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Abstract. We present models for bartering of resources on grids. Bartering models can be useful for making resource allocation
decisions in grids and perhaps even for building a so called barter grid whereby distributed resources such as electronic media
can be bartered. Grids allow various resources to be shared among many users. This sharing however definitely does not mean
that everyone will have unrestricted use of the resources. Some mechanism such as pricing or quotas can be employed in order
to enforce controlled sharing of resources. A barter model for resource sharing can enable people or computer centers to directly
get something in return for letting their resources to be used by others. We utilize directed hypergraphs to develop a barter
model in which multiple resources can be traded. We prove that the decision version of the multi-resource bartering problem is
NP-complete. We present an integer programming formulation for the bartering problem. We also present a linear time algorithm
to compute components that may contain feasible bartering solutions. We generalize our multi-resource bartering formulation to
the case where multiple instances of resources are present. Finally, we present various computational results from our software
that makes use of LP SOLVE and CPLEX mixed integer programming libraries to solve example bartering problems.
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1. Introduction

Grids allow various resources such as cpu cycles,
storage, licensed software executions and data to be
shared among many users. For small academic and re-
search communities that know and trust each other, free
unrestricted sharing of resources may not pose a big
problem since people in these communities are courte-
ous and avoid abuse of resources. On the other, when
we move to larger scale grids and in particular to com-
mercial platforms, sharing, however, will definitely not
mean that everyone will have unrestricted use of the
resources. Some mechanism such as pricing or quotas
would have to be employed in order to enforce con-
trolled sharing of resources. The best example of what
may happen if resources are provided free of charge is
the spam mail problem on the Internet. If grids are to
be successfully deployed on a large scale, then mecha-
nisms must be devised to manage resources. Buyya et
al. [3] and Wolski et al. [28] discuss several economic
models that can be used for resource management in
grids. These are commodity market, posted price, bar-
gaining, spot market, tendering, auction, coalition, bar-
tering, monopoly and oligopoly models.

Prices of grid resources such as cpu cycles, storage
and data can be too subjective and dynamic. Therefore,
we believe that pricing-based schemes such as auctions
can be disadvantageous especially for parties that are
going to both sell and buy resources. To illustrate this,
we draw an example from the Internet domain name
registration scene. Domain names are resources. Sup-
pose party A have registered domain name X and party
B has registered domain name Y. Each party knows that
his domain name is valuable. But let’s say that party A
needs the domain name Y owned by B. Likewise, party
B needs the domain name X owned by A. Knowing
that their names are valuable, each party may put his
domain name for sale for a huge sum of money (say $
50,000). If these parties do not have any money, they
can swap their names provided that they realise that
their bids form a cycle (of length two). This realisation
however, maybe difficult especially in cases where we
have bid structures that form cycles of length n where
n is greater than 2. In such cases, since parties may
not have enough money, they are not able to bid for
the requested amount and hence trading of the n names
may not be possible. Yet, if were able to detect bids
forming a cycle of length n, then the n names could
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all be traded. This example illustrates the disadvantage
of markets based on pricing with money. By pricing
items with money, we lose rich trading structures that
would enable us to come up with feasible trading pat-
terns. The well known word for direct trading of items
without involvement money is bartering. In this pa-
per, we propose the use of bartering for grid resource
management and provide a formal mathematical model
that enables us to develop scheduling algorithms for
bartering problems.

Grids first appeared for enabling sharing of compu-
tational resources among researchers in academia and
research laboratories. If grids are to be deployed suc-
cessfully on a massive scale, they have to address the
needs of ordinary people that make up the mass mar-
ket. What do the ordinary people need? Ordinary peo-
ple do not run sophisticated applications that require
massive computational resources like the researchers
do. They are more interested in data-centric resources
such as mp3 music files, ebooks, financial reports, his-
torical stock quotes, news and movies. We, therefore,
believe that data grids rather than computational grids
have much more potential to get the the attention of
mass market. The popularity of file sharing networks
such as Napster [16] and Kazaa [13] is a clear evidence
that demonstrates real interests of the mass market. On
the other hand, even though these file sharing networks
are quite popular, they have one drawback and that is
that files can be shared illegally. We believe that if we
get rid of the sharing mechanism (that may result in
illegal free copying of items) and replace it with a bar-
tering mechanism and hence come up with a so called
“bartergrid”, this barter grid will get the attention of
mass market. Consider someone who has purchased an
ebook. After reading the ebook he may not need the the
ebook any longer, so he may use the so called barter-
grid to barter his ebook for something that he needs, for
example, a movie. Such bartering transactions will not
pose any legal problems since people will be trading
their legally owned items for other legally owned items.
Such a barter grid will require mechanisms for floating
ownerships so that ownership of an item is transferred
from one user to another. Another mechanism that will
be required is a model for bartering, that is, problem
definitions and algorithms that will produce feasible
bartering solutions. The subject matter of this paper
is only the latter, that is development of a model and
algorithms which will take barter bids from users and
produce optimal bartering solutions according to some
objective function.

Recently complementary auction and double auc-
tion markets have received a lot of attention among

researchers [9,12,15,27]. These markets have pur-
chase/sell prices as a fundamental component in their
problem formulation. We believe that in its most gen-
eral form involving multiple resources and multiple re-
source instances, bartering offers a much more general
and stronger combinatorial market and that it probably
contains complementary auction and double auction
markets as special cases. On the Internet, several sites
that offer bartering services can be found [25]. These
sites, however, utilize barter units in place of money.
In this paper, we focus on a market that allows direct
bartering. In direct bartering, multiple resources can
be traded directly without involvement of money by
traders. However, unlike the auctions, the bids in the
barter market are made in terms of resource(s) offered
and resource(s) requeste d. In our barter market, we
want to choose a feasible set of bids that can be satisfied
and that optimizes some objective. We will call this
problem multi-resource bartering problem.

We review previous work on auctions, bartering and
graph theoric results that will be useful for bartering
in Section 2. In Section 3, we present a graph the-
oric model for multi-resource bartering problem. We
also look into the problems of eliminating unnecessary
resources and decomposing the problem into smaller
subproblems. We present a linear time algorithm to do
this in Section 4. In Section 5, we prove that multi-
resource bartering problem is NP-complete. In Sec-
tions 6 and 7, we give integer programming formula-
tion of our problem respectively for single and multiple
instance versions. Finally, the last two sections present
timings from various tests and a discussion of results.

2. Previous work

The difficulty of finding “double coincidence of
wants” in direct bartering was formally stated by
Jevons [10]. Since then a lot of studies have been car-
ried on the analysis of bartering and monetary issues
from economists’ perspectives using various models [6,
11,23].

Depending on the number of distinct resources and
the number of instances (units) of these resources that
can appear in a bid, we can classify the bartering prob-
lems into four categories: (i) Single instance single re-
source, (ii) Multiple instance single resource, (iii) Sin-
gle instance multiple resource, (iv) Multiple instance
multiple resource problems. The subject matter of this
paper is bartering problems of type (iii) and type (iv).
We have addressed in particular problems of type (i)
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Fig. 1. Network showing bartering bids (a) and the transformed network with split nodes (b). The arcs in (b) are labelled (capacity,cost,flow)
values.

and (ii) in our earlier work [17,18]. These two problems
have polynomial time solution. Problems of type (i) in
which we maximize the number of resources bartered
is in fact the graph theoric maximum vertex disjoint
cycles problem that is addressed in Gutin et al. [8] (or
see [2, p. 146]). Gutin et al. solves this problem with
O(n3) complexity by transforming it to an assignment
problem. The solution of problem (i) which is formu-
lated as a minimum cost circulation problem is illus-
trated through an example in Fig. 1. We represent each
barter bid as an arc where the tail of the arc represents
the item to be given and the head of the arc represents
the item that is requested. Figure 1(a) shows an exam-
ple bid graph. Given a bid graph, a capacitated network
(with all arc capacities equal to 1), is constructed by
employing node splitting procedure[1, p. 41]. As part
of the node splitting procedure, a node v is replaced
by two nodes v′ and v′′ with an arc <v′, v′′> in be-
tween them. The aim of node splitting procedure is to
implement node capacities with 1 unit and hence en-
able at most one bid to win an item. A cost of -1 is
assigned to arcs corresponding to bid arcs and 0 to the
arcs between the split nodes. It is easy to verify that the
solution of the minimum cost circulation problem [1,
p. 7] on this network will give us the maximum vertex
disjoint cycles. Hence, the maximum number of satis-
fied bids can be found this way. Figure 1(b) shows the
transformed network with split nodes. The arc labels
give the (capacity, cost, f low) values. The arcs (rep-
resenting bids) with flow value 1 give the maximum
solution. We also note that by introducing nodes that
correspond to barterers and assigning capacities that

reflect the number of instances of each item, solution
of problems of type (ii) can also be found in a similar
manner [17].

It is also important to note the relationship of barter-
ing to that of matching problems. In the most popular
and the simplest matching problem on an undirected
graph, if we replace each undirected edge (u, v) with
two directed arcs, <u, v> and <v, u>, then maximum
cardinality matching amounts to finding maximum ver-
tex disjoint cycles of length two. In the special case
of bartering in which a single item is to be bartered
with another single item, we are solving a maximum
vertex disjoint cycles problem with no restriction on
cycle length. A similar relationship can possibly be
established for the multi-item bartering problem we
study in this paper and the gangmatching problem that
is addressed in Condor by Raman et al. [21,22].

Double auction mechanisms [9,12,27] in which si-
multaneous buy and sell bids may be placed may look
similar to bartering mechanisms. Pricing, however, is a
major component in the formulation of the double auc-
tion problems. Double auction mechanisms can be used
in barter exchanges in which barter units are employed
to value (price) resources. However, in this paper, we
address direct barter exchange, in which resources are
not priced by barter units.

3. Multi-item bartering model

Our multi-resource barter exchange is a synchronous
market which consists of two main components:
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– Resources: Each barterer puts forward a set of dis-
tinct (i.e., single instance) resources that he owns
and combinations of which he may want to trade
away for resource(s). The set of all resources of
all the barterers is denoted by R.

– Bids: Each barterer makes a number of bids. A
bid consists of a set of owned resources of the
barterer that is offered for another set of resources
owned by other barterers. The following example
illustrates the form of a bid:

{resource1,resource2} =>
{resource3,resource4, resource5}

We will call the offered (requested) set of resources
on the the left (right) hand side as the tail (head) set
of a bid. The bid simply declares that the barterer
can give away resources in the tail set provided he
can get the resources in the head set. We will let
B denote the set of all bids by all barterers.

Having collected these bids over a period of time,
we can then close the market (hence the name syn-
chronous) and then solve the bartering problem which
in the simplest case may have the objective of maximiz-
ing the number of bids that can be satisfied. In this way,
we may be able to trade away grid resources directly
for other grid resources without involvement of money.
We put forward a few rules that must be satisfied by a
bartering solution:

– Rule 1: If a bid is selected (satisfied) in a bartering
solution, then all the resources in the head set must
be given to the barterer owning the satisfied bid.

– Rule 2: In a bartering solution produced, it is
possible that a subset of (i.e., none, some, or all )
of resources in the tail set may be given in order
to get all the resources in the head set in a satisfied
bid. What this means is that it is possible that
we can give fewer resources than what appears in
the declared tail set and yet be able to get all the
resources requested. This also implies that it is
possible to get something simply as free without
giving away anything at all.

– Rule 3: the third rule simply says that in a bartering
solution, a resource can appear in the head set of
only one satisfied bid. Violating this rule may
mean giving the same resource to more than one
barterer which is unacceptable. We also enforce
this rule even if the bids satisfied belong to the
same barterer.

Directed hypergraphs are generalizations of directed
graphs. Whereas single vertices appear at the tail and

head of arcs in directed graphs, arbitrary sized sets of
vertices appear at the tail and head of hyperarcsin di-
rected hypergraphs. Hence in our bartering problem,
bids can be represented by hyperarcs and resources as
vertices in directed hypergraphs. In the rest of the pa-
per, we use the notation R for the set of vertices and
B for the set of hyperarcs since these coincide respec-
tively with resources and bids in our problem. We now
give formal directed hypergraphdefinitions that we will
utilize while formulating a solution technique for the
bartering problem. A directed hypergraphD(R, B)
consists of two sets, R and B where R is a set of
vertices and B is a set of hyperarcs. Each hyperarc
b = <Rt, Rh> is an ordered pair of non-empty dis-
joint subsets Rt and Rh of R. Here, Rt and Rh are
the sets of vertices that appear respectively in the tail
and headof the hyperarc b . For the example shown in
Fig. 2(a), R = {a, b, c, d, e} is the set of vertices (re-
sources), B = {b1, b2, b3, b4, b5, b6, b7} is the set of hy-
perarcs (bids) with b1 = <{e}, {a}>, b2 = <{a}, {e}
>, b3 = <{a, b}, {c}>, b4 = <{d}, {b}>, b5 =
<{c}, {d}>, b6 = <{e}, {c} > and b7 = <{d}, {c}
>. The indegree(r) of vertex r is defined to be the
number of times vertex r appears in the heads of
hyperarcs. Similarly, the outdegree(r) of vertex r
is the number of times vertex r appears in the tails
of hyperarcs. The set of vertices that appear in the
tail or head of a hyperarc is called a hypernode. A
B′ ⊆ B induced directed subhypergraphD ′(R′, B′)
of D(R, B) is defined as a directed hypergraph with
R′ = (

⋃
b∈B′ head(b))

⋃
(
⋃

b∈B′ tail(b)).
Directed hypergraphs are also known as AND/OR

graphs [20, p. 21]. In the AND/OR graph representa-
tion, a directed graph is constructed with two types of
nodes: AND nodes which represent hyperarcs (bids)
and OR nodes which represent vertices (resources).
Figure 2(b) shows the AND/OR graph representation
of the example in Fig. 2(a). In the figure, the white
nodes represent the AND nodes and the black nodes
represent the OR nodes.

For the example in Fig. 2, the possible maximal
(maximal in the sense that the set cannot be grown
bigger) bartering solutions are S1 = {b1, b2, b3, b4, b5}
and S2 = {b1, b2, b5, b7}. If our objective is to max-
imize the number of bids satisfied, we choose S1 as
our maximum solution. The bold edges in the Fig. 2(a)
show this optimal solution.

In summary, the resources and the bids in our multi-
resource bartering problem can be represented by a
directed hypergraph. The feasible solutions of the
bartering problem are bids, B ′, that have their head
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Fig. 2. An example showing bartering bids (a) and its AND/OR graph representation (b).

sets disjoint (because of Rule #3) and whose induced
subhypergraphs, D ′(R′, B′), have outdegree(r) �
indegree(r) for each vertex r ∈ R′ (because of Rules
#1 and #2).

3.1. Another example illustrating problem reduction

We give another more complicated example in Fig. 3
to illustrate how some of the unsatisfiable bids and un-
necessary resource nodes can be removed. The bold
edges in this figure again give the solution that max-
imizes the number of bids satisfied. We remark the
following about this solution:

– The owner of resource a is able to get the resources
b and c for free without giving away his resource.

– Some of the bids and resources cannot appear in a
feasible solution: These are resources β, x, w and
bids b18, b19, b20. It is clear that the resource β
cannot appear in a solution, since it does not ap-
pear in the tail set of any bid. If we remove β, then
the head set of bid b20 cannot be satisfied. Hence
bid b20 cannot be satisfied and must be removed.
This removal may propagate. Bids b18 and b19 and
resources w and x are removed because of prop-
agation. Having removed all these resources and
the bids that can never be part of a solution, what
we are left with is a reduced directed graph which
possibly contains disconnected components. In
Fig. 3, there are two such components shown in
the shaded regions. We will call a connected max-
imal subset of hyperarcs such that its induced di-
rected subhypergraph has all its vertices, r, with
outdegree(r) > 0 as a barter-candidate(bc) com-
ponent. Here by connected, we mean the con-
nected underlying undirected AND/OR graph with
the directions on the arcs removed. We present the
details of a linear time algorithm to compute the
bc-components in Section 4.

– If we look at resource s, we see that it was used
to satisfy tail sets of two bids of the same barterer.
Just like getting something for free is possible, it is
also possible to get multiple bids satisfied with the
same resource(s). In the next Subsection 3.2, we
cover the details of this objective in more detail and
also introduce another model in which a resource
can only appear exclusively in the tail set of one
satisfied bid.

3.2. Other objectives and tail inclusive and exclusive
problem cases

So far, we assumed we had the objective of maxi-
mizing the number of satisfied bids. Alternatively, in
order to give the barterers a chance of dictating the pri-
ority (importance) of their bids, we can perhaps let the
barterers state what fee they are willing to pay if their
bid is satisfied. This can be done by associating a fee
fb with each bid b. Our multi-resource problem then
becomes that of coming up with a set of bids that max-
imize total fees. If we do this, then it is possible that
a barterer may not want his resources to appear in the
tail set of more than one satisfied bid even if it means
that he is able to get more of his bids satisfied. Figure 4
exemplifies these two different objectives. The bold
hyperarcs indicate the bids that are satisfied. Note that
in this particular problem, all the bids can be satisfied
as shown in Fig. 4(a) and we can collect a total of $235
in fees. But let’s say the owner of resource c is willing
to pay $100 to only one satisfied bid involving c. Then
the solution that can be returned is shown in Fig. 4(b).
In this case, the total fees that will be collected is $135.

Motivated by the terms inclusive-OR and exclusive-
OR, we call the solution objective exemplified by
Fig. 4(a) as the inclusive caseand and that of Fig. 4(b)
as the exclusive case. Because of bartering Rule #3, it is
clear that in a feasible solution the headsets of satisfied
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Fig. 3. An example showing bartering bids and the two bc-components present in the directed hypergraph.
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Fig. 4. Example illustrating inclusive solution (a) and exclusive solution (b) for the same problem instance.

bids are disjoint. The exclusive (inclusive) case puts
(does not put) similar restrictions on the tail sets. In
other words, in the exclusive case, tail sets of satisfied
bids are disjoint in a feasible solution.

4. Finding BC-components in directed
hypergraphs

Let G(V, E) be the AND/OR graph representation
of the hypergraph D(R, B). A linear, (|V | + |E|), al-
gorithm for finding the bc-components of the directed
hypergraph can be implemented by a two-phase proce-
dure as follows:

(i) Remove all the resource (OR) nodes that have
outdegree equal to 0 either initially or as a result
of propagation. Remove also all the bid (AND)
nodes that have one or more removed resource
nodes in their head sets.

(ii) Find the connected components on the under-
lying undirected graph (i.e., graph obtained by
removing directions on the arcs) by depth first
traversal. The connected components obtained
are the bc-components.

It is clear that step (ii) takes O(|V | + |E|). Step (i)
functions very similar to the topological sorting algo-
rithm [26, p. 286]. Algorithm for phase (i) is given
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Fig. 5. Procedure for the removal of unsatisfiable bids and resources.

in Fig. 5 using C++/STL (Standard Template Library)
syntax. Here, V is the adjacency linked list data struc-
ture containing both the resource and the bid nodes as
shown in Fig. 6. Both forward arc list (i.e., all u such
that <v, u>∈ E) as well as back arc list (i.e., all u such
that <u, v>∈ E) are stored for each node v. The size
method (function) returns the cardinality of the lists or
arrays. The variable Nr is the number of resources (i.e.,
it is equal to |R|). The remove nodes procedure starts
by first setting the outdegree field for each resource
node and putting those that have outdegree equal to 0
into the queue Q. In the body of the while loop, a
resource node with outdegree 0 is removed from the
queue and marked as REMOVED. All the bid nodes
that point to it are also removed (since the resource in
the head set of these bid nodes cannot be obtained). For
each removed bid node, we also update (decrease by
one) the outdegree of resource nodes that appear in its
tail set. If outdegree of a resource node becomes 0, it
is entered into the queue. The while loop repeats until
the queue is empty. It should be clear that this removal
process takes O(|V | + |E|).

5. Complexity of the multi-resource bartering

The following theorem establishes the complexity of
the multi-resource bartering problem.

Theorem 1. The decision version of the multi-resource
bartering problem is NP-complete.

Proof. Given a directed hyper-strongly connected
hypergraph D(R, B) which represents multi-resource
bartering bids and a positive integer KB � |B|, we
ask the decision question: Does B contain a multi-
resource bartering solution with at least KB hyperarcs
(bids)? Clearly multi-resource bartering problem is in
NP, since we can guess a set of KB directed hyperarcs
and check in polynomial time whether the vertices (in
the subhypergraph induced by guessed hyperarcs) have
(i) indegree either 0 or 1 and (ii) outdegree greater than
or equal to the indegree.

We transform the maximum independent set prob-
lem [7, p. 53] to the multi-resource bartering problem.
An independent set in an undirected graph G(V, E) is
a subset V ′ ⊆ V such that for all u, v ∈ V ′, the edge
{u, v} is notin E. The decision version of the indepen-
dent set problem asks whether there exists an indepen-
dent set of size at least KG in the graph G. We perform a
polynomial transformation of the independent set prob-
lem to the multi-resource bartering problem as follows:
Let adjedges(v) denote the set of edges that are inci-
dent on vertex v in graph G. A directed hypergraph
D(R, B) is constructed from the graph G(V, E) by let-
ting R = V ∪ E and B = {<{v}, adjedges(v)> :
v ∈ V } ∪ {<adjedges(v), {v}> : v ∈ V }. Clearly
this construction takes polynomial time. We illustrate
this construction by the example graph given in Fig. 7.
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Fig. 7. Transformation of independent set problem on graph G(V, E) to the bartering problem D(R, B).

Here, an undirected graph with 5 vertices and 6 edges
are given. The corresponding directed hypergraph with
vertices and hyperarcs that will be constructed are also
given on the right.

The independent set problem on G(V, E) can then
be stated as a bartering problem on D(R, B) : Does
B contain a multi-resource bartering solution with at
least 2KG hyperarcs? To show that solution of the
multi-resource bartering problem will give an indepen-
dent set of size KG, we note that KG of these bids will
be the <{v}, adjedges(v)> hyperarcs and the other
KG will be the corresponding <adjedges(v), {v}>
hyperarcs. The bartering solution guarantees that the
head sets of satisfied bids are disjoint (because of Rule
#3). Hence, the head sets of <{v}, adjedges(v)>
hyperarcs are disjoint, meaning the set of all inci-
dent edges , i.e., adjedges(v) of each of the KG ver-
tices will be disjoint. Since, each vertex v in an in-
dependent set of a graph also has adjedges(v) dis-
joint, then it is clear that the KG vertices in the tail of
<{v}, adjedges(v)> hyperarcs form an independent
set for the graph G(V, E). Conversely, a solution to the
independent set problem induces a solution to the bar-
tering problem: Corresponding to each vertexv that ap-
pears in the independent set, bids <{v}, adjedges(v)>
and <adjedges(v), {v}> appear in the solution of the
bartering problem.

6. Integer programming formulation

We solve the inclusive and exclusive case multi-
resource bartering problems by formulating them as in-
teger programming problems. Let us define an |R|×|B|
hypergraph matrix T as follows:

Tr,b =
{

1 if resource r ∈ tail(b)
0 otherwise

and similarly the H matrix as:

Hr,b =
{

1 if resource r ∈ head(b)
0 otherwise

For the example in Fig. 1(a),nonzero entries of matrices
T and H are as follows:

T b1 b2 b3 b4 b5 b6 b7

a 1 1
b 1
c 1
d 1 1
e 1 1

H b1 b2 b3 b4 b5 b6 b7

a 1
b 1
c 1 1 1
d 1
e 1
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Let us denote 0̄ as vector of 0’s and 1̄ as a vector of 1’s
(both of which are of size |R|). We also define a fee (or
weight) vector f of size |B| which has each component
set to the fee (or weight) amount fb that we would like
to maximize.

6.1. Inclusive case

We can now express the inclusive multi-resource bar-
tering problem as the following integer programming
problem:

Maximize fT x (1)

subject to constraints :

Hx � 1̄ (2)

(T − H)x � 0̄ (3)

xb ∈ {0, 1} with b ∈ B. (4)

Note that if the variable xb is 1 in the solution, then
this means bid b is satisfied. Constraints of type (2)
basically enforce our rule which says that a resource can
be in the head set of only one satisfied bid. Constraints
of type (3) simply says that the outdegree of a resource
must be greater than or equal to the indegree the feasible
solution. The objective function maximizes the total
fee (weight). If we want to maximize the number of
bids satisfied, then we can set f = 1̄.

6.2. Exclusive case

In order to get a formulation for the exclusive multi-
resource bartering problem, we simply add the con-
straint set Tx � 1̄ to the inclusive multi-resource bar-
tering problem in order to enforce the restriction that a
resource can only appear in the tail set of one satisfied
bid. However, by substituting this new constraint set
into (3), we now see that the Hx � 1̄ constraints be-
come redundant and hence can be removed. As a re-
sult, we get the following formulation of the exclusive
multi-resource bartering problem:

Maximize fT x (5)

subject to constraints :

Tx � 1̄ (6)

(T − H)x � 0̄ (7)

xb ∈ {0, 1} with b ∈ B. (8)

6.3. Redundant constraints

We also remark that redundant constraints may
be generated in (2), (3), (6), and (7). To identify
these, let tb = tail(b) and hb = head(b). Let also
St = {t1, . . . , t|B|} and Sh = {h1, . . . , h|B|}. We
will define conset(S, r) as the set of members of S
that contain resource r, i.e., conset(S, r) = {s ∈
S | r ∈ s}. In constraints of type (2), resources that
have conset(Sh, r) identical will have the same row
values. Hence, we can delete the redundant constraints
of type (2) by finding two or more resources that have
identical consets. We can repeat the same process
for constraints of type (6) this time by considering
conset(St, r). Similarly, for constraints of type (3)
and (7), resources which have both conset(S t, r) and
conset(Sh, r) identical will have the same row values.
The redundant constraints that result in this way can
also be removed.

7. Multiple instance multi-resource bartering

We now formulate the most general form of the bar-
tering problem in which we have multiple resources
with multiple instances.

To illustrate the multi-instance multiple resource bar-
tering, we present the following example scenario with
three barterers:

– Barterer u1 owns 2 units of resource a and places
the following bids:

a(2) => b(1) with fee = 1

a(1) => d(1) with fee = 1

– Barterer u2 owns 1 unit of resource b places the
following bid:

b(1) => c(1) with fee = 1

– Barterer u3 owns 2 units of resource c and 1 unit
of resource d and places the following bid:

d(1) + c(2) => a(5) with fee = 1

– Barterer u4 owns 3 units of resource a places the
following bids:

a(3) => c(1) with fee = 10

a(2) => b(1) with fee = 5
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Fig. 8. Multiple instance bartering example with inclusive-MIMR solution (a) and exclusive-MIMR solution (b).

Note that numbers in parantheses above give the
number of instances of resources given or requested.
The directed hypergraph corresponding to this example
is given in Fig. 8.

We now introduce additional notation to facilitate the
formulation. Let:

– U stand for the set of barterers and u ∈ U denote
a single barterer.

– B(u) stand for the set of bids made by barterer u.
– S

(u)
r stand for the number of instances of resource

r owned (supplied) by barterer u.
– f

(u)
b stand for the fee associated with bid b of the

barterer u.
– T (u) and H (u) stand respectively for the |R| ×
|B(u)| tail and head matrices for the user u. Note
that T

(u)
r,b (H(u)

r,b ) denote the number of instances
of resource r that is given away (requested) in bid
b of barterer u.

– x
(u)
b stand for the binary variable associated with

bid b of the user u.

For the aforementioned example, the supplies vari-
able has the following values: S

(u1)
a = 2, S

(u2)
b = 1,

S
(u3)
c = 2, S

(u3)
d = 1, S

(u4)
a = 1. Assuming rows

1, 2, 3 and 4 represent the resources a, b, c and d re-
spectively, the head matrices are given as follows:

H(u1) =




0 0
1 0
0 0
0 1


 , H(u2) =




0
0
1
0


 ,

H(u3) =




5
0
0
0


 , H(u4) =




0 0
0 1
1 0
0 0


 .

Similarly, the tail matrices are given as follows:

T (u1) =




2 1
0 0
0 0
0 0


 , T (u2) =




0
1
0
0


 ,

T (u3) =




0
0
2
1


 , T (u4) =




3 2
0 0
0 0
0 0


 .

7.1. Exclusive multiple instance multiple resource
(Exclusive-MIMR) bartering

Our earlier formulation given by constraints (6–8)
for the single instance version generalizes in a straight-
forward way to the multiple instance of this problem.
We formulate Exclusive-MIMR problem as folllows:

Maximize
∑
u∈U

∑
b∈B(u)

f
(u)
b · x(u)

b (9)

subject to constraints :∑
b∈B(u)

T
(u)
r,b · x(u)

b � S(u)
r for each (u, r),

(10)
u ∈ U, r ∈ R s.t. S(u)

r �= 0,

∑
u∈U

∑
b∈B(u)

(T (u)
r,b − H

(u)
r,b ) · x(u)

b � 0

(11)
for each r ∈ R,

x
(u)
b ∈ {0, 1} with u ∈ U and b ∈ B(u). (12)

In constraint (10) the 2-tuple (u, r) stands for barterer
u who owns and offers for bartering resource r. In this
constraint, we simply sum the instances of the resource
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r that are to be given away by barterer u in his selected
bids and constrain this quantity to be no more than
the barterer’s resource r supply. Constraint (11) is the
multi-instance version of the constraint (7) previously
given.

7.2. Inclusive multiple instance multiple resource
(Inclusive-MIMR) bartering

Unlike the exclusive-MIMR case, it is not easy to
start with the single instance inclusive constraints (2–4)
and extend them in a straightforward way to to the mul-
tiple instance case. It is better to rethink the inclusive-
MIMR constraints carefully. If we concentrate on a
resource r, then we surely should not give away more
than the total number of instances that is owned by the
barterers. However, is this constraint enough? As in
the single instance case, the answer is no. We have
to give only if we are able to satisfy our bids that of-
fer them. In the single instance case, since a resource
has only one unit, that means there is single barterer
owning it and hence there is no possiblity of a resource
being used to satisfy (i.e., appear in the tail of) bid(s) of
another barterer. But in the case of inclusive-MIMR,
since we keep the total number of resources, using the
total number of resources only to constrain the number
of resources given away exposes us to the danger of
someone’s resource being used to satisfy others’ bids.
Therefore, we have to limit the supply provided by a
barterer to the minimum of the number of units he owns
and the quantities that are used in his satisfied bids
where this particular resource appear. We express this
as follows:∑

u∈U

∑
b∈B(u)

H
(u)
r,b · x(u)

b �
∑
u∈U

min

(13)(
S(u)

r ,
∑

b∈B(u)

T
(u)
r,b · x(u)

b

)
for each r ∈ R.

Let us now go back to the singleinstance case and
see whether the above constraint indeed generates the
single instance inclusive constraints (2–3). In the single
instance, we have S

(u)
r = 1 and one barterer u′ that

owns the particular resource r. So, the above inequality
simplifies to:∑

u∈U

∑
b∈B(u)

H
(u)
r,b · x(u)

b � min

(
1,

∑
b∈B(u′)

T
(u′)
r,b · x(u′)

b

)
for each r ∈ R.

We can get rid of the min term by writing the above as
two constraints:∑

u∈U

∑
b∈B(u)

H
(u)
r,b · x(u)

b � 1 for each r ∈ R,

∑
u∈U

∑
b∈B(u)

H
(u)
r,b · x(u)

b �
∑

b∈B(u′)

T
(u′)
r,b · x(u′)

b for each r ∈ R.

We can conclude that the above two constraints are
indeed the single instance inclusive constraints 2 and 3
respectively. If we return back to the inclusive-MIMR
case, instances of a resource can be owned by more than
one barterer. If there are nr barterers that own resource
r, then we can get rid of the min term by writing 2nr

constraints each of which takes either the S
(u)
r term

or the
∑

b∈B(u′) T
(u′)
r,b · x(u′)

b term from each barterer.
For example, if we have two barterers u1 and u2 that
own resource r, then we would write the following four
constraints:∑

u∈U

∑
b∈B(u)

H
(u)
r,b · x(u)

b � S(u1)
r + S(u2)

r ,

∑
u∈U

∑
b∈B(u)

H
(u)
r,b · x(u)

b � S(u1)
r +

∑
b∈B(u2)

T
(u2)
r,b · x(u2)

b ,

∑
u∈U

∑
b∈B(u)

H
(u)
r,b · x(u)

b �


 ∑

b∈B(u1)

T
(u1)
r,b · x(u1)

b




+S(u2)
r ,

∑
u∈U

∑
b∈B(u)

H
(u)
r,b · x(u)

b �
∑

b∈B(u1)

T
(u1)
r,b · x(u1)

b

+
∑

b∈B(u2)

T
(u2)
r,b · x(u2)

b .

The above enumeration scheme may be attractive if
nr is a small number. For larger nr, an alternative pro-
cedure is to introduce additional variables that replace
the min terms. We introduce a nonnegative integer
variable, y

(u)
r in place of the corresponding min term.

Hence, for a particular resource r, we can now rewrite
the constraint (13) as the following constraints:∑

u∈U

∑
b∈B(u)

H
(u)
r,b · x(u)

b �
∑
u∈U

y(u)
r ,
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y(u)
r �

∑
b∈B(u)

T
(u)
r,b · x(u)

b ,

y(u)
r � S(u)

r ,

0 � y(u)
r .

We can now give the complete inclusive-MIMR
problem formulation as follows:

Maximize
∑
u∈U

∑
b∈B(u)

f
(u)
b · x(u)

b (14)


 ∑

b∈B(u)

T
(u)
r,b · x(u)

b


 − y(u)

r � 0 for each

(15)
(u, r), u ∈ U, r ∈ R s.t. S(u)

r �= 0,

∑
u∈U

y(u)
r −

∑
u∈U

∑
b∈B(u)

H
(u)
r,b · x(u)

b � 0

(16)
for each r ∈ R,

x
(u)
b ∈ {0, 1} with u ∈ U and b ∈ B(u), (17)

y(u)
r ∈ {0, . . . , S(u)

r } for each (u, r),
(18)

u ∈ U, r ∈ R s.t. S(u)
r �= 0.

Note that we only create the y
(u)
r variables if S

(u)
r �=

0. In the summation over u in constraint (16), we
implicitly assume that y

(u)
r = 0 for the S

(u)
r = 0 cases.

The bold arcs in Fig. 8(a) and (b) give the solutions for
inclusive and exclusive MIMR problems respectively.
Notice that in the exclusive solution in Figure 8(b),
barterer u3 has to give only c(2) and that he can keep
d(1).

8. Implementation and tests

We have developed code which solves the multi-
resource bartering problem by making use of existing
mixed integer programming (MIP) packages. We have
used two MIP solvers. The first is the LP SOLVE [5]
which is a linear programming solver that is freely
distributed under GNU Lesser license. LP SOLVE also
contains a MIP solver that employs branch and bound
technique. The second is the CPLEX MIP Solver [4]
which is a commercial package and has a sophisticated
MIP solver. We have generated various test cases for
single instance multiple resource bartering problem by
randomly generating bids. We have used 4 parameters
while generating the test cases. These are:

– β: denotes the number of barterers.
– ω: denotes the bound on the number of resources

owned by each barterer. The actual number of
resources for each barterer is generated randomly
in the range 1, . . . , ω.

– ρ: denotes the bound on the number of bids made
by each barterer. The actual number of bids for
each barterer is generated randomly in the range
1, . . . , ρ.

– φ: denotes the bound on the number of resources
in the head set of a bid. The actual number of
resources for each bid is generated randomly in
the range 1, . . . , φ.

Note that the number of resources in the tail set of each
bid is also generated randomly in the range 1, . . . , ω.
Finally, the resources that will appear on the head and
tail sets are also generated. The rand() function was
used on the Solaris operating system as random number
generator. The characteristics of a number of tests
generated are shown in Table 1.

Solutions of the generated single instance multiple
resource bartering problems were obtained by solving
(1–8). The weight of each bid was taken to be one so
that we could maximize the number of bids satisfied.
The tests were carried out on a SUN HPC 4500 server
with 400 Mhz processors and 3 GBytes of memory.
The execution times for the tests described in Table 1
are given in Table 2. The test runs that have >24 hrs.
as their solution times were terminated because they
took very long and did not produce any answer after
24 hours. These tests are not meant to be compre-
hensive performance evaluation of the LP SOLVE and
CPLEX packages. Rather, they were used to test the
developed models and routines. The tests, however, do
give us some feeling about execution times. We also
ran other tests and our observations are the following:

– LP SOLVE execution times exploded when the
number of bids reached above 200.

– The exclusive case always took longer time than
the inclusive case. If we look at the constraints
for both problems, we see that in the inclusive
case, only the head sets of bids in the solution
should be disjoint. But in the exclusive case, not
only the head sets but also the tail sets should be
disjoint. This is probably making the problem
computationally harder.

– CPLEX MIP solver worked fast until around 1000
bids. After that it also started to take longer. We
had test cases with around 1800 bids which did not
terminate within 24 hours even for the inclusive
case.
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Table 1
Characteristics of tests generated

No. of Resources(|R|) No. of bids(|B|) No. of bc-
Test β ω ρ φ original after bc original after bc components

(a) 25 10 10 4 153 141 110 89 1
(b) 25 10 10 5 139 133 146 126 1
(c) 35 5 10 3 103 95 212 172 1
(d) 40 10 10 4 217 206 248 216 1
(e) 100 10 10 4 541 513 623 543 1
(f) 400 10 10 4 2727 2360 2632 1861 1

Table 2
Solution times (in seconds) for the various tests given in Table 1

Inclusive Case Exclusive Case
Test LP SOLVE CPLEX LP SOLVE CPLEX

(a) 0.7 0.2 0.9 0.8
(b) 24.7 0.1 98.6 2.6
(c) 6.6 0.4 387.9 2.8
(d) 124 2.06 >24hrs. 18.9
(e) >24hrs. 1.8 >24hrs. 1334
(f) >24hrs. 45318 >24hrs. >24hrs.

9. Discussion and conclusion

In this paper, we have proposed the use of direct bar-
tering techniques for managing resources in grids. We
believe that bartering techniques offer advantages since
they make it possible to have more complex resource
trading patterns. This, for example, may help us to
get rid of liquidation problems and may make trading
possible in cases where due to subjective pricing a so-
lution may not exist. We have presented a new mathe-
matical model for the multi-resource bartering problem
by representing it as a directed hypergraph problem.
We have also presented the notion of bc-components
in directed hypergraphs which help us to remove un-
necessary resources and bids from the original prob-
lem. We have implemented programs that make use
of existing integer programming solvers. We have per-
formed a number of tests. However, in order to deter-
mine suitability of the MIP packages for real life use,
more computational experiments need to be done.

We have also proposed a so-called bartergrid where
items all over the world could be bartered. Such a
bartergrid would be an excellent medium for trading
electronic media. Looking at recent news, we believe
that a bartergrid can even be established for the match-
ing of other items such as human organs. The clever
three-way transplant done by doctors in Johns Hopkins
University [14,24] is in fact an excellent example that
demonstrates the power of bartering. We also note that
existing computational grids can also make use barter-
ing: For example, different computer centers can barter
jobs with each other.

The software we have developed for testing our mod-
els is called BarterMachine. An alpha version of this
software is available on the Internet [19]. Users can
enter bids and the barter engine will return the multi-
resource bartering solution that maximizes the number
of bids (or total weights assigned to bids). Note that
our publicly available sofware uses LP SOLVE and can
only solve small problems.

As the results of our tests show, faster solvers are
needed to solve the multi-bartering problem. How-
ever these results should not make us pessimistic about
adapting bartering in real life. Heuristics can be built
for example by filtering bids so that polynomial time al-
gorithms (single/multiple instance and single resource
bartering) can be applied at first to find some solutions
if there exists any. Heuristics can also be devised that
partition the large number of bids into smaller sets that
can be solved by the optimal solver in parallel in a rea-
sonable amount of time. Another approach that can be
followed is that we can enforce small number of bids
by (i) keeping the bidding time short and/or (ii) limit-
ing the number of bids per user. Hence when we reach
a threshold number that can be solved in a reasonable
time by the optimal solver, the algorithm is run. Win-
ning bids can be removed from the system and the re-
maining stay for the next run of bartering solver and so
on.

Another issue that needs to be clarified is that when
developingour model, we assumed the barterers always
bid non-empty set of resources. But what happens if
a barterer wants to give away resource(s) for free or
bid for resource(s) by offering nothing for them. This
problem can also be taken care of in our model. We
introduce a fictitious (dummy) resource called NOTH-
ING. Then if someone wants to give away resource(s)
for free, he places the bid: resource(s) => NOTH-
ING. If on the other hand, someone wants to acquire re-
sources(s) for free, then he places the bid: NOTHING
=> resource(s). We can also adjust bid priorities (fees)
in order to have the NOTHING bids to be picked up in
a solution. Let n be the number of bids that contain
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NOTHING. We can let each NOTHING bid to have a
fee of 1 and the other bids to have a fee of f b · (n + 1)
where fb is the original fee associated with each bid.
In this way, we give more priority to the bids that trade
non-empty set of resources.

Finally, we would like to remark that some
economists may object to bartering saying that it is not
an efficient market mechanism. However, if bartering
is studied from a computer science perspective and ef-
ficient algorithms and software are designed for it, then
we believe that a serious barter economy will develop
and compete with monetary economy.
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