran programming would be easy. We claim that if
one uses our approach the parallel code one writes will
run transparently not only under MPI-2 RMA enabled
libraries including LAM MPI and Critical Software’s
WMPI, but also on bulk-synchronous parallel libraries
such as BSPlib and PUB-Library thus making one’s
code library independent as well. Future libraries that
support similar APIs could also be accommodated. We
claim that the advantage of using RMA is code cleanli-
ness, reduced programmer confusion and overload and
increased code efficiency because two-sided commu-
nication is much more tedious than one-sided commu-
nication. In addition, the programmer does not need
to choose the best way for interprocessor communica-
tion as there is only one method to do so. Moreover,
a communication library implementor can more easily
provide an efficient implementation of such a method,
rather than optimize eight or more apparently equiva-
lent ones.

We support our case by implementing using the pro-
posed framework three sets of benchmark quality par-

allel programs using one-sided communication: (a) a
set of tests that assess the communication and synchro-
nization performance of a parallel hardware platform
that will thereafter be referred to as the As suite, (b)
a set of parallel dense matrix multiplication programs,
the Mult suite, and (c) a set of parallel integer radix-
sort programs, the Rdx suite. We then examine the
performance of these programs on a LINUX-based PC
cluster under three different RMA enabled libraries:
LAM MPI, BSPliband PUB-Library. For comparative
purposes variants of these programs have been made to
work using two-sided communication in LAM MPI. We
then compare the performance of these programs under
one-sided and two-sided communication in LAM MPI,
and also compare the one-sided communication perfor-
mance under BSPliband PUB-Library to the one-sided
and two-sided communicationperformance of the same
programs under LAM MPI.

Through the As suite, we can test the synchroniza-
tion capabilities of a parallel platform under each one
of the three libraries. We can also test the communi-
cation capabilities of a parallel platform under any of
these libraries by benchmarking total-exchanges imple-
mented by using a put operation in all these libraries
and through a variety of send operations in LAM MPI.
In the Mult suite, we implemented a blocked parallel
dense matrix multiplication algorithm using one-sided
put or get functions calls in all three libraries and in
addition, two-sided send/receive library calls in LAM
MPI. Finally the Rdx suite, implements two integer
radix-sort algorithms. The first algorithm is a straight-
forward parallelization of ordinary radix-sort for 32-bit
integers. An optimized version of this algorithm that
allows for round-robin key value-based delayed com-
munication was also implemented. The second algo-
rithm is an enhanced version of the straightforward par-
allelization where messages are combined before being
sent out so that each processor sends and receives one
long message.

We carry out this experimental study for one addi-
tional reason: it offers a comparison of the communi-
cation performance of the three libraries on a cluster
of PC workstations under a realistic set of benchmark
programs. In that respect, our work serves similar but
more general objectives than the work of [8] that com-
pares SHMEM and MPI functionality and [18–20] that
evaluate MPI-2 one-sided functions on a variety of high
performance parallel machines.

Our conclusions seem to consistently confirm our
claims. One-sided communication is easier to deal with
than two-sided communication in parallel programs.
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BSPliband PUB-Library have no more than 30–40 li-
brary calls and seem to do as good a job as a more
general library such as LAM MPI. In the case of LAM
MPI, the single choice of a one-sided function call is
always the best or as good a choice as the best of a col-
lection of two-sided alternatives. In complex commu-
nication patterns that resemble total-exchanges, where
each processor sends all other processors multiple mes-
sages, one-sided communication seems to outperform
two-sided communication at least in LAM MPI. One-
sided communication as implemented in BSPlibseems
to be better than two-sided and also one-sided com-
munication under LAM MPI, with some minor excep-
tions. Even one-sided communication in PUB-Library,
for the cases that the library seems to be properly tuned,
outperforms one-sided or two-sided LAM MPI com-
munication. MPI in general and LAM MPI in particu-
lar needs to be downsized into a smaller set of library
calls that are more optimized and fine tuned and give
less freedom of choice to the average programmer.

2. A framework for parallel programming

In this section we show how one could write paral-
lel code using remote memory access one-sided com-
munication that is both portable among several paral-
lel platforms but also, library independent in the sense
that the same program can be compiled without any
rewriting under RMA enabled libraries which include
MPI-2 based libraries such as LAM MPI and Critical
Software’s WMPI, and programming model specific li-
braries such as BSPliband PUB-Library. Towards this
we introduce a few generic primitives that one could
use for such portable and library independent parallel
programming. For the most important of these primi-
tives equivalent MPI-2 translations are given as well as
BSPlib/PUB translations that adhere to the BSPWorld-
wide standard [16].

All three libraries considered in this study have simi-
lar methods for initializing an SPMD parallel program,
terminating it, aborting it, and accessing the number of
processors and the processor identification number of
an individual processor. In our framework we use the
generic wrapper functions LIBEGIN(LINPROCS()),
LIEND(), LIABORT(), LINPROCS(), and LIPID() to
represent these common functions. Such functions can
be mapped easily to individual library function calls.
We omit this by noting that the source code of the pro-
grams written for this study contains a file named ai.h
that includes detailed mappings for these functions in

all three libraries. For the sake of an example, in LAM
MPI, the first of the generic primitives maps for ex-
ample to an MPI Init (the LINPROCS() argument is
an idiosyncratic feature of BSPlibthat is ignored), the
second to an MPI Finalize, the third to an MPI Abort,
the fourth to an MPI Commsize, and the last one to an
MPI Commrank function call.

We provide two ways for RMA-based programming
that we explain in detail below. Suppose that source
processor spidintends to send information to a destina-
tion processor dpid. The source information is stored
in consecutive memory locations starting at address sr-
caddrand is len bytes long. The information is to be
stored in processor dpidstarting at an offset of off bytes
from the starting address desaddr. This operation can
be realized by issuing a put instruction at spidthat has
the following format: LIPUT(dpid, srcaddr, desaddr,
off, len). One other reason for proposing our framework
is to simplify the API of the one-sided MPI primitives;
for example the put and get instructions in MPI-2 have
a counter-intuitive syntax.

Certain actions must precede this operation and the
operation is guaranteed completion by a second set of
actions that take place after the LIPUT is issued. The
actions preceding the operation involve registration of
the destination desaddrand the amount of information
len that will be transferred. Such actions may involve
exchange of information among the processors that par-
ticipate in the communication. Such registration is
split into three steps: (a) a registration call LIREG-
ISTER(desaddr,len), followed (b) by a communication
initialization call LIINIT(), and finally a (c) registration
commit call LICOMMIT(). A registration commit call
is provided because registration may require the ex-
change of some information before actual communica-
tion takes place. A communication initialization call is
provided to accommodate for example asynchronous,
or more specifically, non bulk-synchronous parallel li-
braries. Therefore, not all three call are always needed.
The communication initialization call can be located
well-after the registration call as long as it precedes the
actual communication call LIPUT. After the LIPUThas
been issued, communication is realized by issuing a
communication completion call using an LISYNC() in-
struction and concluding the communication by a bar-
rier call LIBARRIER().

This common interface that we provide to the three
libraries may look similar to some to the one agreed
in [16] for a common programmatic interface for one-
sided communication. There are, however, some dif-
ferences intended to support the MPI-2 one-sided com-
munication interface.
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Comment: LIPUT mapping under BSPlib /PUB

Our Interface The BSPlib /PUB equivalent code

1. LIREGISTER(desaddr,l en); bsp pushregister(desaddr,len);

2. LIINIT(); ;

3. LICOMMIT(); bsp sync();

4. LIPUT(dpid,srcaddr,desaddr,off,len); bsp put (dpid,srcaddr,desaddr,off,len);

5. LISYNC();                                                ;

6. LIBARRIER(); bsp sync();

7. LIDEREGISTER(desaddr); bsp popregister(desaddr);

Fig. 1. An LIPUT mapping under BSPlib/PUB.

Comment: LIPUT mapping under MPI-2

Our Interface The MPI-2 equivalent code

MPI Winw in;

1. LIREGISTER(desaddr,len); MPI Win create(desaddr,len,1,MPI INFO NULL,

MPI COMM WOLRD,&win);

2. LIINIT(); MPI Win fence(0,win);

3. LICOMMIT(); ;

4. LIPUT(dpid,srcaddr,desaddr,off,len) MPI PUT(srcaddr,len,MPI CHAR,

dpid,off,len,MPI CHAR,win);

5. LISYNC(); MPI Win fence(0,win);

6. LIBARRIER(); MPI Barrier(MPI COMM WORLD);

7. LIDEREGISTER(desaddr); ;

Fig. 2. An LIPUT mapping under MPI-2.

We show the mapping of our proposed interface to
the one supported by both BSPliband PUB-Library for
the example above in Fig. 1 and to the one supported
by LAM MPI in Fig 2.

With reference to Fig. 2 we note that RMA operations
under MPI-2 are non-blocking. The MPI Win fence
call is one of three different mechanisms for marking
completion of a one-sided communication in MPI-2.
The instruction of line 2 opens a window for com-
munication and closes it by effecting the communica-
tion of line 4 by a similar instruction in line 5. A
fence is essentially a barrier synchronization, similar
to the Cray SHMEM routine shmembarrier. There-
fore LIBARRIERmay map to a null instruction in such
a case; yet the equivalence under the BSP model, if
one insists on it, of the two mappings of LIPUT under
BSPlib/PUB and MPI-2 still remains. In all cases, reg-

istration becomes effective after the commit call in line
3.

The introduced example assumes that only one ac-
tive window is present. In BSPliband PUB-Library, all
communication within one superstep (segment of com-
putation that can be completed using locally available
information) can be associated with a single such win-
dow. Under LAM MPI, however, if two communica-
tion operations are performed these must be registered
and realized sequentially one after the other to a single
window or registered to different windows. For this to
occur we need to be able to map distinct destination
addresses to distinct windows. One way to do this is
by what we call “labeled windows” and the mapping
of our generic framework to the two sets of libraries is
depicted in Figs 3 and 4.
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Comment: Al abeled LIOPUT windowm apping under BSPlib /PUB

Our Interface The BSPlib /PUB equivalent code

1. LIOREGISTER(desaddr,len) ;                   bsp pushregister(desaddr,len);

2. LIOINIT(desaddr); ;

3. LIOCOMMIT(); bsp sync();

4. LIOPUT(dpid,srcaddr,desaddr,off,len) bsp put (dpid,srcaddr,desaddr,off,len);

5. LIOSYNC(desaddr); ;

6. LIOBARRIER(); bsp sync();

7. LIDEREGISTER(desaddr); bsp popregister(desaddr);

Fig. 3. A labeled LIOPUT window mapping under BSPlib/PUB.

Comment: A labeled LIOPUT windowm apping under MPI-2

Our Interface The MPI-2 equivalent code

MPI Win liwin[MAX LI WINDOWS];

1. LIOREGISTER(desaddr,len) ;M PI Win create(desaddr,len,1,MPI INFO NULL,

MPI COMM WOLRD,&liwin[liinsert(desaddr)]);

2. LIOINIT(desaddr); MPI Win fence(0,liwin[lisearch(desaddr)]);

3. LIOCOMMIT(); ;

4.

6. LIOPUT(dpid,srcaddr,desaddr,off,len) MPI PUT(srcaddr,len,MPI CHAR,

dpid,off,len,MPI CHAR,liwin[lisearch(desaddr)]);

8. LIOSYNC(desaddr); MPI Win fence(0,liwin[lisearch(desaddr)]);

9. LIOBARRIER(); MPI Barrier(MPI COMM WORLD);

10.LIDEREGISTER(desaddr); MPI Win free(&liwin[lidelete(desaddr)]);

Fig. 4. LIOPUT under MPI-2.

As it is shown in Fig. 3 the mapping does not change
for the pair of BSPlib/PUB if we use “labeled win-
dows”. It is more involved in Fig. 4 for MPI-2. We first
assume that we have elsewhere (eg. initialization of the
SPMD program) allocated an array liwin of communi-
cation windows of sufficient dimension. Each desaddr
must uniquely identify such a window by implement-
ing functions liinsert(desaddr), lisearch(desaddr) and
lidelete(desaddr) that create a unique window index,
search for the unique window index of address desaddr,
and free the unique window index associated with de-
saddr. Other than that Fig. 4 is similar to Fig. 2. The
mapping for LIGET and LIOGET primitives under the
two sets of libraries is defined similarly.

With the aforementioned simple common mappings
of the different methods employed for one-sided com-
munication in the three libraries, one is able to use a

common interface and thus write code that is library
independent and works on all three libraries. We have
employed this approach not only in developing the code
that is described in this paper but also in other work;
such code is available at the first author’s Web-page.

3. The As suite

The As suite tests the synchronization capabilities
of a parallel platform under any library that supports
or can be made to support our RMA framework. It
also tests the communication capabilities of a parallel
platform for a tested communication library by mea-
suring the realization of total-exchanges (also known
as p-relations).



174 A.V. Gerbessiotis and S.-Y. Lee / Remote memory access

The first set of tests in this suite measures latency
related performance of the communication library in-
cluding the cost of barrier synchronization. The tests
in this suite are described below.

(1) Test 1 (Empty). This test times a barrier syn-
chronization if it is available in the communica-
tion library.

(2) Test 2 (Comp). This test times a barrier syn-
chronization that is preceded by an elementary
computational operation; the purpose is to as-
sess what the effect of such a computational op-
eration will be to the time reported by Test 1.

(3) Test 3 (Full). This is the time it takes to per-
form a total-exchange of p integers followed by
a barrier synchronization, where p is the num-
ber of available processors. Thus each proces-
sor sends and receives p integers (p− 1 from re-
mote processors and one integer through a local
copy/communication-less operation). The pur-
pose of this test is to assess what the effect of
a simple communication operation that involves
all processors will be to the time reported by Test
1.

(4) Test 4 (Simple). This is the time it takes to
perform a simple communication of one integer
between processor0 (sender) and processorp−1
(receiver) followed by a barrier synchronization.
The purpose of this test is to assess what the
effect of a very simple communication operation
that involves the least number of processors will
be to the time reported by Test 1.

(5) Test 5 (Scatter). This is the time it takes for
processor 0 to scatter one integer to each of the
remainingp−1 processors, followed by a barrier
synchronization. The purpose of this test is to
compare the time of this test to the timing results
reported by Test 3 and Test 4.

These tests can be useful to someone who wants to as-
sess the cost of barrier synchronization and understand-
ing the latency behavior of the combination of the par-
allel hardware platform and the communication library
tested. In addition, these tests can be useful to those
who are interested in deriving the bulk-synchronous
parallel model characteristics of the hardware platform.
We note that in the BSP model [24] a parallel platform
is modeled by a tuple (p, L, g), where p is the number
of processors, L is the synchronization periodicity, and
g the cost of communication per word of information
(inverse of router throughput). More formally g is de-
fined so that the cost of realizing an h-relation (an in-

stance of communication where each processor sends
and receives at most h words) in continuous message
usage (for large h) is gh; for smaller values of h the
cost of communication is latency bound by L. Thus
these tests can help us determining the value of L.

Finally, the As suite includes tests that measure the
communication performance of the parallel hardware
and the communication library under realistic assump-
tions. We measure such performance by timing total-
exchanges where each processor communicates a total
of h integers to every other processor (including itself)
for increasing value of h. If the communication time
for such an operation is t, the cost of communication
is considered to be t/h. We perform this test for h
that is a power of two starting from a value equal to
the number of available processors and doubling it af-
ter every completed test. Under all three libraries used
in this work the total-exchange is realized by perform-
ing a series of put instructions. In addition, in LAM
MPI we realize the total-exchange by using two-sided
communication send/receive instructions. Among the
variety of such send/receive combinations available
in MPI we timed and report the one that offered the
best overall performance; this was the MPI Irecv and
MPI Sendcombination. Thus we are able to compare
one-sided and two-sided communication in LAM MPI
and the one-sided communication performance of the
other libraries to the one-sided/two-sided performance
of LAM MPI. We note that total exchanges under LAM
MPI could have been implemented by using MPI col-
lective communication primitives; these, however, pro-
vided no better performance than the chosen direct im-
plementations.

The programming language used in the implementa-
tions is ANSI C and the code was tested for scalability
and portability on a cluster of 16 dual-processor PC
workstations (PentiumII 350 Mhz, Redhat Linux 7.1-
running, 128 MB RAM equipped) with communica-
tion performed through 100Mbit 3Com-905B Ethernet
cards and a 24-port CISCO Catalyst 2924 M-XL-EN
switch connecting the workstations. The default GNU
Project’s gcc compiler is used through the LAM MPI,
BSPlib, and PUB-Library front-ends, and the source-
code is compiled with the -O3 compiler option set.
Timing is obtained through the use of real-time wall-
clock time. All results and variables used for commu-
nication and computation involve ANSI C int 32-bit
data types. The code developed for this experimental
study is publically available at the first author’s Web-
page [14]. The tested platform is either the 2-node,
4-node, or 16-node PC cluster utilizing only one CPU
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per node (non-SMP configuration) or both CPUs (SMP
configuration). By setting up the cluster this way we
also examined the effects of symmetric multiprocess-
ing in parallel programming. Version 1.4 of BSPlib,
the default version of LAM MPI for Red Hat Linux 7.1
(LAM 6.5.1), and PUB-Library version 8.0 were used
in the experiments.

Figure 5 shows the synchronization performance of
the PC cluster. It seems that LAM MPI gives the worst
results in SMP and non SMP configurations. PUB-
Library is better than BSPlibin Test 3, and in all other
tests it is worse or in some cases equivalent (Test 5, non
SMP configuration) to BSPlib. One interesting obser-
vation is that Test 1, Test 2, Test 4, and Test 5 of BSPlib
are better than those of the other two libraries. The
performance of Test 3 in BSPlib, and the one that mat-
ters most, is worse than that of PUB-Library although
better than that of LAM MPI.

Communication performance varies with p. With
reference to Fig. 5 (detailed tables with numeric fig-
ures for the various points of the graphs can be found
in [10]), for p = 4 and p = 8, PUB-Library seems
to be consistently better than BSPliband LAM MPI is
slightly worse than the other two if its send perfor-
mance is considered; the put based performance seems
to be slightly worse. For p = 16 and p = 32, how-
ever, BSPlib is more scalable and gives better results
but in several cases this requires that the programmer
set appropriate values to some communication control
variables of BSPlib. LAM MPI is close second but
is much better tuned, consistent and predictable. The
performance of the PUB-Library quite surprisingly is
significantly worse than the other two in both SMP and
non SMP configurations. In addition, it seems that the
PUB-Library’s performance deteriorates for a range of
h that varies between 2 K and 16 K; for larger values it
is still at least a factor of two worse than the other two
libraries. We note that for h = 4 K PUB-Library ex-
hibits an observable loss of performance which may be
related to some kind of poor tuning. We note that some
tests were not carried over because the corresponding
configurations were unavailable (eg. 32-processor non-
SMP configuration).

The As suite offers us a first glimpse on the perfor-
mance of the three libraries in the PC cluster of our ex-
periments. Concluding, we can say that one-sided com-
munication in BSPlib outperforms one-sided or two-
sided communication under LAM MPI; the same can
be said for PUB-Library but for small h only (less than
4 k). Under LAM MPI two-sided communication is
preferable to one-sided one; this is due, however, to

the fact that the latter is built on top of the former.
The benchmarks of the As suite are complemented by
the two suites Mult and Rdx that are described in the
following sections.

4. The Mult suite

The Mult suite contains various implementations of
a parallel dense matrix multiplication algorithm that is
optimal in computation, it is memory efficient but is
neither synchronization nor communication efficient.
It exhibits, however, satisfactory computational perfor-
mance.

A precursor to this algorithm is one that was orig-
inally described in [24] in the context of the BSP
model of computation. Let two matrices A and B
of dimension n × n be distributed evenly among the
p =

√
p×√

p processors of a parallel computer so that
each processor gets a contiguous submatrix of dimen-
sion n/

√
p× n/

√
p of A and B and will also compute

one identically dimensioned submatrix of the product
C of A and B. Let P =

√
p and N = n/P ; the

algorithm assumes that p � n2. In the algorithm de-
scribed in [24], each processor m in a single round
of communication obtains all the required data con-
sisting of P blocks of A and B and computes a re-
sult associated with a submatrix of C. The resulting
algorithm is neither memory nor communication effi-
cient; for example each processor requires local mem-
ory enough to accommodate 2 P blocks of dimension
N × N . We can convert this algorithm into a mem-
ory efficient version that only requires additional local
memory for two such N ×N blocks by performing the
computation in P rounds of communication so that in
each such round a single N × N block of A and B
is communicated and a partial result of a block of C
is computed. This algorithm [13] is a modification of
Cannon’s method and depicted below in Fig. 7 for pro-
cessor pid. All matrices are stored in a column major
format in a one-dimensional array; element A[i, j] is
thus A[j ∗ n + i]. The communication of lines 5 and 6
can be implemented by put or send instructions. Lines
5 and 6 guarantee that each processor sends two N ×N
and receives two N × N blocks into a and b that will
be required for matrix multiplication. Because of the
“pipelined” fashion of the communication, every pro-
cessor receives the required blocks in line 7 that will
be used in the multiplication of line 9. In line 8, a
is transposed into at to optimize the computation and
take advantage of the column oriented storage of a and
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Fig. 5. Synchronization and Latency performance of LAM MPI, BSPlib, and PUB.

b. In the standard loop of Cannon’s algorithm, rows
of a would be multiplied with columns of b. Since we
store a, b in column major orientation, if we transpose
a before the multiplication, then the multiplication will
involve columns of at and b. This requires a reorienta-
tion of Cannon’s matrix multiplication loop. Figure 8
shows how the “pipelined” just in time delivery of a, b
can be performed by using get operations instead.

We implemented MatMul by using put instruc-
tions and MatMulG using get instructions in all three
libraries. In addition, in the case of LAM MPI, we
implemented MatMul using MPI Irecvand MPI Send
two-sided communication instructions. We performed
the experiments in non SMP configurations for p = 4
and p = 16 and on SMP configurations for p = 4,
p = 16, and p = 25. Given that dense matrix multipli-
cation is a communication intensive operation the SMP

experiments are expected to stress the communication
network and show whether such matrix operations are
suitable for SMP clusters as well. The methodology of
the As suite was also followed in writing, compiling
and executing the Mult tests noting that the involved
arrays are ANSI C double data type aggregates.

Table 1 contains speedup results for p = 4, 16 pro-
cessors in a non-SMP configuration of the cluster, and
SMP configurations of p = 4, 16, 25 processors. We
also include sequential running time results for p = 1;
timing results for various processor configurations can
be obtained from these and the included speedup fig-
ures. We kept problem size small as for larger prob-
lem sizes caching effects provide superlinear speedups.
However the relative performance of the algorithms un-
der the various communication mechanisms is still that
obtained from the problem sizes depicted.
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Fig. 6. Communication performance (µs/32-bit word) of LAM MPI, BSPlib, and PUB.

In the non-SMP configuration, for p = 4, the com-
munication performance of the three libraries as tested
in the As suite is reflected in the speedup results we
obtained. PUB-Library and LAM MPI have almost the
same performance, with BSPliba close second for the
put implementations. In get implementations LAM
MPI is superior to PUB-Library, which in turn outper-
forms BSPlib. An interesting observation is that in the
PUB-Library and BSPlibthere is an asymmetry in the
performance of the put and get implementations. In
LAM MPI, however, the two exhibit almost the same
performance. For p = 16, BSPlibseems to be more
scalable, and has the best performance of the three,
with PUB-Library a close second and LAM MPI an
even closer third. The get implementation in BSPlib
seems to be faster than the other two except for small
p, where LAM MPI is better. It seems that the library

latency of LAM MPI is higher than the other two. The
put implementation in LAM MPI seems to be as fast as
the send or get implementations.

In the SMP configuration, for p = 4, and the put im-
plementation LAM MPI and PUB-Library have a slight
advantage over BSPliband over the send implemen-
tation in LAM MPI. The get implementation in LAM
MPI again is as good as the put. The get implemen-
tation of the other two libraries is much worse than the
put or the LAM MPI get implementation. Similarly
to the non-SMP configuration, for p = 16 and p = 25
processors BSPlibseems to have an advantage over the
other two libraries for the put implementation. Sur-
prisingly, however, the get implementation in LAM
MPI seems to fare better than the PUB-Library and
BSPlibfor small p. The send implementation in LAM
MPI is just a little faster than the put and get LAM
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be gin Ma tMul (Cpid ,A pid ,B pid ,n ,p)

1. P = p; N = n/P ;

2. pi = pid mod P ; pj = pid div p ;

3. Cpid = 0 ;

4. for 0 l < P

5. put/send A pid to processor ((2 * P − pi − pj + l) mod P ) * P + pi .

6. put/send B pid to processor ((2 * P − pi − pj + l) mod P ) + pj * P .

7. Receive blocks a, b from remote processors.

8. Transpose a into at ;

9. Cpid = Cpid + ( at )t × b;

<_

Fig. 7. Procedure MatMul.

be gin Ma tMulG (Cpid ,A pid ,B pid ,n ,p)

1. P = p; N = n/P ;

2. pi = pid mod P ; pj = pid div p ;

3. Cpid = 0 ;

4. for 0 l < P

5. get int o a the A block of processor ((pi + pj + l) mod P ) * P + pi).

6. get int o b the B block of processor ((pi + pj + l) mod P ) + pj * P ).

7. Receive blocks a, b from remote processors.

8. Tr anspose a into at ;

9. Cpid = Cpid + ( at )t × b;

<_

Fig. 8. Procedure MatMulG.

MPI implementations but slightly slower than the put
implementations of BSPliband PUB-Library.

Peak performance-wise BSPlib and PUB-Library
look better than LAM MPI. One-sided communica-
tion (mostly put, less often get and rarely both)
seems to consistently outperform two-sided commu-
nication. Even LAM MPI one-sided communication
seems to fare well compared to its two-sided counter-
part. Consistency-wise ( put vs get for example) LAM
MPI is solid, in the other two libraries put is prefer-
able to a get. As a side note, if we had not performed
the transposition in line 8 of Fig. 7 or Fig. 8 with the
corresponding change of line 9, then the performance
results we report would have been three to seven times
worse compared to the reported ones. The SMP con-
figurations gave satisfactory results compared to the
non-SMP configurations thus indicating the suitability
of dense matrix computations for SMP clusters.

The low speedup figures for n = 320 are quite natu-
ral and easily explained through the As derived figures.
Sequential matrix multiplication performs 2n2(n − 1)
floating point operations. For n = 320 and the run-
ning time of 0.93 seconds this translates roughly to
1/70 microseconds per floating point operation. Let
f = 1/70. The sequential time is thus 2n2(n − 1)f .
The parallel time of algorithm MatMul and MatMulG
is 2n2(n − 1)f/p for computation and 2(n2/p)

√
pg

for communication if g is the cost in microseconds per
double of a total-exchange of 2n2/p double data types
(or 4n2/p int data types). The ratio of sequential run-
ning time to parallel running time gives the speedup of
the parallel execution; this is p/(1+

√
pg/(f(n−1))).

For p = 16, n = 320, f = 1/70 and g twice the figure
(as a double is a 64-bit quantity) read from Fig. 6 for
an h = 4n2/p = 25600, we obtain that for the SMP
and non-SMP configurations in BSPliband LAM the
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Table 1
Matrix Multiplication in non-SMP and SMP configurations

Size Time PUB BSPlib LAM MPI
n p = 1 Put Get Put Get Put Get Send

Speedup for p = 4 non-SMP
320 0.93 4.23 4.04 4.23 4.04 4.43 3.88 4.43
640 7.67 6.45 5.64 6.50 5.22 6.67 6.67 6.50

Speedup for p = 16 SMP
320 0.93 9.30 3.58 10.33 10.33 5.17 6.20 8.45
640 7.67 16.32 7.91 18.26 16.32 14.75 13.95 15.04

Speedup for p = 4 SMP
320 0.93 3.58 3.44 4.65 3.32 5.17 4.43 4.89
640 7.67 7.10 5.48 6.85 4.54 7.10 7.10 6.97

Speedup for p = 16 SMP
320 0.93 6.64 5.17 7.75 7.15 5.47 5.17 6.64
640 7.67 12.78 7.59 14.47 12.5 7 11.45 11.62 11.98

Speedup for p = 25 SMP
320 0.93 7.75 3.44 8.45 9.30 4.43 2.16 7.15
640 7.67 15.65 7.17 19.18 16.32 13.00 13.00 14.47

corresponding speedup figures should be around 8 and
5 for the non-SMP put implementation and 6 and 4.6
for the SMP put implementation; the actual speedup
figures are 10.33 and 5.17 for the former and 7.75 and
5.47 for the latter implementation.

5. The RDx suite

Finally, we have implemented and studied the per-
formance of a parallel version of the sequential radix-
sort algorithm. As opposed to comparison-based sort-
ing algorithms such as quicksort, mergesort, and heap-
sort that can sort any input keys, radix-sort and its base
algorithm count-sort [3] can sort only keys that take
fixed values by counting the occurrences of each key
value. In radix-sort, we perform a number of rounds of
the elementary count-sort algorithm [3]. If we view a
32-bit word as four radix-256 digits then radix-sort will
require four rounds of a count-sort algorithm. If each
key is viewed as two radix-65536 digits, then we will
need two rounds of count-sort. For the test range of
the experiments to be presented below, the four-round
algorithm was faster than the two-round case in all se-
quential and parallel experiments and it is the one that
was parallelized.

A brief description of the parallel radix-sort algo-
rithm is sketched in Fig. 9. Parallel RDXSORT for 32-
bit unsigned integers consists of four rounds of parallel
countsort PCountSort that works on distinct bits of the
input keys starting from the least significant bits. Paral-
lel countsort PCountSort calls the sequential count-sort
algorithm in line 2, which counts the occurrences of

each key, and uses this information in the parallel prefix
(scan) step of line 3 to determine the final destination
of each input key. Since as a byproduct of line 2, the
keys are sorted based on the values of the 8 bits under
consideration, the routing of line 5 can be performed in
blocked fashion for each value of the 8 bits.

An optimization was incorporated into this algo-
rithm; the optimized algorithm is RDXSORTOPT
shown in Fig. 10. RRDXORTOPT works similarly
to RDXSORT except that the processors route their
keys by considering distinct range values at a time. In
line 4, processor 0 still sends first the keys with value
0; however, processor 1 sends first the keys with value
256/p, where p is the number of available processors.
The intent of this optimization is two-fold: (a) sep-
arate/reduce concurrent message transmissions to the
same destination, and (b) increase the time gap be-
tween service requests and thus the service time. Pid
is the identification number of the processor executing
the statement, and the term “wrappedto” means that if
variable range reaches 255 before the value on the right
side of “wrappedto”, then the next value range takes is
zero and subsequently range is incremented until the
value to the right of the “wrappedto” is reached. At the
end of the routing, an artificial delay in the form of a
for loop of several microseconds is inserted in line 6.

Among the three test suites we have examined,
RDXSORT is the one that tests to the limit the com-
munication performance of the hardware platform and
the capabilities of the communication library used. In
lines 4–5, each processor issues 256 communication
requests to as many as p processors. Timing results
for p = 1 and speedup results for non-SMP and SMP
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be gin RdxSort (Inpu t ,n ,p)

1. for 0 i < 3

2. PCountSort (Inpu t ,n ,p,i);

be gin PCountSort (Inpu t ,n ,p,rnd )

1. Consider th e (rn d + 1 ) * 8 . . . rn d * 8 least significant bits of Input in line 2;

2. CountSort (Inpu t ,n ,rnd );

3. Determine through parallel prefix the destination of each key

in the final output sequence;

4. for range = 0 to 255

5. Using the information of line 3 route the keys with value

range to their destination;

6.

7. return;

<_

Fig. 9. Procedure RDXSORT.

be gin RdxSortOpt (Inpu t ,n ,p)

1. for 0 i < 3

2. PCountSor tO (Inpu t ,n ,p,i);

be gin PCountSor tO (Inpu t ,n ,p,rnd )

1. Consider th e (rn d + 1 ) 8 . . . rn d * 8 least significant bits of Inpu t in line 2;

2. CountSort (Inpu t ,n ,rnd );

3. Determine through parallel prefix the destination of each key

in the final output sequence;

4. for range = Pid * 256/ NProcs wrappedto Pid * 256/ NProcs − 1

5. Using the information of line 3 route the keys with value

range to their destination;

6. Artificial Delay;

7. return;

<_

Fig. 10. Procedure RDXSORTOPT.

configurations of the cluster are reported in Figs. 2 and
3. Note that 1 M= 1024000. Problem size is the num-
ber of integers that are evenly distributed over all the
processors. We make sure that the same input set is
sorted for increasing p. The input consists of uniformly
at random generated unsigned 32-bit integers. The se-
quential time for n = 32 M is indicated by an aster-
isk because the indicated value is an estimate of actual
CPU time. This is because the setup of our cluster
(memory limited to 128Mbytes) caused the sequential
algorithm to swap and its effective running time was
several minutes even though CPU time was substan-
tially less. For the same reason, some entries in the
tables are left empty; some limited swapping affected

the time of RDXSORT and RDXSORTOPT in LAM
MPI for the SMP configuration for n = 32 M.

One-sided communication was at least 50% better
than two-sided communication. Because of the per-
formance of the send-based implementations we only
report figures for put-based implementations in LAM
MPI. The enhanced algorithm did not offer any im-
provements. It seems that software based message
combining may be counter productive or messages be-
come so large that they can not be dealt with effi-
ciently by the communication library. Even if BSPlib
offers some elementary message combining, this was
not used; it is in practice slower than regular com-
munication. Therefore figures for the enhanced algo-
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rithm are not reported either. RDXSORTOPT made
marginal difference in the PUB-Library and BSPliband
its contributions were more noticeable in LAM MPI.
In non-SMP configurations, BSPlibwas a clear win-
ner over LAM MPI, with the PUB-Library suffering
considerable degradation in performance for processor
sizes p > 2. In SMP configurations, BSPlibhad a slight
advantage in the performance of RDXSORT over LAM
MPI. When RDXSORTOPT was tested the advantage
was reversed. The PUB-Library was a distant third.

We note that maximum observed speedup for a non-
SMP configuration was 6.45 for BSPliband 6.14 for
LAM MPI (p = 16, n =32 M), and for SMP configu-
rations it was 4.43 for BSPliband 4.70 for LAM MPI
(p = 16 and n =32 M). These figures are substantially
smaller than general purpose parallel sorting algorithms
such as those reported in [12,11] which, if executed on
the same platform give more than twice the indicated
speedup figures. This is understandable, however, for
parallel radix-sort. Although the sequential algorithm
has performance 4nr (the 4 is the number of rounds
of Count-Sort) and r varies between 1/2 microseconds
per integer for n =4 M to 1/4 for n =32 M, the par-
allel time includes a 4rn/p term for parallel computa-
tion and a 4(n/p)g term for parallel communication,
where g is the cost of a total-exchange of size n/p.
The lowest value for g for p = 16 from Fig. 6 is 0.59
and 0.93 for BSPliband LAM MPI in non-SMP and
SMP configurations respectively. This is two to four
times as much as the r for n = 32 M . Therefore the
speedups we expect are between p/3 and p/5 and these
are the figures we got. The speedup figures provided
by the SMP configurations were on the average 30%
lower than the figures of the non-SMP configurations.
This indicates that parallel radix-sort is not as suitable
as matrix multiplication for SMP PC clusters.

6. Conclusion

We made a case for remote memory access as the ef-
fective way to program a parallel computer by propos-
ing a robust programmatic framework that supports
RMA in a library independent, simple, intuitive, and
portable way using the C programming language. We
claimed that if one uses our approach the parallel code
one writes will run transparently not only under MPI-2
RMA enabled libraries including LAM MPI and Crit-
ical Software’s WMPI but also on bulk-synchronous
parallel libraries such as BSPliband PUB-Library thus
making one’s code library independent as well. We

supported our case by implementing using the pro-
posed framework three sets of benchmark quality par-
allel programs using one-sided communication. Vari-
ants of some of these program using two-sided commu-
nication were also implemented under LAM MPI. We
then examined the performance of these programs on
a LINUX-based PC cluster under three different RMA
enabled libraries: LAM MPI, BSPliband PUB-Library,
and under LAM MPI for two-sided communication.

We draw some interesting conclusions first for the
case of one-sided communication. In the As suite,
there was some noticeable deterioration of performance
in LAM MPI for put-based compared to send-based
communication, which is only natural since the former
is built on top of the latter. One-sided communication
in BSPliboutperforms one-sided or two-sided commu-
nication under LAM MPI; the same can be said for
PUB-Library for small h < 4 K, as PUB-Library seems
to be not very well tuned.

In the Mult suite, however, the put-based imple-
mentations were as good as the send-based ones under
LAM MPI; surprisingly enough there was not much dif-
ference between put-based and get-based implemen-
tations. In BSPlib and PUB-Library, however, these
differences were quite noticeable. One-sided commu-
nication through BSPlib primarily, and PUB-Library
secondarily, outperform two-sided communication. In
the Rdx suite, the put-based implementations were
substantially faster than the send-based ones in LAM
MPI; for this reason we have not included results for
the latter ones. In conclusion, our experiments support
the case for one-sided communication. RMA is eas-
ier to incorporate in parallel programs, it can be quite
efficiently implemented if the overall performance of
BSPlib could serve as an indicator, and overall, it is
quite well implemented in complex libraries such as
LAM MPI even compared to the two-sided communi-
cation primitives.

In addition, we make some interesting observations
about the performance of the three communication li-
braries tested. It seems that LAM MPI exhibits the
most consistent behavior among the three, even though
it may not be the fastest of the three libraries. For
the communication patterns of parallel radix-sort the
PUB-Library exhibits perhaps an erratic and inconsis-
tent behavior, a possible indication that is probably
not fine-tuned in a scalable way. In the As suite of
tests, BSPliband PUB-Library were more efficient than
LAM MPI; BSPlibhad quite inconsistent default per-
formance that could be improved, however, substan-
tially by setting appropriate values to some communica-
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Table 2
RDXSORT and RDXSORTOPT speedup figures on an non-SMP PC cluster

Non SMP Configuration
Size Time RDXSORT RDXSORTOPT

p = 1 p = 2 p = 4 p = 8 p = 16 p = 2 p = 4 p = 8 p = 16
Speedup Results for PUB-Library

4 M 2.13 0.62 0.75 0.94 1.20 0.60 0.74 0.95 1.10
8 M 4.30 0.61 0.77 1.01 1.76 0.61 0.74 1.02 1.60

16 M 16.32 1.14 1.47 2.11 2.98 1.15 1.46 2.07 2.81
32 M 32.64∗ − 1.47 2.21 3.21 − 1.50 2.16 3.22

Speedup Results for BSPlib
4 M 2.13 0.73 1.14 1.75 2.96 0.73 1.15 1.72 2.88
8 M 4.30 0.73 1.17 1.81 3.14 0.73 1.17 1.81 3.14

16 M 16.32 1.39 2.24 3.45 6.35 1.39 2.23 3.48 6.33
32 M 32.64∗ − 2.24 3.51 6.26 − 2.25 3.52 6.45

Speedup Results for LAM MPI
4 M 2.13 0.67 0.97 1.44 1.64 0.69 1.12 1.68 2.01
8 M 4.30 0.59 1.04 1.60 2.15 0.59 1.12 1.89 2.35

16 M 16.32 0.88 1.84 3.27 5.35 0.90 2.02 3.64 5.40
32 M 32.64∗ − 1.39 3.20 5.75 − 1.63 3.58 6.14

Table 3
RDXSORT and RDXSORTOPT speedup figures on an SMP PC cluster

SMP Configuration
Size Time RDXSORT RDXSORTOPT

p = 1 p = 2 p = 4 p = 8 p = 16 p = 2 p = 4 p = 8 p = 16

Speedup Results for PUB-Library
4 M 2.13 0.79 0.69 0.81 1.75 0.79 0.74 0.83 1.43
8 M 4.30 0.81 0.77 0.88 1.31 0.82 0.77 0.88 1.28

16 M 16.32 − 1.51 1.81 2.44 − 1.48 1.81 2.47
32 M 32.64∗ − − 1.80 2.70 − − 1.83 2.63

Speedup Results for BSPlib
4 M 2.13 0.68 0.70 1.18 2.03 0.68 0.71 1.18 2.03
8 M 4.30 0.69 0.71 1.24 2.15 0.69 0.73 1.24 2.15

16 M 16.32 − 1.36 2.38 4.36 − 1.36 2.39 4.33
32 M 32.64∗ − − 2.40 4.45 − − 2.43 4.43

Speedup Results for LAM MPI
4 M 2.13 0.75 0.83 1.09 1.30 0.77 0.79 1.30 1.72
8 M 4.30 0.77 0.86 1.20 1.86 0.78 0.79 1.36 2.03

16 M 16.32 − 0.91 2.37 3.93 − 1.05 2.49 4.53
32 M 32.64∗ − − 1.53 4.17 − − 1.73 4.70

tion control variables. PUB-Library slightly exceeded
BSPlibfor small processor configurations (p = 4) but
it did not scale well otherwise. Some surprising re-
sults were observed in the Rdx suite. The enhanced
algorithm was consistently slower than the straightfor-
ward algorithm and timing results for the former were
not reported. It seems that program source code-based
message combining may not be a good idea for the av-
erage programmer. Under LAM MPI the put-based
implementations were much faster than the send-based
ones; for this reason we did not report results for the
latter ones. In the Rdx suite, BSPlibwas more efficient
than LAM MPI and at least 50% more efficient than
PUB-Library. It is for this reason that we conclude that
the PUB-Library may not be properly fine-tuned.
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