
Scientific Programming 12 (2004) 225–237 225
IOS Press

SCALEA-G: A unified monitoring and
performance analysis system for the grid

Hong-Linh Truonga,∗ and Thomas Fahringerb
aInstitute for Software Science, University of Vienna, Nordbergstrasse 15/C/3, A-1090 Vienna, Austria
E-mail: truong@par.univie.ac.at
bInstitute for Computer Science, University of Innsbruck, Technikerstrasse 13, A-6020 Innsbruck, Austria
E-mail: Thomas.Fahringer@uibk.ac.at

Abstract. This paper describes SCALEA-G, a unified monitoring and performance analysis system for the Grid. SCALEA-
G is implemented as a set of grid services based on the Open Grid Services Architecture (OGSA). SCALEA-G provides an
infrastructure for conducting online monitoring and performance analysis of a variety of Grid services including computational and
network resources, and Grid applications. Both push and pull models are supported, providing flexible and scalable monitoring
and performance analysis. Source code and dynamic instrumentation are implemented to perform profiling and monitoring
of Grid applications. A novel instrumentation request language for dynamic instrumentation and a standardized intermediate
representation for binary code have been developed to facilitate the interaction between client and instrumentation services.

1. Introduction

Grid Monitoring is crucial task that provides useful
information for several purposes such as performance
analysis and tuning, performance prediction, fault de-
tection, resource brokering and scheduling. Most exist-
ing Grid monitoring tools are separated into two distinct
domains: Grid infrastructure monitoring and Grid ap-
plication monitoring. The lack of an integrated system
has hindered the detection of correlations among mea-
surement metrics of various sources at different levels
of details. Grid monitoring tools that combine applica-
tion and system monitoring and performance analysis
are crucial as these tools will provide the user a uni-
fied view that uncovers the correlations among perfor-
mance metrics from various sources. In addition, many
existing Grid monitoring tools focus on the monitoring
and analysis for Grid infrastructure; yet little effort has
been done to examine Grid applications. To date, appli-
cation performance analysis tools are mostly targeted
to conventional parallel and distributed systems (e.g.
clusters, SMP machines). As a result, these tools are

∗Corresponding author.

not well adjusted to the scalability, diversity, dynamics
and security of the Grid.

To tackle the above-mentioned challenges, we are
developing a new system named SCALEA-G which is
a unified system for monitoring and performance anal-
ysis in the Grid. SCALEA-G is implemented as a set
of OGSA-based services [15]. It provides an infras-
tructure of OGSA-compliant grid services for online
monitoring and performance analysis of a variety of
Grid services including computational resources, net-
works, and applications. Both push and pull models
proposed in GMA (Grid Monitoring Architecture) [3]
are supported, providing a flexible and scalable mech-
anism for Grid monitoring and performance analysis.
In SCALEA-G, each type of monitoring data is de-
scribed by an XML schema [29], allowing any client
to easily access the data via XPath [28]. SCALEA-
G supports both source code and dynamic instrumen-
tation for profiling and monitoring events of Grid ap-
plications. A novel instrumentation request language
has been devised to facilitate the interaction between
client and instrumentation services. System and ap-
plication specific metrics are related to each other in
a single system, thus increasing the chance to uncover
Grid performance problems and their dependences.

ISSN 1058-9244/04/$17.00  2004 – IOS Press and the authors. All rights reserved

226 H.-L. Truong and T. Fahringer / SCALEA-G: A unified monitoring and performance analysis system for the grid

Grid Experiment
 Data Repository Registry Service

System
Sensors

Application
Sensors

Sensor
Repository

XML
Data Container

System
Sensors

Application
Sensors

SCALEA-G
GUI

Archival
Service

Directory
Service

Tools/Services

Sensor Manager
Service

Sensor Manager
Service

SCALEA-G Client Service

Performance
Analyzer

Consumer
Service

Instrumentation
Mediator

Mutator
Service

Mutator
Service

Repository

 Sensor
SCALEA-G service

Data flow

Client, external tool, service
Both data and invocation/control flow

Diagram legend

Interaction with external service
Control flow

Instrumentation
Forwarding Service

Instrumentation
Forwarding Service

Fig. 1. High-level view of SCALEA-G Architecture.

This paper focuses on the design of the SCALEA-G
system. The rest of this paper is organized as follows:
Section 2 presents the architecture of SCALEA-G. In
Section 3, we describe SCALEA-G sensors and Sen-
sor Manager Service. Section 4 describes the dynamic
instrumentation service for Grid applications. We then
discuss the data delivery, caching and filtering mecha-
nism in Section 5. Security issues in SCALEA-G are
outlined in Section 6. Section 7 illustrates first ex-
periments and examples of the current prototype. We
present some related work in Section 8 before conclud-
ing with an outlook to future work in Section 9.

2. SCALEA-G architecture

SCALEA-G is an open architecture based on
OGSA [15], combined with GMA [3]. Figure 1 depicts
the architecture of SCALEA-G which consists of a set
of OGSA-based services and clients.

The SCALEA-G Directory Service (DS) is used for
publishing and searching information about producers
and consumers that produce and consume performance
data, and information about types and characteristics of
that data. The Archival Service (AS) is a data repository
which is used to store monitoring data and performance
results collected and analyzed by other components.

The Sensor Manager Service (SM) is used to manage
sensors that gather and/or measure a variety of types of
data for monitoring and performance analysis, to store
monitoring data and to provide that data to consumers.
Application instrumentation can be done at source code
level manually, automatically or dynamically at the run-
time. The Instrumentation Forwarding Service (IFS)
receives instrumentation requests from clients and for-
wards the requests to the Mutator Service (MS) which
conducts the dynamic instrumentation. The Client Ser-
vice (CS) provides interfaces for administrating other
SCALEA-G services and accessing data in these ser-
vices. In addition, it provides features for analyzing
performance data. Any external tools and services can
access SCALEA-G by using CS. A GUI – supported
by CS – enables the user to graphically examine mon-
itoring and performance analysis results. SCALEA-
G services register and search information about their
service instances in Registry Services.

Interactions among SCALEA-G services are divided
into Grid service-based operations and TCP-based
stream data delivery. Grid service operations are used
to perform tasks which include controlling activities
of services and sensors, subscribing and querying per-
formance data, registering, querying and receiving in-
formation from DS. In stream data delivery mode, a
TCP channel is used to transfer monitoring data, perfor-

H.-L. Truong and T. Fahringer / SCALEA-G: A unified monitoring and performance analysis system for the grid 227

mance data and results among producers (e.g. sensors,
SMs) and consumers (e.g. SMs, clients). Grid service
operations incorporate transport-level and message-
level security whereas data channel is based on a se-
cure connection; security in SCALEA-G relies on Grid
Security Infrastructure (GSI) [26].

When deploying SCALEA-G, instances of sensors
and MSs are executed in compute nodes being moni-
tored. An instance of SM can be deployed to manage
multiple sensors and MSs in a node or a set of nodes,
depending on the real system and workload. Similarly,
SMs in different administrative domains can publish
information with multiple DS instances. The client dis-
covers SCALEA-G services through Registry Services
which can be deployed in different domains.

3. Sensors and sensor manager service

3.1. System sensors and application sensors

SCALEA-G distinguishes two kinds of sensors: sys-
tem sensors and application sensors. System sensors
are used to monitor and measure the performance of
Grid infrastructure (e.g. compute hosts, network con-
nections) whereas application sensors are used to mea-
sure execution behavior of code regions and to mon-
itor user-defined events in Grid applications. Sensors
freely customize their collected data which is expressed
in XML. SCALEA-G services may not be aware of
monitoring data structures, supposing the data is in
XML representation. All sensors are associated with
some common properties such as sensor identifier, data
schema, parameters and interact with SMs by exchang-
ing XML messages.

Most system sensors provide dynamic information,
e.g. the available bandwidth of a network path, CPU
usage of a compute node, but few can provide static
information, e.g hardware information about compute
hosts. System sensors can query or collect data from
other providers. Figure 2 presents an excerpt of
XML schema of the data provided by a sensor named
path.bandwidth.capacity.TCPwhich is used
to measure the bandwidth capacity of a network path
(between two compute nodes) in the Grid. SCALEA-G
provides a variety of system sensors for monitoring the
most commonly needed types of performance data on
the Grid investigated by GGF DAMED-WG [11] and
NMWG [18].

Application sensors collect profiling and event data
of Grid applications. Figure 3 shows the top-level XML

Fig. 2. XML schema of data provided by path.bandwidth.capacity.
TCP sensor.

Fig. 3. Top-level XML schema of application profiling data.

schema for profiling data provided by application sen-
sors. The name attribute corresponds to the identifier
of profiling sensor. Theexp element specifies a unique
identifier determining the experiment. This identifier
is used to distinguish data between different experi-
ments. The cr element refers to source information
of the code region (e.g. line, column, function name).
Thepu element describes the context in which the code
region is executed; the context includes information
about Grid site, computational node, process, thread.
The metrics element refers to performance metrics,
each metric is represented in a (name, value) tuple. A
similar sensor is defined for describing event data in
applications.

Both sensors types are treated basically the same.
They, however, differ in their control (e.g. activation,

228 H.-L. Truong and T. Fahringer / SCALEA-G: A unified monitoring and performance analysis system for the grid

Fig. 4. XML schema used to describe sensors in the sensor repository.

instrumentation) and security model (e.g. permission in
accessing data). This distinction allows us to simplify
the management of two different types of sensors.

3.2. Sensor repository

To simplify the management and deployment of sys-
tem sensors and the processing of sensor data, a sen-
sor repository is used to hold (i) information about
available system sensors, (ii) information about sensors
which will be activated at start-up time, and (iii) reg-
istered XML schemas. Each sensor repository is man-
aged by an SM which can activate available sensors in
the repository when requested.

Figure 4 displays an excerpt of the XML schema
used to describe sensors in the sensor repository.
The XML schema is used to specify sensor-related
information such as name (a unique name of the
sensor), measureclass (implementation class),
schemafile (XML schema of data produced by the
sensor), params (parameters required for invoking the
sensor), etc. Although not specified in the repository,
by default the lifetime of a sensor instance will option-
ally be specified when the sensor instance is created.

3.3. Sensor manager service

The main tasks of Sensor Manager Service (SM) are
to control and manage activities of sensors in the sensor
repository, to publish information about data collected
by sensors to DSs, to receive and buffer monitoring
data sensors produce, to provide monitoring data to
consumers via data query and subscription (DQS). SM

Data Receiving
and Publishing

Service
Administration

Data Query and
Subscription

 XML data
container

TCP-based data stream channels

Grid service-based operations

Sensor
 Repository

Sensors Consumers

Consumers
Service

Administrator
Directory, Registry

Service

Fig. 5. Sensor Manager Service Implementation.

includes the following components: Service Adminis-
tration, Data Query and Subscription, Data Receiving
and Publishing as shown in Fig. 5. SM provides con-
trol and request tasks, data receiving and delivery over
both Grid-based service operations and TCP-based data
streams.

The Service Administration component receives re-
quests from the SCALEA-G administrator and controls
activities of SMs and their sensors in the sensor repos-
itory. The administrator can activate any sensor (thus
making a new sensor instance) or deactivate an exist-
ing sensor instance. When a new sensor instance is
activated, it will be added into the list of sensor in-
stances. Similarly, a sensor instance will be removed
from this list when it is deactivated. The administrator
can perform the registration (adding, updating or re-
moving) information about the SM, properties of data
provided by sensor instances with selected DSs. All the

H.-L. Truong and T. Fahringer / SCALEA-G: A unified monitoring and performance analysis system for the grid 229

interactions in this component are carried out through
invocations of Grid-based service operations.

The Data Query and Subscription component is
responsible for processing DQS requests from con-
sumers. DQS tasks are implemented as service oper-
ations but monitoring data is delivered via TCP-based
data streams. Based on the information published in the
DS, consumers can subscribe monitoring data provided
by sensor instances that is archived in SMs. The result-
ing data will be pushed to consumers via TCP-based
data channels. When a consumer unsubscribes a data
type, the DQS component will stop sending that data
to the consumer. To support the pull mode, this com-
ponent processes queries with constraints (produced by
consumers) to filter data of interest. The resulting data
satisfying the requested constraints will be sent back
to the consumer. DQS requests can be represented in
XPath based on the published XML schema.

The Data Receiving and Publishing component con-
ducts two tasks. Firstly, it receives data collected by
sensor instances. A data receiver is used to receive data
from sensors. It then processes and stores the received
data into data buffers. The data receiver is a thread
binding a well-known port and interacts with sensors
via TCP connections. Data is stored in buffers in XML
data containers. Secondly, it implements functionality
that publishes (adding, updating, removing) of infor-
mation about SM and properties of monitoring data to
DS.

3.4. Interactions between sensors and sensor
manager services

The interactions among sensors and SMs involve the
exchange of three XML messages. In the initializa-
tion phase, the sensor instance sends a sensorinit
XML message which contains sensor name, option-
ally an XML schema of monitoring data, lifetime and
description information about the sensor instance to
the SM which then makes these information avail-
able for consumers via DS. In the measurement
phase, the sensor instance repeatedly performs mea-
surement, encapsulates its measurement data into a
sensordataentry XML message, and pushes the
message to the SM. The measurement data is enclosed
by <![CDATA[. . .]]> tags thus sensors can cus-
tomize the structure of their collected data. SM gets
measurement data and stores the data into XML con-
tainers in native format. In the finalization phase, be-
fore stopping sending collected data, the sensor in-

stance sends asensorfinalXML message to notify
the SM.

Each message in the above protocol is self-explained.
Therefore, multiple types of monitoring data can be
delivered via a connection which can be transient, not
necessarily persistent.

4. Instrumentation service

We support two approaches: source code and dy-
namic instrumentation. In the first approach, source
code can be automatically instrumented by a service
that is based on the SCALEA Instrumentation Sys-
tem [25]. This approach, however, simply instruments
input source files (for Fortran), not addressing compila-
tion issue (e.g. to compile instrumented code in differ-
ent architectures). Thus, the client has to compile and
link the instrumented files with the measurement library
containing application sensors. Moreover, source code
instrumentation can be done manually by the end-user.

In the second approach, we exploit the dynamic
instrumentation mechanism based on Dyninst [8].
With dynamic instrumentation, applications remain un-
changed. A Mutator Service (MS) is implemented as a
GSI-based SOAP C++ Web service based on gSOAP
toolkit [21] that controls the instrumentation of appli-
cation processes on the host where the processes are
running. We develop an XML-based instrumentation
request language (IRL) to allow the client to specify
code regions of which performance metrics should be
determined and to control the instrumentation process.
The client controls the instrumentation by sending IRL
requests to MSs which in turn perform the instrumen-
tation, e.g. inserting application sensors into applica-
tion processes. MS hides all the low level detail of the
instrumentation process.

Whereas IRL allows to specify instrumentation re-
quests containing information about code regions that
should be instrumented, the question is how clients
understand application structures in order to specify
selected code regions and by what means MS de-
scribes the application structures. In our framework,
MS provides the application structure to the client in
SIRBC (Standardized Intermediate Representation for
Binary Code) format which is based on XML. Based on
SIRBC, the client can decide which code regions should
be instrumented. IRL, the language for the conversa-
tion between the instrumentation requester and engine,
and SIRBC, the language for describing the structure
of the application being instrumented, are central el-

230 H.-L. Truong and T. Fahringer / SCALEA-G: A unified monitoring and performance analysis system for the grid

Fig. 6. SIR for Binary Code.

ements of the dynamic instrumentation service. Pro-
viding interfaces via service operations, together with
IRL and SIRBC, the instrumentation service is highly
interoperable and it can easily be integrated and used
by other services. In the following section, we discuss
SIRBC and IRL.

4.1. SIR for binary code

Normally the performance tool developers have to
build separate instrumentation engines for different
programming languages and instrumentation strategies
such as dynamic and static instrumentation. This work
is a time consuming effort. The APART working group
has proposed a Standardized Intermediate Represen-
tation (SIR) as an abstract representation for proce-
dural and object-oriented programs [14]. Basically a
SIR contains information about statements and direc-
tive types with very little details on the structure of
individual statements and directives. The idea is that
high-level tools must only be aware of the type of a

statement in order to make a decision about what code
regions should be instrumented.

SIR is an XML-based representation that includes
information about program units (e.g. functions, meth-
ods), code regions (e.g. function calls, loops, state-
ments), etc. SIR is designed for describing Fortran,
Java, C and C++ programs. Therefore, it supports
a rich set of information about programs having dif-
ferent data types and following different programming
paradigms. However, with dynamic instrumentation,
in which the intended instrumented program is avail-
able in binary code only, the information obtained is
substantially reduced. With binary code, we mostly
can obtain information and instrument at the level of
program units, function calls and loops. Thus, a sim-
plified version of SIR would be more suitable as it does
not require the instrumentation service to implement
all features proposed by SIR. We develop SIRBC for
that purpose.

Figure 6 presents the XML schema of SIRBC which
is based on the idea of SIR. Currently SIRBC supports

H.-L. Truong and T. Fahringer / SCALEA-G: A unified monitoring and performance analysis system for the grid 231

Fig. 7. Excerpt of XML schema of Instrumentation Request Language.

only program unit and function call representation. An
application process is represented as a set of program
units (elementSIRUnit). Each program unit contains
a set of code regions (element SIRCodeRegion). A
code region is a function call that contains information
(e.g. name, source line) about the callee function (ele-
ment SIRCallee). Each program unit, code region is
associated with a unique identifier (attribute id). The
client uses that identifier to refer to the program unit
or the code region. By using SIRBC, the instrumenta-
tion requester can understand the application structure
and specify instrumentation requests containing code
regions that should be instrumented.

4.2. Instrumentation request language (IRL)

The IRL is provided in order to facilitate the inter-
action between instrumentation requester (e.g. users,
tools) and instrumentation services. IRL which is an
XML-based language consists of instrumentation mes-

sages: request and response. Clients send requests to
MSs and receive responses that describe the status of
the requests.

Figure 7 outlines the XML schema of IRL. The
job to be instrumented is specified by experiment
element. Current implementation of IRL sup-
ports four requests including attach, getsir,
instrument, finalize:

– attach: requests MS to attach the application
and to prepare to perform other tasks on that ap-
plication.

– getsir: requests the MS to return SIRBC of a
given application.

– instrument: specifies code regions (based on
SIRBC) and performance metrics should be in-
strumented and measured.

– finalize: notifies MS that client will not per-
form any request on the given application.

In responding to a request from a client, MS will re-
ply to the client by sending an instrumentation response

232 H.-L. Truong and T. Fahringer / SCALEA-G: A unified monitoring and performance analysis system for the grid

 XML data
container

Sensor
Manager
Service

Client
Service

Client

Sensor

Data payload Sensor ID

Data payload ResultID

Call Subscribe/Query
Operations with

supplied ResultID

Invoke Subscribe/Query
Data payload

ResultID

Return
DataSensorReader

Sensor
Manager
Service

 XML data
container

Contro
l

data repository

consumer/producer

monitored data flow
operation invocation

Diagram legend

Sensor

Data payload Sensor ID

Data payload ResultID

Fig. 8. Data Delivery and Aggregation.

which contains the name of the request, the status of
the request (e.g. OK, FAIL) and possibly a detailed re-
sponding information encoded in <![CDATA[. . .]]>
tags.

5. Data delivery, caching and filtering

Messages containing performance and monitoring
data are delivered via separate data channel. Message
propagation uses a simple tunnel protocol as presented
in Fig. 8. In this protocol, each sensor builds its XML
data messages and sends the messages to an SM which
stores the messages into appropriate buffers. When a
client subscribes and/or queries data by invoking oper-
ations of Client Service (CS), CS calls corresponding
operations of SM and passes a ResultID to the SM.
CS returns to the client a DataSensorReader. The
SM builds XML messages by tagging the ResultID
to the data which satisfies the subscribed/queried con-
straints and sends these messages to CS. At CS side,
based on ResultID, the messages are filtered and
stored into DataSensorReader. The ResultID
is used to aggregate resulting data of the same request
delivered from multiple SMs. Clients can call APIs
(blocking and non-blocking) or set up a call-back on
DataSensorReader to get the resulting data.

Data produced by system sensors will be cached in
circular bounded buffers at SM. In the current imple-
mentation, for each type of system sensor, a separate
data buffer is allocated for holding data produced by
all instances of that type of sensor. Data buffers keep

monitoring data in its native format in XML data con-
tainers implemented atop Berkeley DB XML [2]. In
the push mode, any new data entry satisfying the sub-
scribed constraints will always be sent to the subscribed
consumers. In the pull mode, SM only searches cur-
rent available entries in the data buffer and returns en-
tries satisfying constraints of consumer query to the
requested consumers. Buffering data produced by ap-
plication sensors is similar to that for system sensors.
However, we assume that there is only one user to per-
form the monitoring and analysis for each application
and the size of the data buffer is unbounded.

6. Security issues

The security in SCALEA-G is based on GSI [26] fa-
cilities provided by Globus Toolkit (GT). Each service
is identified by a certificate.

SCALEA-G imposes control on clients in access-
ing its services and data provided by system sensors
through an Access Control List (ACL). The ACL maps
client’s information to sensors and services which can
be accessed by the client. ACL contains information
about service name, sensor identifier, subject of user
certificate, tasks and permissions. The client informa-
tion obtained from client’s certificate when the certifi-
cate is used in authentication will be compared with en-
tries in the ACL in the authorization process. For each
user, an ACL entry specifies services, sensors, tasks
(control and access the data) and permissions associ-
ated with these sensors in the services.

H.-L. Truong and T. Fahringer / SCALEA-G: A unified monitoring and performance analysis system for the grid 233

Fig. 9. SCALEA-G Administration GUI.

The security model for MS is a simplified version of
that for GT3 GRAM [26] in which IFS (Instrumenta-
tion Forwarding Service) can forward instrumentation
requests of clients to MS. MS runs in a non-privilege
account. However, if MS is deployed to be used by
multiple users, it must be able to create its instances
running in the account of calling users. By doing so,
the instances have permission to attach to user appli-
cation processes and they can perform dynamic instru-
mentation.

In the case of monitoring and analyzing applica-
tions, when subscribing and/or querying data pro-
vided by application sensors, client’s information will
be recorded. Similarly, before application sensor in-
stances start sending data to the SM, the SM obtains
information about the client who executed the appli-
cation. Both sources of information will be used for
authorizing the client in receiving data collected by
application sensors.

7. Experiments and examples

We have prototyped SCALEA-G SM, DS, MS,
a set of system and application sensors. Globus
Toolkit [20] and JavaCog [22] are used for implement-
ing OGSA-enabled services, communication and se-

curity in SCALEA-G. Application sensors are based
on Globus GSS C APIs library. PostgreSQL [1] has
been used for archiving information in DS. To buffer
the data at SM, we use Berkeley DB XML provided by
Sleepycat [2]. In this section we illustrate experiments.

7.1. Administrating sensor manager services and
sensors

Figure 9 displays the GUI used to manage activ-
ities of SMs. By selecting an SM, a list of avail-
able sensors in sensor repository and a list of sensor
instances managed by that SM will be shown in the
top-left window (titled Sensor Repository) and top-
right window (titled Sensor Instances) of Fig. 9, re-
spectively. A user (with permission, controlled by
ACL of SM) can make a request creating a new sen-
sor instance by selecting a sensor in the list of avail-
able sensors, clicking the Activate button and spec-
ifying input parameters and lifetime. For example,
Fig. 9 shows the dialog for setting input parameters
for path.delay.roundtrip.TCP sensor. An ex-
isting sensor instance can be deactivated by select-
ing Deactivate button. By choosing a sensor, de-
tailed information of that sensor (e.g. parameters, XML
schema) will be shown in the two bottom windows.
In the middle-right window (titled Registered Sensors),

234 H.-L. Truong and T. Fahringer / SCALEA-G: A unified monitoring and performance analysis system for the grid

Fig. 10. SCALEA-G Dynamic Instrumentation GUI.

we can examine which sensor instances that register to
a SM.

7.2. Dynamic instrumentation

Figure 10 displays the GUI for conducting the dy-
namic instrumentation in SCALEA-G. On the top-left
window, the user can choose a DS and retrieve a list
of instances of MS registered to that DS. The user can
monitor processes running on compute nodes where
instances of MS execute by calling Get/Update
User Processes operation of MS (e.g. see the top-
right window of Fig. 10). For a given application pro-
cess, its SIRBC can be obtained via Get SIR operation,
e.g. the SIRBC of rpp3d process is visualized in the
bottom-right window. the user can edit IRL requests
and send these requests to selected instances of MS.

7.3. Performance monitoring and analysis GUI

The user can monitor and analyze online perfor-
mance behavior of Grid systems and applications at
the same time. In the top-left window of Fig. 11, the
user can examine DSs and information about sensor
instances registered with these DSs. Under the DS tree,

sensor instances are grouped into categories based on
the sensor identifier; each category provides the same
data type but of different resources. For each sensor
instance, the user can examine its properties (e.g. life-
time and XML schema) by choosing the instance from
the list of sensor instances.

The user can perform one-to-one or one-to-many
DQS by selecting sensor instance (for one-to-one
mode) or sensor category (for one-to-many mode),
choosing Subscribe or Query (see Fig. 11) and
then editing the request (e.g. subscription time, XML
data filter) if needed. We can subscribe, query and then
examine multiple types of monitoring data at the same
time. For example, we subscribed application data
of experiment 3DPIC-2N-4P and data provided by
host.cpu.used sensor in compute nodes on which
the application processes execute, and then examined
that data online (see Application Profile Data Viewer
and CPU Usage window in Fig. 11). List of exist-
ing subscriptions is shown in the Subscriptions
tree. A subscription can be canceled by selecting the
subscription and clicking Unsubscribe. Similarly,
an existing subscription can be renewed by clicking
Renew.

H.-L. Truong and T. Fahringer / SCALEA-G: A unified monitoring and performance analysis system for the grid 235

Fig. 11. Performance Monitoring and Analysis GUI.

8. Related work

Over the past few years, many Grid performance
tools have been developed as cataloged in [17]. To
assist developers in building monitoring tools for Grid
system, Global Grid Forum (GGF) [19] has proposed
the GMA [3] model which describes the major com-
ponents of a Grid monitoring tool and their essential
interactions.

Several existing tools are available for monitoring
Grid computing resources and networks, such as MDS
(a.k.a GRIS) [9], R-GMA (Relational GMA) [12],
NWS [27], GridRM [4], Ganglia [23]. However, few
monitoring and performance analysis tools for Grid ap-
plications have been introduced. GRM [5] is a semi-on-
line monitor that collects information about an appli-
cation running in a distributed heterogeneous system.
In GRM, however, the instrumentation has to be done
manually. OCM-G [6] is an monitoring infrastructure
targeting to interactive Grid applications. Atop OCM-
G, G-PM [7] is used to conduct the performance analy-
sis. OCM-G combines dynamic and source instrumen-
tation, however, currently limited to MPI functions.

None of aforementioned systems, except MDS, is
an OGSA-based Grid service. Thus, it is rather diffi-
cult to deploy these tools in OGSA-based framework.
Differing from most existing Grid monitoring tools,
SCALEA-G is based on OGSA and supports both Grid
infrastructure and application monitoring and perfor-

mance analysis in a unified system, thus increasing the
chance to correlate measurement metrics from various
sources at different levels. Furthermore, existing tools
employ a non-standard representation for monitored
data. SCALEA-G, in contrast, uses widely-accepted
XML for representing customizable performance data,
and provides DQS mechanism with XPath-based re-
quests.

Although there are well-known tools supporting dy-
namic instrumentation, e.g. Paradyn [24], DPCL [10],
these tools are designed for conventional parallel sys-
tems rather than Grids. The requests for conducting the
dynamic instrumentation in these tools are not widely
accessible and highly interoperable. The lack of a well-
defined, general purpose protocol like IRL has hin-
dered other services from using these tools to conduct
the dynamic instrumentation. Our work on developing
IRL and general-purposed instrumentation service in-
tendedly provides a generic means for a large number
of other services to conduct dynamic instrumentation
of interesting applications while hiding all low level
details of instrumentation mechanism.

Recent work in APART has also proposed MIR
(Monitoring and Instrumentation Request) [13] which
supports to control instrumentation and request mea-
surement data. MIR approach, however, it is not suit-
able for querying multiple types of data as we have to
implement several wrappers to convert MIR to specific
languages (e.g. XPath) used to query against measure-

236 H.-L. Truong and T. Fahringer / SCALEA-G: A unified monitoring and performance analysis system for the grid

ment data. Our IRL is employed only for instrumenta-
tion purpose. By using XPath to express requests for
measurement data we can easily customize the request
based on a data representation and directly use these
requests to get measurement data. However instrumen-
tation requests in MIR can be incorporated into IRL.

9. Conclusion and future work

In this paper we presented the architecture of
SCALEA-G, a unified monitoring and performance
analysis system for the Grid, based on the OGSA and
GMA concept. We have described the architecture
and presented some experiments. The main contribu-
tions of this paper center on the unique, monitoring
and performance analysis system based on OGSA, the
dynamic instrumentation service for Grid applications
with the novel instrumentation request language (IRL)
and standardized intermediate representation for binary
code (SIRBC).

We plan to exploit peer-to-peer features for DQS in
our services. The set of sensors will be extended to
support monitoring based on resource model and rules,
monitoring more resources and services, and providing
more diverse types of data. We are currently working
on an extension of SIRBC to cover loops and to de-
scribe workflow-based Grid applications. IRL will be
extended to allow the specification of more complex in-
strumentation requests, e.g. deactivating and removing
instrumentation. With the recently-announced support
of WSRF [16] under Globus, we will port SCALEA-G
to WSRF environment.

Acknowledgments

This research is partly supported by the Austrian Sci-
ence Fund as part of the Aurora Project under contract
SFBF1104 and by the IST APART Working Group
on Automatic Performance Analysis under contract EP
29488.

References

[1] Postgresql 7.1.2. http://www.postgresql.org/docs/.
[2] Sleepcat Berkeley DB, http://www.sleepycat.com.
[3] B. Tierney et al., A Grid Monitoring Architecture. Techni-

cal report, Performance Working Group, Grid Forum, Jan-
uary 2002, http://www-didc.lbl.gov/GGF-PERF/GMA-WG/
papers/GWD-GP-16-2.pdf.

[4] M. Baker and G. Smith, GridRM: An Extensible Resource
Management System, in: Proceedings of IEEE International
Conference on Cluster Computing (CLUSTER’03), Hong
Kong, December 01-04 2003. IEEE Computer Society Press,
pp. 207–215.

[5] Z. Balaton, P. Kacsuk, N. Podhorszki and F. Vajda, From
Cluster Monitoring to Grid Monitoring Based on GRM, in:
Proceedings. 7th EuroPar’2001 Parallel Processings, Manch-
ester, UK, 2001, pp. 874–881.

[6] B. Balis, M. Bubak, W. Funika, T. Szepieniec and R.
Wismüller, An infrastructure for Grid application monitoring,
LNCS 2474(2002), 41–49.

[7] M. Bubak, W. Funika and R. Wismüller, The CrossGrid per-
formance analysis tool for interactive Grid applications, LNCS
2474(2002), 50–60.

[8] B. Buck and J.K. Hollingsworth, An API for Runtime Code
Patching, The International Journal of High Performance
Computing Applications 14(4) (Winter 2000), 317–329.

[9] K. Czajkowski, S. Fitzgerald, I. Foster and C. Kesselman,
Grid Information Services for Distributed Resource Sharing,
in: Proceedings of the 10th IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10), IEEE
Press, August 2001.

[10] L. DeRose, T. Hoover Jr. and J. Hollingsworth, The dynamic
probe class library: An infrastucture for developing instru-
mentation for performance tools, in: Proceedings of the 15th
International Parallel and Distributed Processing Symposium
(IPDPS-01), Los Alamitos, CA, April 23–27 2001, pp. 66–66,
IEEE Computer Society.

[11] Discovery and Monitoring Event Description (DAMED)
Working Group, http://www-didc.lbl.gov/damed/.

[12] A. Cooke et al., R-GMA An Information Integration System for
Grid Monitoring, in: Proceedings of 11th International Con-
ference on Cooperative Information Systems (CoopIS 2003),
Sicily, Italy, 3–7 November 2003.

[13] T. Fahringer, M. Gerndt, B. Mohr, M. Schulz, C. Seragiotto
and H.-L. Truong, Monitoring and Instrumentation Requests
for Fortran, Java, C and C++ Programs, APART Working
group (http://www.kfa-juelich.de/apart/), Work in progress,
August 2004.

[14] T. Fahringer, M. Gerndt, B. Mohr, M. Schulz, C. Seragiotto
and H.-L. Truong, Standardized Intermediate Representation
for Fortran, Java, C and C++ Programs, APART Working
group (http://www.kfa-juelich.de/apart/), Work in progress,
August 2004.

[15] I. Foster, C. Kesselman, J. Nick and S. Tuecke, Grid Services
for Distributed System Integration, IEEE Computer (June
2002), 37–46.

[16] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D.
Ferguson, F. Leymann, M. Nally, T. Storey, W. Vambenepe
and S. Weerawarana, Modeling Stateful Resources with Web
Services. Specification, Globus Alliance, Argonne National
Laboratory, IBM, USC ISI, Hewle tt-Packard, January 2004.

[17] M. Gerndt, R. Wismueller, Z. Balaton, G. Gombas, P. Kac-
suk, Z. Nemeth, N. Podhorszki, H.-L. Truong, T. Fahringer,
M. Bubak, E. Laure and T. Margalef, Performance Tools
for the Grid: State of the Art and Future. Technical re-
port, Research Report Series, Lehrstuhl fuer Rechnertechnik
und Rechnerorganisation (LRR-TUM) Technische Universi-
taet Muenchen, (Vol. 30), Shaker Verlag, ISBN 3-8322-2413-
0, 2004.

[18] GGF Network Measurements Working Group, http://forge.
gridforum.org/projects/nm-wg/.

[19] Global Grid Forum, http://www.gridforum.org/.

H.-L. Truong and T. Fahringer / SCALEA-G: A unified monitoring and performance analysis system for the grid 237

[20] Globus Project, http://www.globus.org.
[21] gSOAP: C/C++ Web Services and Clients. http://www.cs.fsu.

edu/engelen/soap.html.
[22] G. Laszewski, I. Foster, J. Gawor and P. Lane, A java com-

modity grid kit, Concurrency and Computation: Practice and
Experience 13(643–662) (2001).

[23] M.L. Massie, B.N. Chun and D.E. Culler, The Ganglia Dis-
tributed Monitoring System: Design, Implementation, and
Experience, Parallel Computing (May 2004).

[24] Paradyn Parallel Performance Tools, http://www.cs.wisc.edu/
paradyn/.

[25] H.-L. Truong and T. Fahringer, SCALEA: A Performance
Analysis Tool for Parallel Programs, Concurrency and Com-
putation: Practice and Experience 15(11–12) (2003), 1001–
1025.

[26] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Cza-
jkowski, J. Gawor, C. Kesselman, S. Meder, L. Pearlman and
S. Tuecke, Security for Grid Services, in: 12th IEEE Inter-
national Symposium on High Performance Distributed Com-
puting (HPDC’03), Seattle, Washington, June 22–24 2003,
pp. 48–57.

[27] R. Wolski, N. Spring and J. Hayes, The Network Weather Ser-
vice: A Distributed Resource Performance Forecasting Ser-
vice for Metacomputing, Future Generation Computing Sys-
tems 15 (1999), 757–768.

[28] XML Path Language, http://www.w3.org/tr/xpath.html.
[29] XML Schema, http://www.w3.org/xml/schema.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

