Scientific Programming 11 (2003) 237-261 237
10S Press

Pattern operators for grid environments

Maria Cecilia Gomes?®, Omer F. Rana® and José C. Cunha?®
2Departamento de Inforatica, Universidade Nova de Lisboa, Portugal
bDepartment of Computer Science, Cardiff University, UK

Abstract. A pattern based approach for developing applications in a Grid computing environment is presented, and is based on
the ability to manage components and their interactions. The approach provides a formal way of combining recurrent themesin
Grid applications, and provides a set of operators that may be used to manipulate the patterns. The operators may be applied to
individual patterns or groups, and may be managed as an independent library. The patterns distinguish between service providers
and users, and may be used to also analyse the properties of a collection of components, or to vary these properties subject to
a set of predefined constraints. Patterns are expressed in the Unified Modelling Language (UML), and operators correspond to

manipulation of components within each pattern.

1. Introduction and related work

Component based software devel opment providesan
effective way to develop applications from a range of
different software libraries, and wrapped legacy codes.
Components can vary in complexity and granularity —
ranging from complete applicationsto specialised sub-
routines. A number of projects(seealistin[1,15]) have
explored component composition and workflow man-
agement for componentsin the context of Grid comput-
ing [14,16]. Generaly, these environments involve a
user interface which enables componentsto be selected
from a repository, and combined using an editor. The
interfaces to the components are generally pre-defined,
and often expressed in XML — and these environments
are generally called “Problem Solving Environments”
(PSEs) [17]. Such environments generally consist of
3 tiers: i) auser portal to enable interaction with the
components, (ii) aseries of middletier services— such
as a data management service, one or more compute
services, etc, and (iii) the physical resources on which
the components are to be executed. Manipulating ei-
ther individual componentsor groups of componentsis
a useful extension — and little support is directly pro-
vided in existing environmentsto achievethis. Itisalso
useful to determine and abstract common interactions
between components, and to make these abstractions
available to a user. One novel theme addressed in this
paper is the ability to view component composition (to

I SSN 1058-9244/03/$8.00 [1 2003 —10S Press. All rights reserved

solve a particular problem) as being equivalent to ma-
nipulating a structural pattern using pre-defined opera-
tors. Subsequently, the resulting structure can be ma-
nipulated via behavioural operators that enable multi-
ple data flows to co-exist within a system. A user (ap-
plication developer) may find useful structural or be-
havioural patterns—in particular application contexts—
and record these within a patterns library. These can
then be configured using the operator library.

The approach presented here is primarily aimed
at computational scientists and developers, who have
some understanding of the computational needs of their
application domain. A scientist should be aware about
the likely co-ordination and interaction types between
components of the application (such as a database or
numeric solver etc). The structural and behavioural
patterns presented here will enable such scientists and
developersto utilise common usage scenarios within a
domain (either the use of particular components, such
as database systems, or interactions between compo-
nents, such as the use of streaming).

The features distinguishing Grid environmentsfrom
other distributed computing approaches include: het-
erogeneity and dynamicity i.e. the infrastructure can
change significantly over the lifetime of a single ap-
plication, is composed of a range of different plat-
forms, and may be managed by different administrators
(see[21] for auseful survey). Astherearelikely to be
arangeof different usersutilising a Grid infrastructure

238 M.C. Gomes et al. / Pattern operators for grid environments

with differing abilities — less experienced users may
find it difficult to identify useful architectural models
for interconnecting components. The existence of a
pre-defined set of patternsistherefore particularly use-
ful inthiscontext. Additionally, once componentshave
been connected together, another mgjor difficulty isthe
need to identify suitable coordination mechanisms be-
tween components. Providing a set of operators and
common abstractionsat the* behavioural” level isthere-
foreimportant. Thiswork aimsto extend Grid applica-
tion devel opment environmentswith structuring mech-
anisms based on commonly recurring patterns. Using
alibrary of design templates, a user is able to combine
these with other specialised components that may be
required in a particular application domain — both at
design and execution times.

A number of approaches exist already for modelling
interactions between componentsin the context of Grid
environments, or for developing forma models of job
submission and management in a Grid [29]. These,
however, do not provide any support for enabling a
user to subsequently utilise the outcome of these mod-
els. Marinescu [3,4] provides a common abstraction
for modelling workflow to support Web and Grid Ser-
vices. The approach is centered on developing graph-
ical abstractions that can be used to model interaction
patterns between components. The graphical patterns
model aspects such as AND/OR/XOR based interac-
tions—and thefocusisto support aworkflow enactment
engine that may be used to co-ordinate component ex-
ecution. Similarly, a key emphasis in the Fraunhofer
Resource Grid[2] ison devel opingaGrid Resourceand
Job definition language, to enable job submission, re-
source selection, and allow a description of dependen-
cies which exist between resources. In this work, the
Grid Job Definition Language may be mapped to a se-
riesof parameterised Petri Net (PN) blocks. Each block
represents some aspect of the language such as Task
execution and synchronisation, Condi t i onal s and
Choi ce, andloops (suchastheVi | e ... doloop
etc). Each PN block is encoded in XML based on the
Petri Net Markup Language (PNML) [28]. Both of
these approaches are focused on providing either a spe-
cialised representation scheme, or aworkflow manage-
ment approach for components and/or services. Our
approach is more generic, and based on the provision
of a standard pattern library in UML, and associated
operators. Some of these operatorsmay be used to sup-
port workflow, and PN modelsfor patterns may also be
constructed from their UML descriptions, as outlined
in[6]. The PN modelsare useful to capture the seman-

tics of the operators, and to undertake what-if inves-
tigations when combining operators. The availability
of UML templates makes our approach more widely
deployable, and may be used with anumber of existing
toolkits such as Rational Rose or TogetherJ (a survey
can befoundin[7]). The utilisation of languages such
as Java (such as the CoG [12] interface to Globus) and
emerging interest in Web Services [11] identifies the
importanceof using object-oriented design approaches.
Various tools are currently available which can take
UML diagrams and generate code fragments for these
technologies. We therefore feel that a representation
centered on UML is easier to trandate into working
designs.

Alternative related work has been undertaken by the
parallel computing community, and is based on the use
of algorithmic skeletons The predominant motivation
behind this has been the need to overcome the diffi-
culty of constructing parallel programs — by capturing
common al gorithmic formswhich may subsequently be
used as componentsfor building parallel programs[23,
24]. Such skeletons are expected to provide param-
eterisable abstractions that may be composed — gen-
erally using a functional programming language. A
skeleton is expected to be transparent to an application
user (and may come with a pre-packaged implementa-
tion). Skeletons are viewed formally as polymorphic,
higher-order functions — which may be repeatedly ap-
plied to achieve varioustransformations (on data struc-
tures such aslists). Herrmann and Lengauer [25] out-
line the use of a programming language “ Higher-order
Divide and Conquer” (HDC) based on a subset of the
functional programming language Haskell. They sug-
gest that the use of a powerful type system in func-
tional languages make them more suitable than other
paradigms. Although useful for specifying programs
in a concise syntax, we believe such approaches are
limited in the context of Grid environments. Thisis
primarily due to the absence of tools available in such
languages for connecting to Grid middleware, such as
Globus or UNICORE, although skeletons based ap-
proaches do provide a useful prototyping tool for anal-
ysis. Our use of “operators’ (discussed in subsequent
sections) borrows from the use of transformation tech-
nigues in skeleton based approaches, albeit our focus
is on the use of object-oriented techniques. Further-
more, our design patterns and operators are aimed at
supporting workflow-based PSEs.

A Pattern encodes a commonly recurring theme in
service or component composition. It allows good
practice to be identified, and shared across application

M.C. Gomes et al. / Pattern operators for grid environments 239

domains. A patternis generally defined in an applica-
tion independent manner, and used to encode particular
useful behaviours. Patterns are particularly useful for
configuring and specifying systems that are composed
of independent sub-domains. Patternsare aimed at cap-
turing some generic attributes of asystem —which may
be further refined (eventually) to lead to an implemen-
tation. Theseareimportant requirementsfor Grid com-
puting applications, which generally need to operatein
dynamic environments. Providing patterns will ease
the task of Grid application developers, who may de-
ploy previously generated templates as an initial step,
and then refine these based on our operators. The use of
pattern operatorsis aso particularly important to deal
with dynamicity, becauseit providesauser the capabil-
ity tomodify apatternat runtime. Furthermore, pattern
operators may be applied in an ordered combination —
and may be shared between users. The presented struc-
tural and behavioural operators may be implemented
using anumber of different scripting languages(such as
Python or Perl) —and therefore the specified semantics
are not restricted to our Javaimplementation.

The core of this work is the systematic identifica-
tion of collections of operators that can manage a set
of useful patternsin Grid environments, via a PSE. A
PSE provides a collection of tools necessary to sup-
port problem description, and subsequently execution
of the problem on computational resources. PSEs have
ranged from those based on functional language based
descriptions, to component-based composition tools.
The component repository provideswrapped scientific
codes or specialised components available within a
given application domain — combined together using
an editor, with access to a resource manager for execu-
tion. Patterns can be provided in arepository —and can
include generic patterns (as discussed in this paper), or
those created by a user.

Section 2 introduces an application example where
patterns and operators may be useful for configuring
and reconfiguring a PSE. This example will be used
throughout the paper. Section 3 describes Pattern tem-
platesstarting with Structural pattern templateand
ending with Behavioural pattern templateSection 4
describes the Structural and Behavioural Operatqrs
and section 5 illustrates operator semantics. Section 6
describesimplementation status. Finally, some conclu-
sions are presented.

2. An application example

A PSE configuration exampleis providedto describe
activitiesthat are commonly required to manage an ap-

plication. Thisexamplewill be used throughout the pa-
per for explaining the applicability of patterns and op-
erators. Figure 1 shows an example of a PSE combin-
ing different types of services, which appear frequently
in Grid applications. The Problem Solvecomponent
representsaservice running some scientific experiment
that continuously producesdata. Aninstance of such a
service may beawave generator or amatrix solver. Af-
ter receiving some initial input parameters, the service
starts producing data that can be analysed or stored for
“post-mortem” analysis. The Problem Solver service
may be steerable, meaning that itsinput parameterscan
be changed whilethe serviceisexecuting. By adjusting
the input parameters a user may, for example, generate
particular behaviours using this service.

Steering is frequently supported by two types of ser-
vices: a Monitoring Serviceand a Steering interface
TheMonitoring Serviceis used to register rel evant out-
put dataor eventsproduced by the Problem Solver. The
data/events are filtered by the Monitoring Service and
are passed to a Steering Interface that shows them to
the user in a pre-defined format. Consequently, a user
may use the Steering Interface to undertake “what if”
scenarios — generally by defining new values for the
Problem Solver’s input data. Furthermore, one may
consider that several users have access to the Steer-
ing Interface, thus requiring some coordination over
changing the parameters of the Problem Solver.

This type of application may aso include another
service, namely a Database Systeto store all the out-
put produced by the Problem Solver. This enables a
user to reconfigure the PSE using the stored data, with-
out requiring the Problem Solver to be stopped. Alter-
natively, a user may re-examine output data for addi-
tional processing after the Problem Solver terminates
its execution (based on pre-defined behaviour or as a
result of afault). These areillustrated in Figs 2 and 3:
inFig. 2the Monitoring Serviceisstopped so that it can
be replaced with amore complex tool like the Monitor-
ing and Statistics servida Fig. 3; inthe meantime, the
Problem Solver continues its execution and its output
is kept in the Database System. The alternative sce-
nario isillustrated in Fig. 4: after the Problem Solver
terminates its execution, its output can be processed,
either from the beginning or from the point at which
the Monitoring Service was being replaced (and that
would otherwise be lost). In this case, the Database
System acts as atemporary buffer.

Thenext section describesstructural and behavioural
pattern templates and identifies which patterns could
be used to configure a PSE, as outlined in Fig. 1. Sec-

240 M.C. Gomes et al. / Pattern operators for grid environments

Input data
Problem Output data M onitorin Selected data
> 9 > Steering Interface
Solver Service 9
| Database System

Fig. 1. A PSE supporting the active steering of a Problem Solver. The arrows represent the flow of data.

Problem Montoring | o R
Solver _ Service Steering Interface :
#| Database System
Output data

Fig. 2. The Monitoring service is stopped and consequently the Steering interface also stops. The output datais not lost because it is being saved
in the Database system.

Input data
Problem Output data | Monitoring and Selected data .
Solver Statistics Service Steering Interface

\

Database System

Fig. 3. Theinitial Monitoring service is replaced with amore complex one (Monitoring and Statistics service), which is activated to continue the
filtering of the output data.

Problem Monitoringand | Selecteddata .
Solver Statistics Service ™| Steering Interface
Saved output data

Database System

Fig. 4. After the Problem Solver terminates its execution, data can be re-analysed.

tion 4 subsequently describes the application of struc-
tural operatorsto build that PSE, and the application of
behavioural operatorsto control the PSE’s execution.

3. Pattern templates
Patterns capture commonly occurring structural and

behavioural aspectsof components. Structural patterns
encode component connectivity, and identify common

ways in which components may be combined within
a given application domain (an example of this is
the data flow pipeline used in rendering, which in-
volves adatainput, simulation/rendering, visualisation
pipeling). Structural patterns may also contain a hi-
erarchy, allowing the embedding of a pattern within
another (these embedding are supported through spe-
cialised operators). Structural pattern templates there-
fore consist of component place holders, where each
component is instantiated at run time.

M.C. Gomes et al. / Pattern operators for grid environments 241

Behavioural pattern®ncode useful required func-
tionality without necessarily identifying the particu-
lar components involved. Components within a be-
havioural pattern primarily identify interaction con-
straints, and not the exact functionality required from
each component. Behavioural patterns can therefore
capture temporal or flow dependencies between com-
ponents. Flow dependencies model data and control
flows, and encode execution ordering on components
(flow dependencies may be used to express synchro-
nisation constraints, for instance). Behavioura pat-
terns may be defined based on interactions between
components (such as Peer-2-Peer or Client/Server), to
schemes used to update the behaviour of each compo-
nent.

Our approachis applied at four different levels. The
lowest level provides Structural Patterns—whichenable
static composition of components into a data/control
flow. Structural Patterns enable the description of com-
monly recurring topol ogical aspects of an application—
but do not constrain the flows between thesetopol ogical
entities in any way. These Structural Petterns may be
manipulated via Structural Operators—which enable a
constrained way to modify the Structural Patterns. The
constraints are defined by the semantics of the opera-
tors — and relate to the result generated after the op-
erator has been applied. Subsequently, flows on these
Structural Patterns need to be specified — and this is
achieved by identifying a Behavioural Pattern over the
structure. Onceagain, the Behavioural Patternsmay be
configured statically or at run-time using Behavioural
Operators. Thedivisioninto thesefour stages of design
is based on existing uses of application constructionin
PSEs. Based on our approach, auser must first commit
to a structural pattern, and then to a behavioural one.
Structural patterns therefore try to capture how many
machines (for instance) or groups are necessary to exe-
cute agiven application—and do not instantiate these to
particular instances until the Behavioural operators are
applied. The four stage approach therefore reflects the
approach adopted by application schedulers—but tries
to abstract thisas a collection of patterns and operators
—and brings it closer to the application construction
process.

To use these patterns and operators, a user launches
a PSE visua editor to connect components together.
This PSE tool (asidentified in[17]) is augmented with
aPattern Template (PT) and Operator library. The user
may select a PT from the library, and may apply one or
a combination of operators to modify the structure of
the template. The structural operators provide a trans-

formation between patterns, and areinvariantto agiven
PT structure. The user can aso modify the structure of
aPT directly using the editor. Theresult may be stored
by the user as a new template in a user-defined PT li-
brary. Once the structure has been defined, the user
now instantiates components to the elements of a PT.
Thisis then followed by defining interactions between
components — based on the provided Behavioural Pat-
tern Templates. Subsequently, these interactions may
be modified using the Behavioural Operators.

The rest of this section gives examples of structural
and behavioural patterns, as well as which could be
used to configure the example defined in section 2.

3.1. Structural pattern templates: Topological

Topological patternsepresent structural shapesthat
frequently occur in Grid systems. For illustration pur-
poses, we identify three basic shapes as possible can-
didates within this category: star, pipeline, and ring.

The Star pattern is an aggregation of three compo-
nents: the Nucleusis the center of the star; a Satellite
represents the elements communicating with the star;
and the SimpleChanndsinds together a Satelliteto the
Nucleus The Nucleusmay be connected to severa in-
stances of SimpleChannebut each SimpleChanneils
only connected to a single Satellite The Client/Server
model, for example, is simply a specific behavioral
pattern over the Starstructural pattern.

The Pipelinepattern is a sequence of stages which
communicate with each other. The pattern occurs fre-
quently in Grid applications. For example, a scientific
application produces data to a sequence of filters (like
Data Analysis Tools and the pipelineisterminatedin a
Visualisation Toolvhere the user can follow the appli-
cation’sexecution. The pattern’s structure was adapted
from the Pipes and Filtergattern [9].

The structure can be generally represented by three
components (see left-hand side of Fig. 5): a Data-
Sourceproducesdatato a Connectorand the DataSink
consumes data from the Connector

The Connectorhas a recursive structure, as illus-
trated in the right-hand side of Fig. 5. A Connector
may be a SimpleConnectofsimilar to a Unix pipe or
an event channel) or it may be a CompositeConnector
The latter is a connected association of a SimpleCon-
nectorand a Component Recursively, the Compos-
iteConnectolis connected to another Connector(and
terminates at the SimpleConnectQr

The Ring pattern represents, like the pipeline, a se-
guence of stages, with no “first” or “last” stage. The

242 M.C. Gomes et al. / Pattern operators for grid environments

PipelingStructure

()
T

Databonrcs Connector Diatadink

+addConnecton)

FLommunmcaesilith | +removeConnectord

+Communicatesiith

LCotnactor

+addConnector]
+removeConhector]

ZP +CommunicatesWith

CompaositeConnectar

+Binds
,, Q+Binds
1.
+Communicatesiith

Componett

SimpleConnector

Pipe EwentChatinel

Fig. 5. The Pipeline and the Connector patterns.

structure of the Ring pattern is also based on the Con-
nectorstructural definition.

The difference is that a Components always con-
nected to two SimpleConnector§n the simplest case,
the unique component will have two connections to a
single SimpleConnect9r In Grid environments, the
ring topological structure can be found in a humber
of applications, both in the context of application ex-
ecution (such as for modelling interactions within a
local area network) to logical topologies such as sup-
porting an authentication chain when approving par-
ticipants with multiple Certificate server. Each server
delegates an authentication request to the next domain,
and the last server replies to the original client. This
chain based mechanism can also be found in resolving
the address/location of an executable using a directory
lookup service (as found in the Globus MDS [10]).

3.2. Structural pattern templates: Non-topological

The Adapter Facade and Proxy design patterns
(adapted from [8]) are examples of non-topological
structural patterns, which are particularly useful in the
context of Grid computing.

The Adapterpattern allows communication between
two elementswhen they do not havethe sameinterface.
Inthe Grid environment, the Adapterpattern has appli-
cability, for example, in the adaptation of services, or
aswrappersfor legacy codes (such as Fortran binaries).
If the client is expecting a different interface from the
one provided by the server, the adapter can act as a
trandlator. This pattern is also particularly useful for
providing a mapping between the interface of an exist-
ing code and a pre-defined component data model for
Grids, such as CCA [26].

The Facadepattern (Fig. 6) is used when a sys-
tem may be divided into severa sub-systems, and the
communi cation/entry-pointinto the system needsto be
restricted. The Facadepattern is present in the struc-
turing of the Grid in “domains’. The access to each
domain (sub-system) in the Grid may be via a Facade
interface.

The Proxypatternis frequent in distributed systems.
The access to Grid services, for example, is usually
through a proxy (or gatekeeper). The structure of the
pattern consists of an abstract interface (the Subjecy
representing the service, the implementation of the ser-
vice (RealSubjedt and a surrogate (Proxy) which for-
wards the request to the implementor of the service.

3.3. Structural patterns in use

The PSE example from Fig. 1 can be configured
based on some of the structural patterns described in
the previous sections. As shown in Fig. 7, it is pos-
sible to identify aring pattern connecting the Problem
Solver, the Monitoring Service and the Steering Inter-
face. Thereis aso a pipeline pattern connecting the
Problem Solver and the Database System. To represent
such a PSE, the user would define aring template with
three elements, and a pipeline template with two ele-
ments. One way to combine the two patterns would be
to embed the pipeline into one of the ring's elements
forming an hierarchy.

Figure 8 identifies three more structural patterns,
namely for configuring individual services. For exam-
ple, the star pattern may represent the Database Sys-
tem considering that the system is composed of a set of
distributed Database sub-systems. These sub-systems

M.C. Gomes et al. / Pattern operators for grid environments 243

Facade

+discover()
+execute()

subsyst em cl asses

+Invokes

+Invokes

Domain2

+d2.discover()
+d2.execute()

Domainl

Subdomain2.1

+d1.discover()
+d1.execute()

+d2.d1.discover()
+d2.d1.execute()

Fig. 6. The Facade design pattern. Example: the “Facade” provides aunified interface for accessing domainsin the Grid environment, redirecting

the calls to services like “discover” and “execute’.

FEEm S S ssssssssssssssssssss=s=s=== 3
i Input data
I
1
— I
=1 - : i
! I Frablem '|j'.|l|'-.|l data Momoring slecied daca A) i
= | Solver T = = Carvice I = Sieering Interface
Salv : . :
I
I, |
S L .
l — — — —-— :
| = Datahase Sysiem i
o 3 1 e 1 e

Pipeline Pattern

Fig. 7. ldentification of the Ring and Pipeline patterns in the PSE example.

are the Satellitesin the ring’s structure, and they are
controlled by a MasterDatabase system acting as a co-
ordinator. The figure shows a star template with three
satellites. The second examplein Fig. 8 showsthe pos-
sibility of using an adapter pattern for the Monitoring
service. This service may be supported by legacy code
which needs to be adapted to interact with the other
services. This adapter pattern would be embedded in
the second element of the ring. Finally, one way to
represent the sharing of the Steering Interface by mul-
tiple usersis through the proxy pattern. Each user has
a proxy to access the central service which controls
concurrent accesses. The figure shows a proxy pattern
template with two proxies for two users.

3.4. Behavioural pattern templates

Behavioural Pattern Templatg8-PT) capture re-
curring themes in component interactions within Grid

applications. Generally, these applicationsinvolvedis-
tribution of codefromamaster, thereplication of acode
segment (such as within aloop), or parameter sweeps
over one or more indices. The Parameter-Sweegem-
plate represents the repeated invocation of a compo-
nent—over arange, and can befoundin systemssuch as
Nimrod [18]. The Master-Slavepattern can be mapped
to many parallel programming libraries, and represents
the division of a task into multiple (usually indepen-
dent) sub-units — and shares some similarities with the
Client-Servepattern — although the control flow in the
latter is more complex.

Figure9illustrates the sequence diagram for the Mo-
bile Agent/ltinerarypattern. In this pattern a com-
ponent is initialised at a given location (Home), and
may move to another location based on a pre-defined
itinerary —which may be defined using a structural pat-
tern (for instance). If the itinerary is dynamic, then
new locations may be created viathe Increase Extend

244

l'-| IDaiabhnge Ny sdoeTm |
=

Star Pattern

Dptn b ase
LIRS ET b

I

I

—F_--

: I3nitnbaEe L

ol calave) Database |
T - {alawve

k -_—

{ Sreering Interface 3 [

\ —"
iatabaee
{alaweEh

-

M.C. Gomes et al. / Pattern operators for grid environments

Froxy Patter

Fanl Suhbject T

Aalapter FPatierm
-— -—

— -_— o e,

| Alapner

Ml mpiec

[}
]
]
]
) 1
{ PACITOTing Servioce) .

-

n

[]

R E e e |
K
;

Fig. 8. Identification of the Facade, Adapter, and Proxy patterns in the PSE example.

or Embedoperators. Each location that a mobile agent
vigits, is represented with a component place holder.
Each of these can contain a Proxy pattern, to enable a
chain of forwarders to be established.

3.5. Behavioural patterns in use

Taking as a basis the Structural Patterns illustrated
in Figs 7 and 8 (section 3.3), this section enumerates
some applicable behavioural patterns. See Table 1 in
section 4.4 for a more complete list. Firstly, the Pro-
ducer/Consumepattern can be used to represent the
control and data flows between the Monitoring service
(producer of selected data) and the Steering Interface
(consumer), in the ring pattern (Fig. 7). Secondly, the
same pattern can represent the interaction between the
Problem Solver and the Monitoring Service. However,
if the Monitoring service only requires a sub-set of the
data produced by the Problem Solver, then such in-
teraction may be represented by the Observermpattern.
Thirdly, the Streamingpattern may be used over the
structural pipeline pattern that connects the Problem
Solver and the Database system, representing the con-
tinuousflow of datafrom the Problem Solver that needs
to be maintained in the Database System. Fourthly, the
Master/Slavepattern can represent the behaviour of the
Database System (Fig. 8): a master controls and dis-
tributesrequeststotheslaves. Fifthly, theClient/Server
pattern can represent the interaction between the Steer-
ing Interface (serve) and its proxies (clients that redi-
rect users’ requests to access the Steering service. Fi-
naly, the Adapterstructural pattern that gives access

to the legacy code to support the Monitoring service
can be combined with the Service Adapter Patteri32].
Thisbehavioural pattern* attaches additional properties
or behaviours to an existing application to enable it to
beinvoked as a service”.

Having identified the structural and behavioural pat-
terns, in the following sections we describe the avail-
able operators and their application. In particular, we
describe how structural operators are used to configure
the application example described so far, and give a
small example of the use of behavioura operators to
control application execution.

4. Operators

Operators enable constrained manipulation of pat-
terns by adeveloper, and provide alimited set of meth-
odsto achieve this. Operators provide transformations
between patterns, albeit subject to a set of constraints.
Itispossiblefor agroup of operatorsto beapplied (with
aparticular ordering). Furthermore, operators may be
combined, leading to “ compound operators’, athough
thisisonly allowed if operatorsfrom the same category
are chosen — to ensure consistency of the result. Two
kinds of operators exist within our approach: Struc-
tural Operatorsand Behavioural OperatorsTheseare
further divided into the following categories, with each
category implemented as a separate class library, and
each operator being a method call within the library:

1. Structuring: These operators are used to modify
the connectivity between components in a tem-
plate.

M.C. Gomes et al. / Pattern operators for grid environments 245
| Home : | | Locationl : | | Location2 : |
1 1 1
1 1 1
| I 1 1
) s Init))
q_l 1 1
T T
- move(Location1) JI_ : | Itinerary = (static | dynamic) |
I 1
1
1

: move(Location2) » | dynamic = update itinerary |

[grecute
<___Z'

| return_to_home

4

: return(home)

C—f---------1

1
|
1
1
Fig. 9. A Sequence diagram for the Mobile Agent/Itinerary pattern: if itinerary is“dynamic” the user will be able to change it using our existing

operators. If itinerary is“static”, then an existing topological structure may be used, or one created by the user.

2. Grouping: Operators to support grouping allow the GRAAP and Scheduling group within the

patterns to be combined, enabling common op-
erations to be performed on all patterns within a
group. Groupingisalso useful to support embed-
ding patterns within each other, thereby provid-
ing support for hierarchy. These operators may
be behavioural or structural.

. Inquiry: Inquiry operators support comparison
between pattern templates, to check for consis-
tency or compatibility (for instance). Inquiry op-
eratorsmay also be used to verify structural or be-
havioura properties associated with a template,
and return a boolean value on evaluation.

. Ownership: Ownership operators enable the
modification and access rights of atemplateto be
controlled. The owner of a template may dele-
gate access to a single user or group of users to
modify the template. Similarly, templates within
agroup may have different ownership, requiring
control of access rights to the group. These are
primarily behavioural operators.

. Execution: Operators to support execution pro-
vide the mapping between a Problem Solving En-
vironment, and a resource management system,
and provide two core functionalities: (1) man-
aging execution of a pattern instance, (2) man-
aging behavioural properties of pattern instances
dynamically. These operators may connect to
pre-defined scripts for starting, stopping, resum-
ing etc, component execution, or may be mapped
to the protocol between a“ Super-Scheduler” and
local Schedulers necessary to reserve and allo-
cate resources in the Grid — being developed by

Globa Grid Forum [5]. The execution opera-
torsare constrained by the functionality available
within a resource management system, and de-
pend on obtaining monitoring information from
such systems also. The mapping between the op-
erators and the particular functionality of the re-
source management system therefore cannot be
pre-defined. We therefore rely on an interme-
diate API (such the Super-Scheduler mentioned
above), to enable our operators to be mapped to
thisAPI.

Each pattern operator takes a pattern object as input,
and returns a pattern, a PT or a boolean result.

4.1. Structuring and grouping operators

These operators are used to modify the structural
(mainly topological) PTs, maintaining the structural
constraints of the original PT, and include:

Rename(P1, P2) A pattern P1 is renamed to pattern
P2. This is a structural transformation, and
the origina structural constraints are preserved.
Hence, the constraint when applying this pattern
is that both P1 and P2 must be a member of the
PT class.

Replace(P1, P2) Replace P1, as a single entity, with
pattern P2.

Increase(P, n) The number of elementsin apatternis
increased.

Decrease(P, n) ‘N’ elementsareremoved fromthe pat-
tern.

246 M.C. Gomes et al. / Pattern operators for grid environments

Extend(P, element) An element is added to a pattern
and its structure is augmented.

Reduce(P, element) An element is removed from a
pattern and its structure is reduced.

Replicate(P, n) The component “P’ is replicated “n”
times, and these replicas are unrel ated.

Embed(P1, P2) Includes a pattern P1 into a higher-
level pattern P2. The concept of hierarchy is sup-
ported here by enabling component place holders
to contain other PTs.

Group/Aggregate(P1, ..., Pn) A group of “n” pat-
terns is seen as a single pattern, and behave as a
single entity.

4.2. Inquiry operators

Inquiry Operators return a boolean result and in-
clude:

IsEqual(P1, P2) Verifiesif two patternshavethe same
structure.

IsRecursive(P) Identifiesif apatternisrecursive.

IsDigoint(P1, P2) Identifies if the intersection be-
tween two patternsis null. The semantics of what
congtitutes a particular or exact match isleft to the
implementation of this operator.

I sSubset(P1, P2) Verifies if a pattern P1 is a sub-
structure of another pattern P2.

I sSuper set(P1, P2) Verifiesif apattern containsasub-
pattern which matches P2.

IsComposite(P) Verifiesif apatternisan aggregation,
i.e. although“P’ may be agroup of other patterns
it can be manipulated as a single pattern. The
operation “1sComposite” returnstrueif applied to
a pattern built with the “Aggregate” operation.

IsinComposite(P1, P) Verifiesif pattern“P1” belongs
to group “P’. This operator uses existing pattern
templates to perform the comparison.

IsCompatible(P1, P2) Verifiesif a pattern is compat-
ible with another one. This operator is used to de-
termineif two patterns are functionally identical.
This analysis is undertaken in stages. The first
involves checking if two patterns are structurally
similar, the second involves checking if the con-
trol and data flows between components within a
pattern are similar, and the final check involves
verifying if all components (or types) within two
patterns are identical. All three checks must be
valid for the compatibility test to pass.

IsOwner (P1, A) Used to confirm if user/group “A” is
the owner of pattern P1.

4.3. Ownership operators

These operatorsare used to control how asingle user
or agroup of usersis allowed to modify a pattern, and
include:

Owner (P1, A) Used to make user or group “A” the
owner of pattern P1.

OwnerGroup(P1, {Al,...,An}) Used to alow all
members of a group to own a pattern. All own-
ers have modification rights to the pattern. A;
represents a group member.

AssignActivity(P1,{Activity}, A) Enables pattern P1
to be modified according to the set “Activity”, by
owner A. Activity identifies operations that may
be performed on a particular pattern, and may be
general operators such as write, read, etc, or more
complex user defined operationsthat are bound to
aparticular object implementation.

RemoveActivity(P1, Activity, A) Enables a single or
set of activities to be disabled for pattern P1 and
user A.

4.4. Execution operators

Execution operators relate to execution scripts on
the particular resource management system being used
(such as Globus [10]). The types of operators being
supported within this category are constrained by the
operations being supported within the resource man-
agement system, and therefore not all may be usable:

Start(P) Used to start a pattern’s execution.

Terminate(P) Used to terminate a pattern’s execution.

Stop(P) Used to pause a pattern’s execution — with
the side-effect of checkpointing the state of the
execution. Not al resource management systems
may support state checkpointing.

Log(P) Usedtologtheexecution state of apattern. For
this operation, a monitoring service is assumed
within the resource management system.

Resume(P, pt) Pattern execution is resumed from a
previous logged point “pt” (where “pt” may also
be chosen to start execution from the beginning).

Restart(67', P) Repeat execution every 67 time (peri-
odic execution). Particularly useful for periodic
re-starts of an application.

Limit(67, P) Limits the execution of pattern “P” to a
period equal to 67'. If 6T expires, the pattern is
stopped.

Repeat(n, P) The execution of pattern “P’ is repeated
“n” times.

M.C. Gomes et al. / Pattern operators for grid environments 247

Steer ({ par ameter s},P) Change the set of “{paramet-
ers}” associated with a pattern P

ChangeDependencies(P1,. . . ,Pn) These type of op-
erationsallow the execution environment or auser
to change the connection(s) between a set of pat-
terns. These operatorshave adirectimpact on how
execution of components within a pattern takes
place, and therefore need to interface to existing
resource management and scheduling systems.

— Synchronise(syncRule, P1, ..., Pn): Change
the time dependencies between a set of pat-
ternsP1..Pn, according to asynchronisationrule
“syncRule” (e.g. al patterns have to produce
their results in a synchronous fashion).

— ChangeDataFlow(rule, P1, ..., Pn): Change
the data flow connecting a set of patterns, ac-
cordingtoa“rule” (such asreversethedirection
of a data flow in a pipeline PT). The data flow
can specify both the direction of flow and the
associated data types.

— ChangeControlFlow(rule, P1, ..., Pn): Cha
ngethe control flow (e.g. switch from apushto
apull strategy), according to “rule”.

— ChangeSharedDataDependencies(rule, P1,
..., Pn): Change the way the set of patterns
access a shared resource (e.g. switch from ex-
clusive access to multiple entities).

Coordinate(P, rule) Apply coordinationrule“rule’ to
pattern “P” (the rule may be constructed as a se-
guence of “Execution Control Operations’ like
start/stop and “ Reconfiguration Operations’ like
ChangeDependencies

Combining these operators can lead to power-
ful execution sequences — such as combining the
St eer operator with the Coor di nat e operator to
control how parameter steering is to be supported
based on a particular context or data rate (supported
through a rule). Each rule can be defined using the
def t enpl at e- def r ul e structurefoundinthe Java
Expert System Shell (JESS) [27]. The use of the be-
havioural operatorsRestart andLimit enablesapattern
to be run periodically, or be restarted after a particular
timeinterval.

Based on these descriptions, we can classify our de-
sign patterns and operators as outlined in Table 1.

Next section describesthe semantics of thestructural
and behavioural operators.

5. Operator semantics

The semantics of some of the operators are provided
to illustrate the concepts. We start with the structural
operators and terminate with a description of some of
the behavioural operators.

5.1. Semantics of structural operators

Not all structural operatorsare applicabletoall struc-
tural patterns (Table 2), and the semantics of each op-
erator may vary with the structural patterns. The se-
mantics of the operators Replicate, Replace, Embed,
and Group/Aggregatere independent of the structural
pattern to which they are applied. However, the se-
mantics of applying the operators Increase, Decrease,
Extend, Reduce, and Rengnaee dependent on the
pattern template (PT) to which they are applied.

BoththeReplicate and Repla@ee simpleoperators,
asall PT can bereplicated — and each replicawill have
a different identifier. The identifiers themselves can
be changed. Likewise, al PT can be replaced with
any other PT. The semantics of the Group/Aggregate
operatorisalsoquitesimple. All PTscanbeaggregated
in a group template which represents all its members.
For example, after grouping a proxy and a pipeline PT
into agroup, it is possible to subsequently replicate the
group PT.

The semantics of the Embedoperator defines that
the embedded pattern becomes one of the elements of
the destination pattern. For example, when embedding
a Starinto a Pipeling one of the Pipelinés compo-
nentswill be annotated as having the topol ogical struc-
ture of a Star. This specific embedding operation is
useful when combining different subsystemsin a Grid
environment. The user may start by defining a set of
Grid services and tools organised in a pipeline. For
example, a scientific application (head of the pipeline)
generates results for adata analysis tool, which in turn
produces data to a visualisation tool (corresponding to
the last stage of the pipeline). For instance, users may
be familiar with the structure of a problem they are
trying to solve, and use the star topology to model a
central manager — perhaps a parallel machine or high
end server, and a number of sub-servers that interact
withit. Assuming that the behaviour of that sub-system
followsthe Master/Slave pattern, that behaviour can be
developed over the star topology.

Hence, the user defines a new star PT (with an ad-
equate number of satellites for supporting the slaves),
and embeds this PT in the first position of the pipeline

248 M.C. Gomes et al. / Pattern operators for grid environments

Table1
Pattern templates and operator summary
Patterns Operators
Structural Pipeline, Star, Rename, Replace, Increase,
Ring, Bus Decrease, Extend, Reduce,
Adapter,Proxy, Facade Replicate, Embed, Group/Aggregate
Behavioural Master-Slave, Streaming, IsEqual, IsRecursive,

Client-Server, Peer-2-Peer,
Mobile Agentd/Itinerary,
Remote Evaluation,
Code-on-Demand, Contract,
Observer/Subscribe-Publish,
Parameter Sweep

IsDigjoint, IsSubset, | sSSuperset,

IsComposite, IslnComposite, IsSCompatible,
IsOwner, Owner, OwnerGroup,

AssignActivity, RemoveActivity,

Start, Terminate, Stop, Log, Resume,

Restart, Limit, Repeat, Steer,
ChangeDependencies.Synchronise,
ChangeDependencies.ChangeDataF ow,
ChangeDependencies.ChangeControl Flow,
ChangeDependencies.ChangeSharedDataDependencies

Table 2
Applicability of structural operators over topological and Non-topological structural patterns

Structural Operators

Topologica Patterns

Non-Topological Patterns

Replicate, Replace,
Embed, Group/Aggregate
Increase, Decrease

Extend, Reduce

Rename:

—to restructure a pattern into
atopological pattern

—to restructure a pattern into
anon-topological pattern

Applicable to all
Applicable to all
Non-applicable

Applicable to al

Depends on the cardinality
of the pattern templates

Applicable to al
Non-applicable to
the Adapter pattern
Applicable to all
Applicable to all

Depends on the cardinality
of the pattern templates

PT, thusproducing ahierarchical structure (seeFig. 10).
Similarly, the embedding of a Facade nto a Proxymay
result in the subjectcomponent in the Proxy pattern
being annotated as being a Facade

The Increaseand Decreaseperators can be applied
to all selected structural patterns, except the Adapter
pattern (Table 2).

When applied to the Pipelineand Ring patterns, the
Increaseoperator increases the number of elementsin
the structure (e.g. it is possible to increase a two ele-
ment pipelineto afour element pipeline—see Fig. 11).
Over the Star pattern, the operator increases the num-
ber of satellites in the structure. Similarly, the De-
creaseoperator reduces the number of elementsin the
structure over which it is applied. Both Increaseand
Decreasepperators may be applied to the Facadepat-
tern, resulting in the increase/decrease of the number
of subsystem classésee Fig. 6). The same operations
over the Proxy pattern result in the increase/decrease,
respectively, of the proxy elements in the pattern (see
Fig. 11).

For example, the proxy pattern may be extended by
adding a proxy component to an existing proxy (see
Fig. 12). This situation occurs in mobile agent/object

systems, where the sequence of proxiesis used for lo-

cating the agent/object (via a chain for message for-

warders, for instance). The message forwarding mech-

anismis also useful when implementing authentication

requests via a “security chain” — whereby each node
forwards requests for authentication to another node
along the path. Likewise, the Facadepattern may be
extended by adding a new facadecomponent which

“hides” an existing facadecomponent, which in turn

becomes a simple subsystem clager the new facade
component (see Fig. 12).

For the Renameoperator, the cardinality of the pat-
terns being renamed may be important in determining
whether the operator can or cannot be applied (see Ta-
ble 2). For instance, any topological pattern may be
renamed into any other topological pattern, indepen-
dently of the cardinality of the pattern. For example,
a Pipelinepattern can be transformed into a Ring pat-
tern, by connecting thefirst and last components of the
Pipeline (see Fig. 13). Similarly, a Pipeline can be
transformed into a Star, by taking one of the Pipelinés
components as the nucleusof the Starpattern, with the
other components becoming satellites Similarly, any
non-topol ogical pattern can be restructured into atopo-

M.C. Gomes et al. / Pattern operators for grid environments 249

O

_—

Fig. 10. An example of a pipeline template with an embedded pattern (a star) in the leftmost component.

Pattern Increase(Pattern, 2)

p Resultpattern

O—0O

® O

Real Proxy
Subject

- O—O0O—-C0C-—10

Real

SUbJeCt Proxy

o %

Proxy

Fig. 11. The Extendand Reduceoperators can be applied to the selected design patterns but not to the topological patterns.

Pattern Extend(Pattern, element)

- Result pattern

- @ O O

Proxy a Proxy b
Sub] y y

r----! Facade |-----
1
|
|
|
|
|

<

Fig. 12. Examples of the Extend operator over the Proxy and Facade Pattern Templates.

logical pattern, aslong asthe cardinality of the original
patternis maintained. For example, in Fig. 13, a Proxy
pattern template containing three proxies is renamed
into astar, which will havethree satellites. Thesestruc-
tural operators therefore transform one pattern to an-
other one within the same class. Additional transfor-
mation may be undertaken by a user directly using an
editor — although this does not provide any checking
that the transformation will leave a pattern class invari-
ant. Also, when using the Renameaperator, the cardi-
nality of the pattern template must be preserved. For
example, it is not possible to rename a pipelinepattern
with five elements into an Adapter because their car-

dinality is different. However, the same pipeline can
be renamed into afacadeby annotating one of the ele-
ments of the pipelineas the facadecomponent, and the
other elements as the sub-system classésee Fig. 13).

5.2. Structural operators in use

This section gives some examples of the application
of structural operatorsin the context of the application
introduced in section 2. Figures 14 and 15 describe a
possible sequence of steps to build the PSE configura-
tionshowninFig. 1, accordingto the patternsidentified
inFigs 7 and 8.

250 M.C. Gomes et al. / Pattern operators for grid environments

Pattern Rename(Pattern, resultPattern)

Result pattern

O—0—0

Redl
Subject " proxy

. Rename(proxyPT, starPT)

o

Proxy

O-O-0~0-0

Rename(pipelinePT, ringPT)

Rename(pipelinePT, facadePT)

Q\%

Fig. 13. Examples of the Rename operator over a Pipeline and a Proxy Pattern Templates.

STEPL: | \

N
_/
STEP2: Q—Q

srees -
\

STEP4: Q
O-&

O

Step 1 - Creation of aring PT with three
component place holders (for the problem
solver, the monitoring service, and the
steering interface).

Step 2 - Creation of a pipeline PT with
two component place holders (for the
problem solver and the database system).

Step 3 - Creation of astar PT for the
database system (the frontend will
be the nucleus and the slaves will be
the satellites).

Step 4 - Embedding of the star PT
into the pipeline PT built in step 2.

Fig. 14. Initial steps for building the PSE depicted in Fig. 1.

In step 1 (Fig. 14), the user creates a ring pattern
template (PT) with three place holders to represent the
components connecting the Problem Solver, the Mon-
itoring service, and the Steering Interface. Next, the
user creates a pipeline PT with two component place
holders to represent the connection between the Prob-
lem Solver and the Database System (step 2). This
pipelinewill be embedded in the first component place

holder of the ring, but first the user must create a PT
to represent the Database System. In step 3, the user
createsastar PT with three satellitesthat will beinstan-
tiated to the Database sub-systems. In step 4, the user
appliesthe Embedstructural operator over the pipeline
PT with the star PT as argument, to be embedded in the
second component place holder of the pipeline PT.
Instep 5 (Fig. 15) the user applies the Embedstruc-

M.C. Gomes et al. / Pattern operators for grid environments 251

STEPS:

STEP6: Adapter

Step 5 - Embedding of the pipeline
PT defined in step 4, into thering
PT defined in step 1.

STEPS 7 and 8:

Subject

Adaptee

Step 6 - Creation of an adapter
PT for the monitoring service.

Real Proxy
Proxy

Step 7 - Creation of a proxy
PT for the steering interface.

Step 8 - Application of the Increase
structural operator to the proxy PT.

Step 9 - Embedding of the adapter

STEPS9, 10 and 11:

Monitoring

service

PT (step 6) into the ring defined in.
step 5.

Step 10 - Embedding of the proxy
PT into the third element of the
ring PT.

Step 11 - Instantiation of all PTs
with services.

Fig. 15. Final stepsfor building the PSE depicted in Fig. 1.

tural pattern to include the pipeline PT obtained in step
4 into the first component place holder of the ring PT
(previously defined in step 1). Next, the user creates
an Adapter PT template to represent the Monitoring
service (step 6). In steps 7 and 8, the user creates the
structure for the Steering Interface (which will be ac-
cessed by other users). To achievethis, the user creates
a Proxy PT and then its proxy elements are increased
by one through the application of the Increasestruc-
tural operator. In steps 9 and 10, the user embeds the
Adapter PT and the Proxy PT in thering's second and
third component place holders, respectively. Findly, in
step 11, the user instantiates all pattern templates with
the selected services. The user may now apply the ap-
propriate Behavioural Patterns (e.g. as defined in sec-
tion 3.5), and run the application using the Behavioural
Operatorsto control its execution.

Asafina remark, the user may eventually apply the
structural operators again to reconfigure the applica-
tion. For example, to perform a post-mortem analysis
of the data produced by the Problem Solver as illus-
trated in Fig. 4 (see section 2), the user may apply the
Renamestructural operator to transform the ring into
a pipeline, and define the Database system as the first
element of the pipeline.

5.3. Semantics of behavioural operators

In this sub-section we focus on the semantics of the
Execution Operators which act upon pattern instances.

Pattern instances are structural pattern templateswhich
have been assigned a behaviour pattern, and within
which components have been aready bound to exe-
cutable component instances.

The Execution Operators can be divided into two
groups. The first group controls the execution of a
pattern instance, and includes: Start, Terminate, Stop,
Log, Resume, Repeat, Restart, Limit, and Steepre-
viously mentioned, the applicability of these operators
depends on the kind of runtime environment available.
For instance, the Globus system may support particular
executionmechani smsthat arenot supportedin Legion,
etc. For now, we assume the existence of at least the
following operations — and the ability to communicate
these requests to the underlying runtime system: to
start running the component instance; to suspend/stop
the current execution by temporarily saving the exe-
cution status; to resume the execution from the saved
status; and to terminate the execution of the component
instance. The second group of Execution Operatorsal-
lows changesto the coordination and reconfiguration of
pattern instances, and includes: ChangeDependencies
and Coordinate Currently, we limit these changes to
the pattern interactions. The examples that follow are
restricted to the first group of execution operators.

For illustration purposes we describe the semantics
of the execution operators using a synchronous model,
namely the CO_OPN/2 formalism [30,31]. For in-
stance, we assume that the operators Start, Terminate,

252 M.C. Gomes et al. / Pattern operators for grid environments

and Stopact synchronously over all component in-
stances contained within a pattern. Hence, the invo-
cation of the Start operator would imply invoking, si-
multaneously, the start operation on all component in-
stances. It is also possible to consider cases where the
invocation of components is asynchronous — however,
we restrict our analysis for now for the synchronous
case — primarily because of the particular benefit the
CO_OPN/2tool we use offers in undertaking such an
analysis.

Figure 16 gives an application example of the Start
and Terminateoperators over a particular instance of
a pattern. The notation used is adapted from the
CO_OPN/2 formalism [30], which provides Object-
Oriented abstractionsfor modelling systems, and where
synchronisation between object invocations can be
modelled. Moreover, the CO_OPN/2 formalism allows
the functionality of each object to be represented as a
Petri-Net — where data flow in the Petri-Net can model
abstract datatypes. The objectsin CO_OPN/2 are seen
by us as components. Figure 16 shows an example
of a pipeline instance with three components, where
each component is represented asan ellipse. Aswe are
not, at this stage, concerned with theinternal behaviour
of components, we do not show Petri-Net blocks for
these. The input ports (method cally available on a
component are represented by black rectangles along
the border of the ellipse. Similarly, the output ports
(or Gateg are represented as white rectangles. Syn-
chronisation between components is achieved if there
are arrow transitions connecting the component ports.
This means that the methods associated with the ports
are invoked synchronously. As such, the figure shows
that the output port (Outputd)) of the leftmost compo-
nent in the pipeline instance is synchronised with one
of the input ports (Input(d)) of the middle component.
As soon as the Output method is invoked, the Input
method in the other component isinvoked aswell, and
datais exchanged in the process. Likewise, the output
port (Outputd)) of the middle component is synchro-
nised with the port Input(d) of the rightmost compo-
nent. In this way we represent a simplified kind of
Pr oducer/ Consumer behaviour between the com-
ponents of the pipeline.

Another important aspect of modelling with CO_OP
N/2 is the notion of a context— which in the figure
is represented as a rectangle with round corners. A
context is an entity encapsulating a set of components
and the coordination rules that constrain those compo-
nents. As with components, contexts also have input
and output ports. Using the CO_OPN/2 formalism, we

represent context’s ports as bi-coloured rectangles. In
the inport ports, the dark part of the rectangleis on the
outside of the context and the white part is on the in-
side, and in the output portsis the opposite. In Fig. 16
there is a single context which represents a pipeline
instance encapsulating three components. The invoca-
tion of the Start method over the pipeline context im-
plies the simultaneous invocatioof the Start method
of every component. We represent this simultaneous
invocation by the simultaneity symbol fivhich belongs
to the CO_OPN/2 formalism. The simultaneity symbol
is one of the synchronisation policiethat the formal-
ism provides. The other two policies are the sequence
(the methods are invoked in sequential order) and the
alternative or nondeterminisifthe method to be exe-
cuted is selected in a non-deterministic way among a
set of available alternatives).

The Terminateoperator has a similar behaviour to
the Startoperator, as shown in Fig. 16. Theinvocation
of Terminateover the pipelineimpliesthe simultaneous
invocation of the Terminatemethod at all component
instances.

The semantics of the Stopoperator implies the im-
mediate suspension of the execution of al component
instances—henceit is similar to the Terminateoperator.
Using this operator, however, also causesthe state of all
component instances to be recorded. Figure 16 could
be extended to represent the Stopoperator by including
an extra component in the pipeline context. This extra
component would be responsible for collecting, simul-
taneously, the execution state of al components— prior
to terminating the execution of a component.

The semantics of the Resumend Log operators are
related. While the latter implies saving the execution
state at well identifiable points, the former is used to
continue the execution of the pattern from one of sev-
eral points identified by the Log operator. Figure 17
represents an example of the Log operator for storing
data flowing in the pipeline instance of Fig. 16. In the
example, we assumethat the Log operator isinvoked at
the sametime asthe Startoperator, and that the logging
operations are realised by the Log componerinstance.
The figure shows a Petri-Net representing a possible
behaviour for the component supporting the Log func-
tionality. The component used for logging datamust be
started simultaneously with the execution of other com-
ponents — hence the Init_logging method call. Subse-
quently, whenever an output is generated by a pipeline
stage, the Log_datamethod is invoked, causing data to
be stored into a Repository The identity of the com-
ponent which generated the output in the pipeline is

M.C. Gomes et al. / Pattern operators for grid environments

253

Legend:

Output(d)

Component
instance

Pattern
() fien,
(Context)
== | nput port
(l\fah’c)nd)
—— Output port
(Cate)

Input(d)

Terminate

Synchronisation
/I Simultaneity

Terminate

Fig. 16. Example of the Start and Terminate operators over a pipeline pattern instance.

i

o T
.__' |/ -
i St
- - e, i) |||[||r:q,:|_- r!
[.
) | A .
1 u - -
X Terminin:
s
",
Inil ||'!.:!:|||::- - Lesg_dacafc.<)
al® {ealh)
. o kg - .l. -
- o) ' dain mfo
. L I
log A § | =ave_ilaca
v COTH Pon L ilira, psc]
.,_I. A Repiilory - ’
Log Componel ™ ——e -

~iari T — Shurt

Cigiman il b Frpastiad) -.- ..,
|'crminane TErmminang
Papeelime connei

Fig. 17. Example of the Log operator invoked simultaneously with the Start operator over a pipeline instance.

also recorded via Saveddata (the ¢ parameter in the
Log datamethod identifies the component).

For the Repeabperator it is necessary to provide a
counter to record the number of timesapatterninstance
has been executed so far. It isalso necessary to identify
when the execution must terminate. Such an operator
is particularly useful for supporting loops in scientific
codes. An example of the Repeabperator can be pro-
vided by extending Fig. 16 with thefollowing elements:
the pipeline context would have a new output port,
e.g. end.of_execution which would be automatically
invoked at the end of the pipelineinstance's execution;
anew context encapsulating the pipeline contexivould

be added; another component would be created in the
outmost context that would represent the behaviour of
the Repeatoperator. This component would imple-
ment a counter, initialised with the number of times
the pipeline pattern would have to be repeated. The
counter would be decremented synchronously with the
invocation of the output port “endof executiofi.

The Restartand Limit operators are similar in the
sense that both depend on the notion of time for con-
trolling a pattern. The Limit operator waits until the
time value received as input expires — followed by the
termination of the pattern instance managed by this op-
erator. The Restartoperator waits for the expiration of

254 M.C. Gomes et al. / Pattern operators for grid environments

the value held by the input time token, and invokes the
start operation over the pattern it manages. Figure 18
gives an example of the semantics of the Restartop-
erator when applied over the pipeline instance of the
example in Fig. 16. Figure 18 adds a new context
(Restart contejtto Fig. 16, which encapsulates two
components: one componentisatimer which generates
atick at aspecific timeinterval (e.g. asecond); the sec-
ond component represents the steps necessary for the
restart operator. One of the transitions in the Petri-Net
in this second component decrements the time interval
received asargument at each tick of thetimer, and keeps
the result in place counter When the counterreaches
zero, a second trangition is fired which launches the
restart of the pipeline's execution and initialises again
the place counterwith the original time interval (kept
in the place time).

5.4. Behavioural operators in use

Figures2 and 3 (section 2) describeare-configuration
examplewhere the Monitoring serviceis replaced with
amore complex service (Monitoring and Statistics Ser-
vice). Applying the Stopbehavioural operator enables
the complete workflow to beterminated. Alternatively,
the user might also apply the Stopoperator over in-
dividual patterns — such as the Proxy pattern instance
that represents the Steering interface. The user must
then replace the Adapter pattern with an instance of the
Monitoring and Statistics Servic&inally, the Restart
operator is applied to this new service (and eventually
also to the Proxy pattern instance that represents the
Steering Interface).

Having illustrated the application of structural and
behavioural operators, next section describes the cur-
rent implementation status.

6. Implementation | ssues

This section describes the existing implementation
of structural patterns and structural operators over the
Triana environment. It also points out the continua-
tion of the work on the implementation of behavioural
patterns and operators.

6.1. The triana environment
Triana [19] is a Java-based workflow environment

that supports application construction based on dis-
tributed components. Application execution results

from the collaboration between various network Peers
(see [20]), which act both as clients (for local users
requests) and as servers (for remote peers execution
requests). Locally, each peer may access existing Grid
services to execute high-throughput computations.

Through the Graphical User Interface (Fig. 19) pro-
vided with Triana, users have access to services/tools
(e.g. components for Signal Processing, Mathematical
Calculations, etc.) that can be easily composed for
building scientific applications. Users drag and drop
components from the toolbox onto the scratch pad on
theright side, and create aworkflow by dragging cables
that connect componentstogether. Sender components
are connected through output ports (or nodes) on the
right-side, to receivers' input ports (on the left-side).
Users may also group selected components together
into a component which represents the entire set. This
“group component” also has input and output ports for
connecting the group (and some of its hidden elements)
with other components.

In Triana, execution follows the data-flow model: as
soon as data arrives to a component’s input port, the
service it representsis launched. Moreover, users may
define which parts of the workflow may be executed
remotely. Thelocal Peer makes the necessary requests
to remote Peers, collects the results, and displays them
through the GUI. Execution may be supported by each
Peer itself or may be realised by accessing a local re-
source manager (e.g. Globus GRAM [13]).

6.2. Structural patterns and operators in triana

Structural Patterns are available in Triana's tool box
as normal components (from a graphical perspective).
Theuser just hasto drag and drop them into the scratch
pad and initialise them. For example, Fig. 19 shows a
Ring PT and a Star PT that resulted from the initiali-
sation of DrawRingand DrawStar, respectively. Each
pattern template represents a set of component place
holders called DummyUnitswhich can be instantiated
to other PTs or tools from the toolbox. DummyUnits
are connected together according to the PT’s specific
structural Pattern (i.e. ring, star, etc).

Structural Operators are available as parameters to
pattern templates. For example, Fig. 20 shows the ap-
plication of the Embedstructural operator to the Ring
PT. To userthis, the user must invoke the Ring's PT pa-
rameter window to specify that the Pipeline PT should
be embedded into the first Ring PT’s place holder
(called DummyUnit). The Pipeline PT aready has an
an embedded Star PT. This example shows one of the

M.C. Gomes et al. / Pattern operators for grid environments 255

Restart(time_interval, pipeline)

t .7
counter
2

decrement_
interval

get_interval

/)
| - RNy

do_restart

Restart context

Output(d)

Terminate

Output(d) Input(d)

Terminate

Terminate

Pipeline context

Fig. 18. Example of the Restart operator over a pipeline instance.

steps to build the structure shown in the example de-
scribed throughout the paper.

Structural pattern templates are implemented as
groupsin Triana. The group contains. a) the connected
DummyUnits, and b) a control task that keeps track
of the number of component place holders (and their
connections), listensto relevant events (like requeststo
instantiate DummyUnit$, and supports the execution
of the structural operators.

The user may now compose an application by com-
bining PTs with existing components, and may save
them as a group component in the toolbox for later
reuse. Once an application has been constructed — one
or more behavioural patterns may be used to specify
the data and control flows between components.

6.3. Usage scenario: Galaxy simulation

To illustrate the use of PTs in Triana, we utilise a
“Galaxy Formation” code example. The example in-
volves generating the position of particles and sub-
sequently animating these — using a combination of

“DataReader” and “Animation” modules from Triana.
A datafileisloaded by asingle Data Reader Unit within
Triang, and passed to al the Triananodes. Nodes then
buffer the data for future calculations. Note that the
datafile could be copied beforehand and distributedina
parallel way also. Theloaded dataisthen separatedinto
frames, distributed amongst the various Triana servers
on the available network and processed to calcul ate the
column density using smooth particle hydrodynamics.
These types of simulations can usually generate large
data files containing snapshots of an evolving system.
They are therefore quite representative of the types of
applicationsthat may be executed over Grid infrastruc-
ture. In this particular example, after undertaking a
simulation run, a snapshot is produced — and which is
independent of others over time. This suggests that
any data analysis on frames can be carried out indepen-
dently. Grid resources are used in thisinstanceto dis-
tribute and remotely process data frames, which finally
return a small image to the visualisation/controlling
client. The images can be subsequently re-assembled

256 M.C. Gomes et al. / Pattern operators for grid environments

File Edit Tomls Dptions Windew Help

I=IEilx

Boeg i @a
DoB@s OXBEX KO

ETrlm-l Toohoaoel
B dwien

= 7] Comemon

™ Cemes

&=] Edaing

B 7] Gri PRy b

& ™ imegaProc

T n [e Cww
Ouiied_ [Omes = SdW

|
.-n
o

0=] s
¢ £ Pamems

[raw s daarer
[Drmwencmds
DD'-Irﬂlpdln-l
DI'.I‘EHI“I'\'I:IW
[} prmwiting

DD'-r.H:l.r
Dr_l_.rﬂrﬂ-lluﬂll:
&= Sig=mglPrae

[Tanl Tres Fopsnded

Fig. 19. The Triana Graphical User Interface.

Mame of patiern o be ombedded |F||:-tllr|t

Mame of embadding positian |I:|l.-|11rr1'.-'LI-1Il: |

Siructural Oparalons |I-'I.Id - |

[l dulo cammin

S ok || cancet | Appiy |

Clripaline 5o o

-

Fig. 20. Application of the Embed Structural Pattern to the Ring Pattern Template.

in real-timeinto the correct chronol ogical order to gen-
erate a smooth animation.

Galaxy and star formation simulation codes gener-
ate binary datafiles that represent a series of particles,
along with their associated properties as a snap shot in
time. The user of such codes would like to visualise

this data as an animation in two dimensions, with the
ability to vary the perspective of view, and project that
particular two dimensional slice and re-run the anima-
tion. Due to the nature of the data, each frame or snap
shot is a representation at a particular point in time of
the total data set. It is possible to distribute each time

M.C. Gomes et al. / Pattern operators for grid environments 257

W Fipgline

| EvawsTar [Lanpimp | DummRRIE | Dummyunicl [Dymmyuni |

Mame of pattern to be embedded |F'-utlu'-t |

Hama of ambedding position |Cummyunic [

Structural Dporators | Ermnbed - |

[Auto commit

Tor ||

Cance| H Apply |

Fig. 21. The animation is supported by a pipeline PT which is embedded in the nucleus of the star PT.

= B

Filename for Instantiaiion Fms-.l’ﬂa]utﬁln'.'I:la'l:uFr-:meH.uder.l:mI” Erowse |

[Awta commin

| DK | Cancel “ apply

Pipelimel

Pipelire2

Fig. 22. An example of acomponent place holder instantiation.

dlice or frame over a number of processes and calcu-
late the different views based on the point of view in
parallel.

The Galaxy formation example may be represented
by a Star PT, where the nucleus contains the actions
necessary to generate and control the animation exe-
cution, and the satellites represent image processing
and analysis actions. In this way, the same animation
can be ssimultaneously analysed/processed in different
ways. Figure 21 shows a Star PT with three compo-
nent place holders — the satellites (DummyUnitland
DummyUnit3, and the nucleus (DummyUnij. As the

animation is developed in stages, these are represented
by a Pipeline PT. Figure 21 showsthe Pipeline PT em-
bedded in the nucleusof the star by selectingtheembed
structural operator, and by identifying the embedding
position (DummyUni}.

Figure 22 shows the Star PT with the embedded
Pipeline PTs, to support theimage processing activities
required to generate the animation. The next step in-
volvesinstantiating the place holder (named DummyU-
nit) of the pipeline (in this case a DataFrameReader
is selected from the Triana toolbox) — as illustrated in
Fig. 22. Figure 23 shows the final configuration, with

258 M.C. Gomes et al. / Pattern operators for grid environments

s [

| ¥

Fpeline

[#ipeline

I Fipelinel

o B

DataFram == cepguence. . tﬂlmllnzl
Pipelime?

S

[Pipeline1

)

[Pipalinez

Pipeline e ——— el e _

HCTUITE o —r—rr

Fig. 23. A possible final configuration for the image processing of the “Galaxy Formation example”.

all component place holders instantiated with units.
Hence, the binary data file produced by the simula-
tion codeisloaded by the DataFrameReadeaunit. The
frames are sent to the SequenceBuffamit — a media
controller that allowsthereplay of the application. The
user may stop the animation, rewind it, restart it, etc.
The ViewPointProjectionunit takes the 3D data and
projectsthisonto a 2D space outputting a standard Pix-
elMap. Theuser may change the point of projection by
changing parametersrepresenting the (x,y) coordinates.
The resulting animationimages are analysed/processed
in paralel in Pipelineland Pipeline2 The Gradient-
Edgeunit selects images based on a gradient edge de-
tector, and subsequently displays these using the Im-
ageViewunit. In Pipeline2 the number of non-black
objects in each image are counted by CountBlobaunit
and displayed in ConstViewunit.

Figure 24 shows the output of units ImageViewand
ConstViewand showsthe parameter interface panel for
unit SequenceBuffer

Alternative Configuration: A possible alternative
configuration decouples the view point projection of
the simulation, from the reading of data, allowing par-
allel animations with different view points. A Star PT
supports the configuration (Fig. 25): the data is read
at the nucleus by unit DataFrameReadefthe unit Se-
guenceBuffewas omitted for simplification) and sent
to the satellites Pipeline PT and Ring PT to be pro-

cessed. The DataFrameReadennit may interact with
the satellites according to a Streamingbehavioural pat-
tern. In the satellite supporting the Pipeline PT (see
Fig. 25), a user may select the appropriate viewpoint
through the ViewPointProjectionunit. The resulting
images may be scaled by the Scalelmagenit and sub-
sequently displayed by the ImageViewunit. The Pro-
ducer/Consumerehavioural pattern may represent the
interaction between the Scalelmagéthe producer) and
the ImageViewunit.

In the satellite with the Ring PT (Fig. 25), the view-
point isautomatically selected according to the number
of non-black objectsin each image. For the Pipelinel
stage contained within the Ring PT (see Fig. 26), the
imagesproduced by ViewPointProjectiorare visualised
in the ImageViewunit. In the next stage of the ring,
the CountBlobsunit counts the number of non-black
objects in each image, followed by a stage (Pipeline]
which evaluates if it is necessary to change the view
point. If thisisthe case, the Scrollerunit is triggered
and inputsthe new valueto the“x” coordinate parame-
ter for the unit ViewPointProjectionclosing thering in
this way.

6.4. Ongoing work

The continuation of thiswork is to extend Trianato
support different behavioural patterns. Thebehavioural

M.C. Gomes et al. / Pattern operators for grid environments 259

}_m T

1] 1 1] 1l an

H4AkIE»

(=] 3

| Pamiling:

[Fipalina2

il —

e .

1 Snar

DaraFram

| Pipeline

- |

Ciyry Fr 3 rm [—— e i _&]Iglrmﬂﬂ =

] Ring

-

[ar e T ram [—— !‘ﬂl_"-_j___l’.l:ll-lﬂll-ﬂtll ——— Pogesline

Fig. 25. Parallel animation execution with different view points.

patterns will be stored as Java classes, and will be ap-
plied to apattern template visible on the scratch pad. In
case of multiple pattern templates, the particular tem-
plate should be explicitly identified. In an application
composed of both structural PTs and components, the
behavioural patterns may only be applied to the struc-

tural PTs. Thisis achieved by having the user annotat-
ing a start-point and an end-point on the structural PT,
and then running the appropriate behavioura pattern
(e.g. selection of thefirst and second elementsinaRing
PT and application the Observetbehavioural PT). The
implementation of behavioural patternswill requirethe

260 M.C. Gomes et al. / Pattern operators for grid environments

Pipeline

(8]

CountBlobE Compare g Scroller | e
i
nstaen]

I

I |

Fig. 26. Detail of the stage named Pipelinein the Ring PT from Fig. 25.

challenging task of supporting the switching between
the Triana s dataflow execution model, and more com-
plex control flows. The subsequent step will be the
implementation of behavioural operatorsfor execution
control and reconfiguration (e.g. management of the
flow within the PT).

7. Conclusion

This paper outlines an approach for constructing
Grid based applications, using a set of Pattern Tem-
plates and Operators. Pattern templates are specified
in UML, and consist of a collection of class libraries
which describe properties associated with each type of
pattern. Operators are of two types: structural and be-
havioural, and enable a developer to modify the tem-
plateitself, or data/control flowswithin it, respectively.
UML descriptions of common structural patterns are
provided, along with the definition and semantics of
the operators. The operators are aimed at being used
within an existing Problem Solving Environment, and
to extend the functionality of the environment. Some
transformati onsbetween operatorsal so requirethe PSE
to label/annotate elements of the Pattern Template, to
enable appropriate associations. These annotationsare
used to aid operator semantics. The need for software
engineering support of thiskind arose from our investi-
gation on existing work on Grid computing—which has
primarily focused on implementing workflow-based
environments, and lacked a more systematic investiga-
tion on understanding or abstracting common themes
that underpin these. Having extended Trianato support
our approach, we have opened the way to apply the
described patterns and operatorsto Grid environments.

Acknowledgements

Simulation data courtesy of A. Nelson, N. White, P.
Williams, and R. Philp, Galaxy Formation Group, De-

partment of Physicsand Astronomy, Cardiff University,
UK. We would aso like to thank Matthew Shields and
lan Wang for support on Triana programming. Special

thanks are due to lan Taylor for access to the Triana
source code.

References

(1

(2

(3]
(4

(9]

(6]

(8l

(9

[10]

(11

Grid Computing Environments Working Group, See Web site

at: http://www.computingportals.org/. Last visited: August
2002.

A. Hoheisel, Fraunhofer Resource Grid — Grid Application
Definition Language Global Grid Forum, Edinburgh, July,
2002.

Dan A. Marinescu, Internet Based Workflow Management:
Towards a Semantic WeWiley, New York, 2002.

Dan A. Marinescu, A Grid Workflow Management Archi-
tecture, Global Grid Forum Working Documefgubmitted,
School of Electrical and Computer Engineering, University of
Central Florida, Orlando, Florida 32816, USA.

J. Mclaren, V. Sander and W. Ziegler, Grid Resource Al-
location Agreement Protoco(GRAAP, See web site at:
http://www.people.man.ac.uk/Zzcgujm/GGF/graap-wg.html.

See also the general Scheduling area of the Global Grid Fo-
rum, led by Bill Nitzberg and Jenny Shopf, at: http://www-
unix.mes.anl.gov/ schopf/ggf-sched/. Last visited: August
2002.

O.F. Ranaand D. Jennings, Automating Performance Analysis
from UML Design PatterngResearch Noje Proceedings of
EuroPar 2000, Munich, Germany.

UML Tools, See Web site at: http://www.cetus-links.org/oa
uml.html#oo_uml_utilities tools. Last visited: August 2002.

E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software
Addison-Wesley, 1994.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and
M. Stal, Pattern-Oriented Software Architecture: A System of
Patterns John Wiley & Sons, 1998.

|. Foster and C. Kesselman, The Globus Project: A Sta-
tus Report, Proc. IPPS/SPDP 98 Heterogeneous Comput-
ing Workshop 1998, pp. 4-18. Globus related publica-
tions can also be obtained from Web site at: http://www.
globus.org/research/papers.html. Last visited: February 2003.

S. Tuecke, K. Czajkowski, |. Foster, J. Frey, S. Graham and

C. Kesselman, Grid Service SpecificationOpen Grid Ser-
vice Infrastructure WG, Global Grid Forum, Toronto, Canada,
February 2002.

[12]

[13]

[14]

[19]

[16]

[17]

(18]

[19]

[20]

(21

[22]

M.C. Gomes et al. / Pattern operators for grid environments

G. von Laszewski, |. Foster, J. Gawor and P. Lane, A Java
Commodity Grid ToolkjtConcurrency: Practice and Experi-
ence, 13, 2001.

K. Czajkowski, |. Foster, N. Karonis, C. Kesselman, S. Martin,
W. Smithand S. Tuecke, A Resource Management Architecture
for Metacomputing Systenfroc. |PPS/SPDP ' 98 Workshop
on Job Scheduling Strategies for Parallel Processing, 1998,
pp. 62-82.

Rajkumar Buyya, Grid Computing InfoCentreSee Web site
at: http://www.gridcomputing.conV/. Last visited: August
2002.

G. Fox, D. Gannon and M. Thomas, A Summary of Grid Com-
puting EnvironmentsConcurrency and Computation: Prac-
tice and Experience, 2002.

The Global Grid Forum. See Web site at: http://www. gridfo-
rum.org/. Last visited: August 2002.

D.W. Walker, M. Li, O.F. Rana, M. Shields and Y. Huang,
The Software Architecture of a Problem Solving Environment
Concurrency: Practice and Experience, December 2000.

D. Abramson et a., A Tool for Distributed Parametric Mod-
elling, See Web site at: http://www.csse.monash.edu.au/
davida/nimrod.html/. Last visited: August 2002.

|. Taylor et a., TRIANA See Web site at: http://www.triana.
co.uk/. Last visited: October 2002.

I. Taylor, O.F. Rana, R. Philp, I. Wang and M. Shields, Sup-
porting Peer-2-Peer Interactions in the Consumer Gigth
International Workshop on High-Level Parallel Programming
Models and Supportive Environments (HIPS) at IPDPS, Nice,
France, April 2003. IEEE Computer Society Press.

C. Lee, S. Matsuoka, D. Talia, A. Sussman, N. Karonis, G.
Allen and J. Sdltz, A Grid Programming Primer Program-
ming Models Working Group, Global Grid Forum meeting,
Washington DC, July 16-18, 2001.

I. Murray, Cole and Andrea Zavanell&oordinating Hetero-

(23]

[24]

[29]

[26]

[27]

(28]

[29]

(30]

(31

(32

261

geneous Parallel Systemswith Skeletons and Activity Graphs,
Journal of Systems Integratidi®(2) (2001), 127-143.

I. Murray, Cole, Algorithmic Skeletons: A Structured Ap-
proach to the Management of Parallel Computati®tman,
1989

S. Gorlatch, Extracting and implementing list homomor-
phismsin parallel program development, Science of Computer
Programming33(1) (1998), 1-27.

C.A. Herrmann and C. Lengauer, Transforming Rapid Pro-
totypes to Efficient Parallel Programs, book chapter in Pat-
terns and Skeletons for Parallel and Distributed Computing
A. Rabhi and Sergei Gorlatch, eds, Springer Verlag, 2002.

The Common Component Architecture Forum. See Web site

at: http://www.cca-forum.org/. Last visited: August 2002.

E. Friedman-Hill, The Rule Engine for the Java PlatforSee
Web site at: http://herzberg.ca.sandia.gov/jess/. Last visited:
August 2002.

Michael Weber, Ekkart Kindler, The Petri Net Markup Lan-
guage(PNML), See Web site at: http://www.informatik.hu-
berlin.de/top/pnml/. Last visited: November 2002.

Z. Nemeth and V. Sunderam, A Formal Framework for Defin-
ing Grid SystemdProceedings of IEEE CCGrid 2002, Berlin,
Germany

D. Buchs and N. Guelfi, A Formal Specification Framework
for Object-Oriented Distributed Systems, IEEE Transactions
on Software Engineering6(7) (July 2000).

G. Di Marzo Serugendo, D. Mandrioli, D. Buchs and N.
Guelfi, Adding Real-Time Constraints to Synchronised Petri
Nets Technical report 2000/341, EPFL, Lausanne, Switzer-
land, 2000.

O.F. Rana and D.W. Walker, Service Design Patterns for
Computational Grids, in: Patterns and Skeletons for Parallel
and Distributed ComputingF. Rabhi and S. Gorlatch, eds,
Springer, 2002.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

