
Scientific Programming 12 (2004) 91–100 91
IOS Press

Graph transformation and designing parallel
sparse matrix algorithms beyond data
dependence analysis

H.X. Lin
Delft Institute of Applied Mathematics (DIAM), Delft University of Technology, 2628 CD, Delft, The Netherlands
E-mail: H.X.Lin@ewi.tudelft.nl

Abstract. Algorithms are often parallelized based on data dependence analysis manually or by means of parallel compilers. Some
vector/matrix computations such as the matrix-vector products with simple data dependence structures (data parallelism) can
be easily parallelized. For problems with more complicated data dependence structures, parallelization is less straightforward.
The data dependence graph is a powerful means for designing and analyzing parallel algorithms. However, for sparse matrix
computations, parallelization based on solely exploiting the existing parallelism in an algorithm does not always give satisfactory
results. For example, the conventional Gaussian elimination algorithm for the solution of a tri-diagonal system is inherently
sequential, so algorithms specially for parallel computation has to be designed. After briefly reviewing different parallelization
approaches, a powerful graph formalism for designing parallel algorithms is introduced. This formalism will be discussed using a
tri-diagonal system as an example. Its application to general matrix computations is also discussed. Its power in designing parallel
algorithms beyond the ability of data dependence analysis is shown by means of a new algorithm called ACER (Alternating
Cyclic Elimination and Reduction algorithm).

Keywords: Parallel matrix algorithm, graph transformation, unifying graph model

1. Introduction

Efficient parallelization of a computational problem
requires resolving the tradeoffs between maximal load
balance and minimal communication overhead. The
fundamental factor limiting load balance is the paral-
lelism in an algorithm. Communication costs can of-
ten be reduced by increasing data locality through ap-
propriate partitioning of data and computations. In
this paper we will focus on how to introduce paral-
lelism. Because it is known that the conventional Gaus-
sian elimination process for the tri-diagonal system has
very little parallelism, so the problem of solving a tri-
diagonal system of linear equations is a good example
for demonstrating the power of the graph formalism.

Several parallelization approaches can be distin-
guished which deal with from simple to more compli-
cated data dependence structures. 1. In the data paral-
lel approach, the result data are partitioned into groups

and each processor is responsible for the computation
associated with a single group of the result. These
groups can be computed in parallel (independent from
the results of each other). 2. For problems with more
complicated data dependence relations, some analysis
has to be performed to detect the parallelism in the al-
gorithm. Note that without giving a formal definition
we roughly distinguish an algorithm and a program by
that an algorithm has only data dependence (i.e. (input)
data availability) as concerns and whereas a program
may have additional dependency (e.g. due to the use of
intermediate variables). We will focus on algorithms
with ‘pure’ data dependences and are not concerned
with output dependence, anti-dependence and loop ex-
change etc. (see Kuck et al. [6]). In general, parallel
compilers analyze the different type of dependences,
and try to reduce or eliminate the output dependence
or anti-dependence by performing some transforma-
tion on a given program (e.g. [14,17]). However, the

ISSN 1058-9244/04/$17.00  2004 – IOS Press and the authors. All rights reserved

92 H.X. Lin / Graph transformation and designing parallel sparse matrix algorithms

‘pure’ data dependence in the program must be obeyed
and therefore transformation techniques of the parallel
compilers cannot increase parallelism constrained by
the data dependence in a given program. 3. The afore-
mentioned two approaches are based on exploiting the
existing parallelism (i.e. allowed by data dependence)
in a given algorithm. Sometimes it is advantageous
or even necessary to modify the algorithm in order to
obtain an efficient parallelization. An example is the
factorization of sparse matrix. Often an ordering for
the elimination sequence is first determined on the so-
called elimination graph. An elimination of a node in
this undirected graph corresponds to the elimination of
an entire column below the main-diagonal of the ma-
trix. The elimination graph is widely applied in order-
ing for both minimizing the number of fill-ins and for
parallelism in the matrix factorization process.

Graph models have been used for parallel algorithms
and for sparse matrix computations. The acyclic di-
rected graph (DAG) is often used to represent the data
dependences between the operations in a (parallel) al-
gorithm. A (directed) edge (a, b) represents the input-
output data dependence among operation a and b. Both
potentials and restrictions on parallelism can be ana-
lyzed with the DAG. The difference between the DAG
and the elimination graph lies in that the DAG repre-
sents an algorithm whereas the elimination graph rep-
resents the factorization problem. Different orderings
(of the elimination graph) correspond to different algo-
rithms.

Recently, we have introduced a more general graph
formalism for sparse matrix computations [10,11]
which uses a directed graph and the basic operation is
the elimination of one edge (in contrast to the elimina-
tion of a node with all the edges incident on it in the
conventional elimination graph). It is based on the con-
cept of viewing a sparse matrix computation problem
as a graph transformation problem: the initial graph
representing the initial matrix is transformed into a ter-
minal configuration representing the desired final ma-
trix form (e.g., a triangular matrix, or a diagonal ma-
trix, etc.). The transformations are governed by a set of
rules which prescribe the transformed graph is equiv-
alent with the initial graph. Similarly additional rules
can be defined to determine which operations can be
done in parallel.

It is shown that the common elimination operations
and factorization operations are special cases of graph
transformations in our formalism. The power of the
formalism is demonstrated by applying it to a number
of known parallel algorithms for tridiagonal systems,

such as the cyclic reduction, the recursive doubling, the
block partitioned elimination algorithms, and the block
partitioned (Cholesky) factorization algorithms. The
presented formalism not only provides us a systematic
way to describe existing parallel algorithms, but also a
means to design and optimize them.

In Section 2, we will first describe the relationship
between elimination operations and graph transforma-
tions, and introduce the graph framework for analyzing
and designing parallel matrix algorithms. In Section 3,
we show that a number of known parallel algorithms
can be unified by the framework. We also show how
to use the framework for generating parallel algorithms
with a certain desired property. Section 4 describes a
new class of parallel algorithms for tri-diagonal matri-
ces, and Section 5 concludes the paper.

2. Gaussian elimination and graphs

First, we review the relationship between graph
transformation and Gaussian elimination for a general
matrix. Then, we proceed to discuss the basic relations
between parallel elimination of edges and fill-ins. A
number of properties of graph transformation and par-
allel elimination will be investigated. These form the
basis for defining the selection, elimination and update
operations which are used to transform an initial graph
into a graph with the required property.

The finite-difference and finite-element grids are
graphs which often naturally correspond to the coeffi-
cient matrix of the linear system of equations. Many
researches have been done to minimize the number of
fill-ins.

In [15] Parter has introduced the use of graphs
for determining fill-ins1 in a sparse matrix during the
Gaussian elimination. He studied the relationship be-
tween a non-zero in the matrix and the addition of
an edge in the adjacency graph. An adjacency graph
or elimination graph associated with matrix A is an
undirected graph with the set of edges defined as
E = {(i, j) | a(i, j) �= 0 or a(j, i) �= 0}. Note that we
use the term edge and arc for undirected respectively
directed connections between two nodes.

It is shown that the elimination of a variable i only
changes the coefficients a(k, j) in the matrix if and
only if there exist a pair of edges (k, i) and (i, j) [15].

1A fill-in is a coefficient which is zero in the original A, but
become nonzero during the elimination/factorization.

H.X. Lin / Graph transformation and designing parallel sparse matrix algorithms 93

That means for a sparse matrix the modification in co-
efficients is local. Since a fill-in during the elimination
or factorization corresponds to the addition of a new
edge in the elimination graph, so minimizing fill-ins is
the same as minimizing the number of additional new
edges in the elimination graph. This property is often
used in determining an ordering with minimum number
of fill-ins for a sparse symmetric matrix [2,3,18].

With respect to parallel elimination, an important
fact is that two non-adjacent nodes in an elimination
graph can be eliminated independently. A proof of this
for symmetric matrices (corresponding to an undirected
graph) can be found in [8]. Peters [16] has studied the
parallel pivoting algorithms for sparse symmetric ma-
trices. He noted that given an ordering (i.e., elimina-
tion sequence), two pivots i and j can be eliminated in
parallel if there does not exist any path between them
which comprises of solely nodes ordered before i and
j. He described implementation procedures to exploit
the parallelism in the pivoting process. A self-ordering
procedure is also presented in [16] which does not as-
sume an a priori ordering of the matrix or graph. At an
elimination step, two nodes in the (remaining) elimina-
tion graph can be eliminated in parallel if they are not
adjacent. In [8] Lin studied the use of quotient elimi-
nation graphs for parallel factorization of block struc-
tured sparse matrices obtained from domain decompo-
sition of finite element meshes. His work is concerned
with coarse-grain block parallelism in contrast to the
single node pivoting. These aforementioned researches
deal with sparse symmetric matrices and undirected
graphs. It is sufficient for the problem of applying stan-
dard Gaussian elimination or to compute the Cholesky
factorization, in which we eliminate the matrix coeffi-
cients below the diagonal one column at a time. This
corresponds to eliminating a node and all the edges
connected to it from the elimination graph.

The undirected elimination graph has been success-
fully used for minimizing fill-ins in sequential solution
(e.g. [2,3]) and parallel factorization of sparse symmet-
ric matrices. However, it cannot describe many op-
erations in a parallel matrix algorithm. For instance
the recursive doubling algorithm [19] and the partition
method [20] cannot be described in terms of eliminat-
ing each column or row exactly once during the elim-
ination process. In the partition method some rows or
columns are modified several times. Unlike in Gaus-
sian elimination or LU-factorization the final form is
here not an upper triangular matrix. Therefore, we use
directed graphs in our framework. In order to obtain
the required high flexibility we study the parallelism in

eliminating an arc (j, i) associated with a(j, i) using
a(i, i) instead of eliminating an entire column i. Note
that we don’t assume i > j or j > i here, i.e., we
don’t assume any pre-determined elimination ordering.
We consider the elimination of an arc as an operation
which can be performed in any order or even repeat-
edly. Throughout the paper, we ignore numerical can-
cellations when considering fill-ins and fill-arcs during
an elimination process. An non-zero is thus a logical
non-zero and an accidental numerical cancellation is
not considered as a zero coefficient.

Given an n × n matrix A, a corresponding directed
graph G(V, E) is defined as a graph with the set of
nodes V = {1, 2, . . . , n} and the set of arcs E =
{(i, j) | a(i, j) �= 0, i ∈ V ∧ j ∈ V }. Arc (i, j) is
said to have a begin node i and end (or terminal) node
j. (i, j) is an outgoing arc from i, and an incoming
arc to j. The set of predecessors and successors of
node i are denoted by PRED(i) and SUCC(i). As
a convention, in this paper we define that the node i is
never a predecessor or successor of itself.

Theorem 1. Consider the elimination of arc (i, j) using
node j, arc (i, k) exists if and only if (i, k) or (j, k)
exists before the elimination. �

Proof. Elimination of arc (i, j) corresponds to using
row j to eliminate the entry a(i, j) in the matrix. This
means adding− a(i,j)

a(j,j) ·(row j) to (row i), which yields

anew(i, k) = a(i, k)− a(i,j)
a(j,j) ·a(j, k). Because a(i,j)

a(j,j) �=
0, so anew(i, k) �= 0 if and only if a(i, k) �= 0 or
a(j, k) �= 0. QED.

The graph corresponding to a tridiagonal matrix is a
bidirectional linear chain (Fig. 1 a). The standard Gaus-
sian elimination algorithm eliminates edge (k + 1, k),
k = 1, 2, . . . , n − 1, at step k during the (forwards)
elimination process. After the (forwards) elimination,
a graph with a path starting from node n, through n−1,
. . . , to node 1 results (Fig. 1 b). In this graph there are
only edges (i, j) with i = j or j = i + 1, this corre-
sponds to an upper triangular bidiagonal matrix. The
unknowns can now thus be computed through back-
substitution, starting from n, through n − 1, . . . , to
1. This results in a graph of n disconnected nodes
(which corresponds to a diagonal matrix). Notice that
the standard Gaussian elimination process is inherently
sequential, only one arc at a time is eliminated.

The corresponding numerical operations on the ma-
trix can be defined on this graphical representation. We
denote the coefficient a(i, j) as the weight of arc (i, j),

94 H.X. Lin / Graph transformation and designing parallel sparse matrix algorithms

1 n2 n-13

. . .

. . .

. . .

(a)

(b)

(c)

1 n2 n-13

Fig. 1. Graph transformations corresponding to the Gaussian elimi-
nation.

an non-existing arc is equivalent to an arc having zero
weight. The elimination of arc (i, j) will correspond to
the following operations in the graph:

– for each k ∈ SUCC(j): a(i, k) = a(i, k) −
a(i, j) ∗ a(j, k)/a(j, j). (Note that if a(i, k) was
0, i.e., arc (i, k) does not exist, then (i, k) is a
fill-arc).

– remove arc (i, j);

Since we are only interested in the parallelism and
the structure of the parallel operations in this paper, we
will omit the discussion of the numerical operation of
the coefficients. The weight of the arcs is also omit-
ted except that we define there is an arc when a(i, j)
is logically non-zero, and (i, j) does not exist when
a(i, j) = 0.

Lemma 1.1. The elimination of arc (i, j) results in arcs
(i, k) for all successors of j, i.e., after the elimination
we have (i, k) for each k ∈ SUCC(j). These are the
only modifications in the edge-connectivity as a result
of the elimination of (i, j). �

Lemma 1.1 follows straightforward from Theorem 1.
It states that a fill-arc (i, k) occurs when eliminating
arc (i, j) if and only if there is a path i → j → k,
and (i, k) does not exist before the elimination of (i, j).
Consequently the elimination of all incoming arcs to
node i will result in all predecessors of i connected to
all successors of i. The elimination of all outgoing arcs
(i, j) from node i, result in node i become connected
to all nodes in SUCC(j) for each j ∈ SUCC(i). In
matrix terminology, the elimination of all incoming and
outgoing arcs of node i corresponds to the elimination

2

1 3

4

Fig. 2. An example graph.

of all off-diagonal non-zeros of column i and row i re-
spectively. Lemma 1.1 also tells us the so-called ’path-
conservation’ principle of the transformation: if k1 and
k2 are connected then k1 and k2 remains connected
when an arbitrary arc (i, j) in the graph is eliminated
provided that (k1, k2) �= (i, j).

Lemma 1.2. Parallel elimination of (i1, j1) and
(i2, j2) is successful if and only if

1. i1 �= i2; or
2. i1 = i2 and j1 is not in SUCC(j2) and j2 not in

SUCC(j1). �

Lemma 1.2 can be proved directly using Theorem 1.
We define a parallel elimination step as the elimination
of a set of arcs which can be eliminated independently.
A parallel elimination of two arcs is said to be success-
ful if they are both eliminated after the parallel elimi-
nation step. This is of course not always possible be-
cause the elimination of the arc (i2, j2) may cause the
return of (i1, j1) (although now with another value of
a(i1, j1)), and vice versa. Lemma 1.2 tells us that par-
allel eliminations of two arcs initiating from the same
begin node can only be successful if there is no arc
between the terminal nodes of these two arcs. Take for
example Fig. 2, the set of arcs {(1,2), (2,1), (2,3), (3,2),
(4,3)} can be successfully eliminated in parallel, but the
pair (1,2) and (1,4) cannot be eliminated in parallel. 2

This conclusion can easily be extended to a set of arcs.
Consider a directed graph G(V, E) associated with

an n × n matrix. An algorithm which determines the
parallel elimination of arcs in G until all nodes become
isolated is given in Algorithm 1. The elimination of
the arcs in each set S(k) comprises one elimination

2they can be eliminated in the order of first (1,4) and then (1,2),
but not first (1,2) followed by (1,4), in the latter case the arc (1,2)
will return.

H.X. Lin / Graph transformation and designing parallel sparse matrix algorithms 95

Initialize G(V, E) with V = {1, 2, ..., n} and
E = {(i, i + 1)|i = 1, ..., n − 1}

{(i, i − 1)|i = 2, ..., n};
k = 1;
WHILE E =/ 0 DO

SELECT all possible arcs S(k) for parallel
elimination (Lemma 1.2);

ELIMINATE S(k) from E;
UPDATE E according to Lemma 1.1;
k = k + 1;

END

/

Fig. 3. Algorithm 1 – A greedy algorithm for parallel elimination.

1 3 72 4 5 6

(b)

(a)

(c)

(d)

Fig. 4. Application of Algorithm 1 to a bi-diagonal system leads to
the recursive doubling scheme.

step. Note that other possible end conditions are: each
node in the graph has only either outgoing or incoming
arcs, the remaining graph forms a single or multiple
spanning tree(s). This is a fundamental difference from
the case of undirected graphs where the end configu-
ration is always a triangular matrix (corresponding to
all nodes are eliminated from the elimination graph).
Another fundamental difference between the presented
directed graph model and the conventional undirected
graph is that in case of a directed graph model a parallel
elimination step is generally not divisible into two or
more equivalent sub-steps (as will be discussed later in
the section about update conflicts).

The key is the Selection operation. Algorithm 1 is a
greedy algorithm in which at each parallel elimination
step as many as possible arcs are selected for parallel
elimination. Figure 4 shows that the application of the
greedy algorithm to a bi-diagonal system of equations
(linear recurrence) resulting in a parallel algorithm
which is the known recursive doubling algorithm [19]

1 3 72 4 5 6 8

(b)

(a)

(c)

(d)

Fig. 5. Illustration of applying Algorithm 1 to a tridiagonal system.

for first order linear recurrence. At the first elimination
step, all arcs (i + 1, i) for i = 1, 2, . . . , (n − 1) can
be eliminated in parallel. According to Lemma 1.1 the
elimination of (i + 1, i) causes a fill-arc (i + 1, i − 1).
In the second elimination step, all arcs (i + 1, i − 1)
are eliminated in parallel and fill-arcs (i + 1, i − 3)
are added. In general, at elimination step k, all arcs
(i + 1, i− 2k−1 + 1) are eliminated in parallel and fill-
arcs (i + 1, i− 2k + 1) are added. This is exactly what
the recursive doubling algorithm does for a bidiagonal
system.

Figure 5 shows the results of applying the algorithm
to an example. Compared to the cyclic reduction al-
gorithm, it can be observed that the number of parallel
elimination steps achieved with the greedy algorithm
is smaller. As we will show later on the time com-
plexity of this greedy algorithm is 6 log2(n) + 1 ver-
sus 11 log2(n)− 11 for the cyclic reduction algorithm.
However, in some of the steps the elimination of sev-
eral arcs initiating from the same node causes update
conflict. A parallel update conflict occurs when the
same coefficient is modified/updated more than once
in a parallel elimination step. For example, the elimi-
nation of the pair of arcs (2,1) and (2,3) in Fig. 2 has
conflict in the update of the coefficient a(2, 2).

The next theorem states the conditions when the par-
allel elimination of arcs (i1, j1) and (i2, j2) is free of
update conflict.

Theorem 2. The elimination of arcs (i1, j1) and
(i2, j2) are free of update conflict if

1. i1 �= i2; or
2. if i1 = i2 and SUCC(j1) ∩ SUCC(j2) = ∅. �

Proof. According to Lemma 1.1 the only entries which
are modified as a result of the elimination of the arcs

96 H.X. Lin / Graph transformation and designing parallel sparse matrix algorithms

(i1, j1) and (i2, j2) are the entries associated with the
arcs in the sets S1 = {(i1, k) | k ∈ SUCC(j1)}
and S2 = {(i2, l) | l ∈ SUCC(j2)} respectively.
Therefore an entry (i, j) is updated more than once
only if (i, j) ∈ S1 and (i, j) ∈ S2. This means, the
elimination of the arcs (i1, j1) and (i2, j2) is free of
update conflict if and only if S1 ∩ S2 = ∅. 1. If
i1 �= i2 then S1 ∩ S2 = ∅; and 2. When SUCC(j1) ∩
SUCC(j2) is empty, so is the set S1 ∩ S2. QED.

If we require in each parallel elimination step the
elimination of arcs to be free of update conflict, we
can add the above update conflict test in the selection
operation of Algorithm 1. That is “SELECT a set of
arcs S(k) where for each pair (i1, j1) and (i2, j2) in
the set the conditions of Lemma 1.2 and Theorem 2
are satisfied”. Applied with this modification to the
example in Fig. 5, the result of parallel eliminations free
of update conflict is shown in Fig. 6. It can be observed
that the number of elimination steps is increased to 5
in Fig. 6 compared to 3 in Fig. 5. However, there are
update conflicts in the first two steps in Fig. 5 which
implies a larger parallel execution time in these two
steps. Furthermore, we observe that by simply split
the first step of the algorithm in Fig. 5 into two sub-
steps without update conflict, e.g., first eliminate all
arcs (i, i+1) and then all arcs (i, i−1), will result into
a totally different (in this case unfavorable) algorithm.
In general, a splitting of a parallel elimination step
into more sub-steps will result in a different parallel
algorithm. This is essentially different from the case of
parallel factorization of a symmetric matrix modeled
using undirected graphs (e.g. [8]), where the split of a
parallel factorization step into several (sequential) sub-
steps results in the same algorithm (i.e., fill-ins and
update operations are unchanged).

The tests of parallel elimination (Lemma 1.2) and the
test of update conflict (Theorem 2) can be simplified
by allowing each node being an initiating node at most
once in a single parallel elimination step. Furthermore,
additional conditions in selecting arcs for parallel elim-
ination is sometimes preferred or required. Such ad-
ditional conditions can limit the number of fill-arcs, or
requiring the total number of fill-arcs must be smaller
than the number of arcs being eliminated in each step
(the latter is to ensure the finiteness of the elimina-
tion process). Additional conditions or heuristics in
the selection can also be used for more regularity and
control on the parallelism. In fact many of the known
parallel algorithms in literature corresponds to apply-
ing a certain heuristics or imposing some structure in
the elimination process. The general algorithm can be

1 2 3 4 5 76 8

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6. A parallel elimination scheme free of update conflict.

described as consisting of three basic type of opera-
tions: 1. partition; 2. selection; and 3. elimination and
update.

3. Application to (existing) parallel tri-diagonal
algorithms

The solution of tri-diagonal systems occurs in many
engineering and scientific computer applications, for
instance, it is often a part of the solution process in
numerical simulation of PDEs using finite difference or
finite element discretization. On the other hand, when
standard Gaussian elimination method is applied to a
(pre-ordered) tri-diagonal matrix, the computation is
inherently sequential. That is why it has inspired many
researchers to study parallel algorithms for solving this
problem (in the past three decades more than 200 jour-
nal papers have been published on this problem, e.g.,
see an online list of literatures [1]).

Because of the serial data dependence in the stan-
dard Gaussian elimination/factorization process pro-
hibits any parallelization, different algorithms are de-
signed which trade doing extra arithmetic operations
for a higher degree of parallelism. Such trade-off is
typical in designing parallel algorithms for problems
whose efficient parallelization are not straight-forward.
The solution of tri-diagonal system is such a problem
that ideally shows the trade-off considerations in de-
signing algorithms for not so straight-forward or hard
to parallelize problems.

H.X. Lin / Graph transformation and designing parallel sparse matrix algorithms 97

As we have mentioned that during the last four
decades a large variety of parallel algorithms for the
solution of tri-diagonal systems have been proposed,
some well known examples are: the cyclic reduction
(CR) algorithm [4,7], the cyclic elimination (CE), the
recursive doubling algorithm [19], the block partitioned
elimination algorithms [5,13,20], and the block por-
tioned (Cholesky) factorization algorithms [9]. These
and other algorithms are designed in an ingenious
way and by different researchers in parallel computing
through the years. The different approaches are often
presented in a different way like partition of rows or
columns of the matrix, index permutation and elimina-
tion tree, etc. In this section we use the graph frame-
work to describe several known examples of parallel
algorithms for tri-diagonal systems in a unified way.

3.1. The cyclic reduction (CR) algorithm

Let the dimension of the matrix be n = 2k − 1.
Consider a set of three consecutive equations, centered
around i = 2, 4, 6, 8, . . . , n − 2. The basic idea of
this type of algorithm [4] is to use the odd numbered
equations, i.e., equations (i − 1) and (i + 1) to cancel
the variable xi−1 and xi+1 in the i-th equation, result-
ing in (n+1

2 − 1) equations with only even numbered
variables. This is described in the following.

a
(0)
i−1,i−2xi−2+a

(0)
i−1,i−1xi−1+a

(0)
i−1,ixi =b

(0)
i−1(1)

a
(0)
i,i−1xi−1 + a

(0)
i,i xi + a

(0)
i,i+1xi+1 = b

(0)
i (2)

a
(0)
i+1,ixi+a

(0)
i+1,i+1xi+1+a

(0)
i+1,i+2xi+2 =b

(0)
i+1 (3)

Multiplying Eqs. (1) and (3) with −ai,i−1/ai−1,i−1

and −ai,i+1/ai+1,i+1 respectively, and adding them to
Eq. (2), we eliminate the variables xi−1 and xi+1 from
Eq. (2), resulting in

a
(1)
i,i−2xi−2 + a

(1)
i,i xi + a

(1)
i,i+2xi+2 = b

(1)
i (4)

The CR algorithm consists of two phases: (I) the
reduction phase, during which selective elimination of
variables is done; and (II) the back-substitution phase,
during which the values of the eliminated x i’s are re-
covered.

Using the framework, we can now generate the CR
algorithm as shown in Fig. 7. The parallel elimination
proceeds by starting with the elimination of all arcs
initiated from even numbered nodes in the first step,
followed by repeatedly eliminates the set of arcs initi-
ated at even numbered nodes with a distance of 2k−1

to the end node at step k (they are independent from
each other). Figure 8 illustrates the different elimina-
tion steps in the reduction- and back substitution phase
of the reduction algorithm.

/* reduction phase */
FOR m = 1 TO log2(n + 1) − 1 DO

h = 2m−1

SELECT S(m) = {(2ih, 2ih − h), (2ih, 2ih + h) |
i = 1, ..., (n+1

2h − 1)}
for parallel elimination;
ELIMINATE the arcs in S(m) from the graph;
UPDATE: add ll-arcs {(2ih, 2ih − 2h),

(2ih, 2ih + 2h) | i = 1, ..., (n+1
2h − 1)};

END
/* back substitution phase */
FOR m = log2(n + 1) − 1 TO 1 DO

h = 2m−1;
SELECT S(2log2(n + 1) − m − 1) = {(2ih + h, 2ih),

(2ih − h, 2ih) | i = 1, ..., (n+1
2h − 1)};

ELIMINATE arcs in S(2log2(n + 1) − m − 1) from graph;
UPDATE: there are no ll-arcs;

END

Fig. 7. Algorithm 2 – The CR algorithm in terms of the framework.

1 3 72 4 5 6

(b)

(a)

(c)

(d)

(e)

Fig. 8. Illustration of the graph transformation process corresponding
to the CR algorithm. (b)-(c): the reduction phase; (d)-(e): the
back-substitution phase.

3.2. The cyclic elimination (CE) algorithm

The CE algorithm repeatedly eliminates the arcs
(i, i + h) and (i, i − h) with h = 2m−1 at step m.
This algorithm can be directly generated by the greedy
algorithm (Fig. 3), the graphical illustration of the CE
algorithm is shown in Fig. 5. The CE algorithm re-
duces the tridiagonal system to a diagonal system in
log2(n) elimination steps each consisting of 6 floating-
point executions (assume that update of all non-zero
coefficients are executed in parallel). So the parallel
time complexity of the CE is 6 log2(n) + 1 (the last

98 H.X. Lin / Graph transformation and designing parallel sparse matrix algorithms

/* reduction phase */
FOR r = 1 TO logl((n + 1) /2) DO

h1 = lr −1

/* conform cyclic elimination */
FOR q = 1 TO m1 DO

h2 = 2q−1;
SELECT S(q + (m1 + 1)(r − 1)) =

{((i − 1)lh1 + jh1, (i − 1)lh1 + jh1 + h1h2),
((i − 1)lh1 + jh1 + h1h2, (i − 1)lh1 + jh1)
|i = 1, ..., (n + 1) / (lh1), j = 1, ..., l − 1 − h2}
for parallel elimination;

ELIMINATE arcs in S(q + (m1 + 1)(r − 1)) from graph;
UPDATE: add ll-arcs

{((i − 1)lh1 + jh1, (i − 1)lh1 + jh1 + 2h1h2)
|i = 1, ..., (n + 1) / (lh1), j = 1, ..., l − 1 − 2h2}

{((i − 1)lh1 + jh1 + h1h2, (i − 1)lh1 + jh1 − h1h2)
|i = 1, ..., (n + 1) / (lh1), j = 1 + h2, ..., l − 1 − h2};

END
/* conform cyclic reduction */
SELECT S((m1 + 1)r) = {(ilh1, ilh1 − h1),

(ilh1, ilh1 + h1) |i = 1, ..., (n + 1) / (lh1) − 1}
for parallel elimination;

ELIMINATE arcs in S((m1 + 1)r) from the graph;
UPDATE: add ll-arcs {(ilh1, ilh1 − lh1),

(ilh1, ilh1 + lh1), |i = 1, ..., (n + 1) / (lh1) − 1};
END
/* back substitution phase */
FOR r = logl((n + 1) /2) TO 1 DO

v = lr −1;
SELECT S((m1 + 2)logl((n + 1) /2) − r + 1) =

{(ilv + jv, ilv), (ilv − jv, ilv), |i = 1, ...,
(n + 1) / (lv) − 1, j = 1, ..., l − 1}
for parallel elimination;

ELIMINATE arcs S((m1 + 2)logl ((n + 1) /2) − r + 1)
from the graph;

UPDATE: there are no ll-arcs;
END

Fig. 9. Algorithm 3 – The ACER algorithm. n = 2lk − 1,
l = 2, 3, . . ., k = 1, 2, . . ., and m1 = �log2(l − 1)�.

division by the diagonal to obtain the solution vector
takes 1 time unit). The time complexity is smaller
than the CR algorithm which has a time complexity of
11 log2(n) − 11. The price to be paid is the additional
fill-arcs and thus a larger total number of floating point
operations (when counted sequentially).

3.3. The recursive doubling algorithm

The CR and CE algorithms are based on the princi-
ple of Gaussian elimination, whereas the recursive dou-
bling [19] and block Cholesky factorization algorithm
in [9] are based on the principle of first factorizing the

matrix A into a product of a lower triangular matrix
and an upper triangular matrix with unit diagonals.

The recursive doubling algorithm computes the LU-
factorization of a tridiagonal matrix. The computation
of the factors is equivalent to a pair of linear recurrence
equations (see e.g. [19]), and the computation of these
linear recurrences can be performed in the same way
as for the bidiagonal system discussed in the previous
section (Fig. 4). The twisted factorization corresponds
to the elimination of outgoing arcs from node 1 to node
n/2, and incoming arcs from node n to node n/2. This
algorithm can be generated by adding the constraints
of no-fill during the parallel elimination/factorization
to the selection operation.

4. The ACER algorithms

In this section we describe a class of new algorithms,
called ACER (Alternating Cyclic Elimination and Re-
duction algorithm) [12], which combines the advan-
tages of the well known CE and CR algorithm.

As we have observed in the previous sections, the
CE algorithm uses a greedy approach in eliminating the
arcs in parallel which has a smaller time complexity of
4 log2(n) + 1 compared to 8 log2(n + 1) − 8 for the
CR algorithm. When we look at the total number of
floating point operations or the number of fill-arcs, we
see that the number of fill-arcs for the CR algorithm is
2(n − 1) − 4 log2(

n+1
2) which is much smaller than

2n · log2(n)−4n+4 for the CE algorithm. This brings
us to the idea of combining the advantages of these two
algorithms.

Using the graph framework we can easily visual-
ize and study the different variants of parallel elimina-
tion algorithms, and that results in an ACER algorithm
which performs alternating CR and CE until the entire
matrix system is solved. Like the CR algorithm, the
ACER algorithm comprises a reduction and a back-
substitution phase, each consisting of k parallel elimi-
nation steps. However, unlike the CR algorithm, each
of these k steps in the reduction phase again consists
of one or more sub-steps: each step consists of zero
or more CE sub-steps, followed by one single CR sub-
step at the end. In following the two phases will be de-
scribed in detail using the graph notations. But before
doing so, first some notations of sets of nodes or arcs
are introduced.

Figure 9 describes the ACER algorithm in terms of
graph transformations using the framework.

H.X. Lin / Graph transformation and designing parallel sparse matrix algorithms 99

Fig. 10. Illustration of the ACER-3 algorithm (l = 3) for n = 17 (k = 2). (a)→(e): the reduction phase; (e)→(g): the back-substitution phase.

The ACER algorithm in Fig. 9 contains logl
(n+1)

2
reduction phases, l is the basic partition size of the
matrix where the cyclic elimination process is applied.
Within each reduction phase t, cyclic eliminations are
performed for the partitions (sub-matrices) of h1 =
lt−1 rows, followed by a single reduction step at the end
of each phase. Figure 10 shows an example of ACER
algorithm l = 3 for n = 17 and k = 2. Notice that the
ACER algorithm is flexible in taking the values of the
matrix dimension n, which can be n = 2lk − 1 with
l = 2, 3, . . . and k = 1, 2, 3, This is in contrast to
the limited values for both the CE (n = 2k) and CR
(n = 2k − 1) algorithms. By choosing different base l,
we can obtain a variety of variants of ACER algorithms.
Notice that when l = 2, this special case of the ACER
algorithm is identical as the CE algorithm.

The time complexity of the ACER algorithm3 is

3If the update of a coefficient is calculated by only one processor
(instead of maximum parallelism)then the time complexity of the
ACER algorithm becomes (6m1 + 11 − 3 · 1[m1>0]) logl(

n+1
2

).

(4m1 + 8 − 1[m1>0]) logl(
n+1

2) and the number of

fill-ins is {2m1 − 2m1+1−4
l−1 }(n − 1) − 2l · logl(

n+1
2),

where m1 = �log2(l − 1)	 and l[m1>0] is an indica-
tor function, 1[m1>0] = 1 if m1 > 0; =0 otherwise.
Take for example l = 3, then the time complexity of
the ACER algorithm is approximately 6.9 log2(n + 1)
which is larger than 4 log2(n)+1 for the CE algorithm
but smaller than the time of 8 log2(

n+1
2) for the CR al-

gorithm. Comparing the number of fill-ins, the ACER
algorithm has approximately 2n + O(log l(n)) fill-ins
which is a factor of log2(n) smaller than the CE algo-
rithm and about the same as the CR algorithm. Thus
the ACER algorithms combine the advantages of the
CE and CR algorithms.

5. Concluding remarks

We have presented a general graph theoretic frame-
work which unifies many different parallel algorithms
for sparse matrix computations. The most significant

100 H.X. Lin / Graph transformation and designing parallel sparse matrix algorithms

of this framework based on graph transformation is that
it is able to introduce parallelism beyond the constraint
of the usual data dependence analysis. The framework
uses directed graphs instead of the traditional undi-
rected graphs which are not capable of describing many
known parallel algorithms. The results regarding the
property of parallel elimination of multiple arcs and
the test on the update conflict now enable us to design
different variants of parallel algorithms. An important
application of the framework is that it provides us with
a simple mechanism to optimize and modify the known
parallel algorithms. This makes not only the task of
manually designing a parallel algorithm simpler, but it
also provides us with a means to automatically generate
and optimize parallel algorithms.

Furthermore, although we have limited our discus-
sions to the example of a tri-diagonal matrix, the frame-
work can be easily extended to the other type of sparse
matrix computations. The theorems and lemmas are
also valid for general sparse matrices. The power
of the graph formalism lies in that we design paral-
lel algorithms beyond the ability of detecting paral-
lelism in an existing algorithm. We believe that simi-
lar frameworks can be defined for sparse matrix com-
putations other than the Gaussian-elimination and fac-
torization. We are currently studying the problems of
sparse eigenvalue algorithms through orthogalization
procedures. Different type of computations may have
different graph representations, for instance, elimina-
tion of an arc has different meaning for Gaussian elim-
ination and for Givens transformation. Therefore ex-
tending the framework to other sparse linear algebra
problems comprises defining the problem as a corre-
sponding graph transformation problem. A number of
problems needs to be further investigated. For exam-
ple, how to apply the graph framework in compliers for
automatically generating and optimizing parallel pro-
grams. This will give parallel compilers the ability to
introduce parallelism which is not possible with the ex-
isting transformation techniques on programs. Another
topic is to apply framework to analyze and minimize
the communication requirement.

References

[1] A Bibliography on Parallel Solution of Tri-diagonal Systems
of Equations. http://ta.twi.tudelft.nl/wagm/users/lin/Biblio/

tri sol.html.
[2] I.S. Duff, A.M. Erisman and J.K. Reid, Direct Methods for

Sparse Matrices, Clarendon Press, Oxford, 1986.
[3] A. George and J.W.H. Liu, Computer solution of large sparse

positive definite systems, Prentice-Hall, 1981.
[4] R.W. Hockney, A fast direct solution of Poisson’s equation

using Fourier analysis, Journal of ACM 12 (1965), 95–113.
[5] S.L. Johnsson, Solving tridiagonal systems on ensemble ar-

chitectures, SIAM J. Sci. Stat. Comput. 8 (1987), 354–392.
[6] D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure and M.

Wolfe, Dependence graphs and complier optimizations, Proc.
of the 8th ACM Symp. Principles of Programming Languages,
Williamsburg, VA, 1981.

[7] J.J. Lambiotte and R.G. Voigt, The solution of tridiagonal
linear systems on the CDC STAR-100 computer, ACM TOMS
1 (1975), 308–329.

[8] H.X. Lin, A methodology for the parallel direct solution of
finite element systems, Ph.D. thesis, Delft University of Tech-
nology, 1993.

[9] H.X. Lin and M.R.T. Roest, Parallel solution of symmetric
banded systems, in: Parallel Computing: Trends and Appli-
cations, G.R. Joubert, D. Trystram, F.J. Peters and D.J. Evans,
eds, Elsevier Science, 1994, pp. 537–540.

[10] H.X. Lin, A Unifying Graph Model for Designing Parallel
Algorithms For Tridiagonal Systems, Parallel Computing 27
(2001), 925–939.

[11] H.X. Lin, Designing parallel sparse matrix algorithms beyond
data dependence analysis, Proc. ICCP 2001, Workshop High
Performance Scientific Engineering Computing with Applica-
tions (Keynote), IEEE Computer Society Press, Valencia, Sept
3–7, 2001, pp. 7–13.

[12] H.X. Lin and J. Verkaik, ACER: alternating cyclic elimination
and reduction algorithm for the solution of tri-diagonal sys-
tems, Proc. of 2002 Int’l Symp. Distributed Computing and
Applications, Q.P. Guo et al., eds, Wuxi, China, December
16–18, 2002, pp. 17–21.

[13] U. Meijer, A parallel partition method for solving banded
systems of linear equations, Parallel Computing 2 (1985), 33–
43.

[14] M.F.P. O’Boyle and P.M.W. Knijnenburg, Integrating loop
and data transformations for global optimization, Journal of
Parallel and Distributed Computing 62 (2002), 563–590.

[15] S. Parter, The use of linear graphs in Gaussian elimination,
SIAM Review 3 (1961), 119–130.

[16] F.J. Peters, Parallel pivoting algorithms for sparse symmetric
matrices, Parallel Computing 1 (1984), 99–110.

[17] P. Petersen and D. Padua, Static and dynamic evaluation of data
dependence analysis techniques, IEEE Trans. Par. & Distr.
Systems 7 (1996), 1121–1132.

[18] D.J. Rose, A graph-theoretic study of the numerical solution of
sparse positive definite systems of linear equations, in: Graph
Theory and Computing, R.C. Read, ed., Academic Press, New
York, 1972, pp. 184–218.

[19] H.S. Stone, An efficient parallel algorithm for the solution of
a tridiagonal linear system of equations, Journal of ACM 20
(1973), 27–38.

[20] H.H. Wang, A parallel method for tridiagonal equations, ACM
TOMS 7 (1981), 167–183.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

