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Abstract. While modern software engineering, with good reason, tries to establish the idea of reusability and the principles of
parameterization and loosely coupled components even for the design of performance-critical software, Fast Fourier Transforms
(FFTs) tend to be monolithic and of a very low degree of parameterization. The data structures to hold the input and output data,
the element type of these data, the algorithm for computing the so-called twiddle factors, the storage model for a given set of
twiddle factors, all are unchangeably defined in the so-called butterfly, restricting its reuse almost entirely. This paper shows a
way to a component-based FFT by designing a parameterized butterfly. Based on the technique of lifting, this parameterization
includes algorithmic and implementation issues without violating the complexity guarantees of an FFT. The paper demonstrates
the lifting process for the Gentleman-Sande butterfly, i.e., the butterfly that underlies the large class of decimation-in-frequency
(DIF) FFTs, shows the resulting components and summarizes the implementation of a component-based, generic DIF library in
C++.

1. Introduction

When the Fast Fourier Transform (FFT) became
widely known in 1965 [3], it revolutionized the use of
the Discrete Fourier Transform (DFT) because it re-
duced the computational complexity of the DFT to a
point where the methods of the DFT analysis became
applicable in practice. Since then, the DFT has grown
into an important tool for many disciplines in scien-
tific and engineering computing, including quantum
physics, spectral analysis, acoustics, speech process-
ing, optics, image processing, to name but a few. As
a result, the FFT is now one of most widely used al-
gorithms. It is therefore surprising how little this algo-
rithm (family) has been noticed by research in software
engineering. While software design has dramatically
changed over the last forty years, FFT programs have
changed only little, thus benefiting only little from the
advances in software engineering.

One of the central ideas in software engineering to-
day is the idea of reusability. Modern software engi-
neering now propagates the design principles of param-
eterization and modularization via components [30],
so that software can be adjusted at the interface level
solely, with no need to change the implementation. In
contrast, FFT implementations tend to be monolithic
and of a very low degree of parameterization. They

may allow users to customize the size and scaling fac-
tor of the transform, but exclude from parameterization
quite crucial parts of the computations. Most notably
the computational core, the so-called butterfly, “hard-
wires” all, or most, of its parts. The data structures
to hold the input and output data, the element type of
these data, the algorithm for computing the so-called
twiddle factors, and the storage model for a given set
of twiddle factors, all are typically unchangeable at the
user’s level. If, however, a butterfly would be designed
in a more flexible way, be composed of loosely coupled
components, an FFT could benefit in several ways:

– Users could use their own types, e.g., for the in-
put data or the container holding them. These
types could be introduced specifically for the FFT
or could come from a previous computation step;
they could modify the mathematical semantics of
the FFT, e.g., if fixed-point arithmetic or a com-
plex type of high precision were introduced, or
provide additional functionality such as tracing or
bookkeeping.

– FFT implementors could extend or replace parts
of their implementation without touching the code
outside the respective component. There are, for
example, well over 30 algorithms for bit-reversal
only [14], none of which fits all needs equally.
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While currently implementors are forced to de-
cide on one method, a component-based approach,
similar to the idea of poly-algorithms [15], would
allow them to offer choices and would enable users
to select the implementation that is most appro-
priate for them. Moreover, the maintenance costs
of the program would decrease since, by construc-
tion, replacing or upgrading a component does not
affect the stability of any other component.

– Simulations and experimental configurations could
be run easily. It is for example often hard to
compare the different computational effects of two
functionally equivalent implementations without
running each along with the rest of the FFT, for
the interaction with other parts of the FFT can en-
able or hinder compiler optimizations, improve or
worsen the cache behavior, and, in general, have
computational effects that are hard to predict. A
component-based framework allows simply swap-
ping components in and out and ensures at the
same time that all but the factor of interest is set
fixed.

While the advantages of a component-based FFT
usually are not questioned directly, a common concern
is the potential loss of efficiency. For a component-
based FFT to work practically, it is therefore of utmost
importance to keep the right balance between genericity
and efficiency. In other words, it is necessary to param-
eterize the butterfly in a way that allows not only for dif-
ferent instantiations but also ensures that its genericity
does not violate the complexity guarantees of an FFT.
How to find the right level of abstraction, is the main
topic of this paper. Our approach is based on the tech-
nique of lifting [17,25], which, in short, starts with a
non-generic butterfly and stepwise removes all, mostly
implicit, assumptions that do not compromise the cor-
rectness or efficiency of the computation. The impor-
tant idea thereby is to use the original, non-generic but-
terfly as a protection against over-generalization – as
long as it can be regained by specialization, the abstrac-
tion has “lifted” the butterfly without compromising its
efficiency the least.

Lifting has been the underlying technique for one of
the most successful recent software libraries, the Stan-
dard Template Library (STL) [29,18]. STL became
known for including genericity into highly efficient data
structures and algorithms to an extent no other library
had done before. Since then, STL has a tremendous
impact on the design of libraries in C++ and other
languages. From early successors such as MTL and
POOMA [27,23] to the current, most comprehensive

initiative for C++ libraries, Boost [7], the number of
libraries in the spirit of STL is growing. In the area of
FFTs, however, a component-based approach has been
lacking yet. We started filling this gap by designing
and implementing a component-based C++ library, at
first for a subset of FFT algorithms: the decimation-in-
frequency (DIF) FFT. The DIF library currently sup-
ports four different DIF algorithms, divided into about
120 components (3000 lines of codes).

In this paper, we focus on the core of a component-
based FFT, the parameterized butterfly, show how to lift
a butterfly and present the components that naturally
result from the process of lifting. First, in Section 2,
we recapitulate the mathematics of the FFT and the
DIF and summarize the algorithmic issues of the DIF
that are relevant for the design of components. Since
our purpose merely is to keep the presentation self-
contained we refer the interested reader to the various
textbooks and surveys, e.g. [2,4,8,16,34], for a more
thorough discussion. Sections 3 and 4 form the two
core sections of the paper. Step by step we param-
eterize a monomorphic butterfly by input types, data
representations, algorithms, and even storage models
and give then an overview of the resulting DIF library.
In the last part of the paper, Sections 5 and 6, we
present experimental results and discuss related and fu-
ture work. Throughout the paper we will keep the dis-
cussion mostly language-independent but illustrate the
lifting process with snippets in C++. Readers need
not have any deep knowledge of C++ but should be
able to map the presented abstraction mechanisms to
class types and other corresponding features in object-
oriented or generic programming languages. Further-
more helpful is a general knowledge of languages that
have polymorphic type system with type parameters,
as, for example, the template system in C++, the pro-
posed extension of the Java type system, or generics in
Ada, in which the composition of components happens
in an efficient, i.e., statically resolvable, way.

2. Fourier Transforms

The term Fast Fourier Transform denotes not just
one but an entire class of algorithms: any implementa-
tion of the Discrete Fourier Transform (DFT) [10,13]
with complexityO(n · log n) for input of length n is an
FFT. There are several ways, hence several FFT algo-
rithms, to achieve logarithmic behavior. For the most
frequently used FFTs, the radix-2 FFTs for input of size
2k, the key idea is to arrange the computation in a form
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that, due to its flow graph shape, is called butterfly.
Butterflies come in different forms for different radix-2
algorithms. The one we focus on is the Gentleman-
Sande butterfly [11], which underlies DIF FFTs. In
this section we recall the mathematical background of
the DFT, the DIF, and the Gentleman-Sande butterfly
and prepare the lifting process in the next section with
a discussion of the relevant algorithmic issues.

2.1. The Discrete Fourier Transform

Let n be a power of 2 and denote by ωn the following
complex root of unity

ωn = e−2π·j/n = cos(
2π

n
) − j · sin(

2π

n
)

(j2 = −1).

The (one-dimensional) DFT defines a mapping
Cn → Cn,

Xk =
n−1∑
l=0

xl · ωkl
n , xl, Xk ∈ C,

(1)
0 � k � n − 1,

where the sequence Xk represents n consecutive sam-
ples in the frequency domain. The number n is called
the length of the transformation. The DFT can be rep-
resented as a system of n linear equations (x, X ∈ Cn):
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The inverse or backward DFT can be obtained from
the forward DFT by conjugating the number ωn and
scaling the summation with the inverse of the length n
of the transformation:

xl =
1
n

n−1∑
k=0

Xk · ω−kl
n , 0 � k � n − 1. (2)

Note that in some texts the meaning of forward and
backward DFT is switched and that in an implementa-
tion the scale factor could be applied to either one of
them or split in two factors

√
n or even entirely omitted.

In either case, calculating a complex DFT of length n
with the standard methods of linear algebra requires a
quadratic number of (complex) multiplications.

2.2. Decimation-in-Frequency FFTs

The radix-2 DIF FFT is based on the observation that
an DFT of length n can be recursively defined by two
transformations of length n/2 and that its input can be
grouped in n/2 butterflies, each of which performs a
constant number of floating point computations. The
radix-2 DIF is derived from a DFT by the following
sequence of three rewrite steps. First, the summation
in Eq. (1) is rewritten as the sum of two summations:

Xk =

n
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l=0

xl · ωkl
n +

n−1∑
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n
2

xl · ωkl
n

=

n
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n
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2
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n
2 )

n

(3)

=

n
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n
2
· ωk

n
2

n ) · ωkl
n ,

0 � k � n − 1.

Second, Eq. (3) is divided into an even-indexed and
an odd-indexed subsequence. For even-indexed num-
bers, using the identities ωmn

n = 1 and ω2
n = ωn

2
, one

obtains (0 � m � n
2 − 1):

X2m =

n
2 −1∑
l=0
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2
· ωmn

n ) · ω2ml
n

(4)

=

n
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2
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n
2

.

In a similar way, one obtains for odd-indexed num-
bers:

X2m+1 =

n
2 −1∑
l=0

(xl + xl+ n
2
· ω(2m+1)·n

2
n )

·ω(2m+1)l
n

(5)

=

n
2 −1∑
l=0
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n
2
) · ωl
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n
2

,

0 � m � n
2 − 1.

Setting now

yl = (xl + xl+ n
2
) and Ym = X2m

in Eq. (4), yields the first sub-FFT of dimension n/2:
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Ym =

n
2 −1∑
l=0

yl · ωml
n
2

, 0 � m � n
2 − 1. (6)

Similarly, renaming

zl = (xl − xl+
n
2
) · ωl

n and Zm = X2m+1

in Eq. (5), yields the second sub-FFT of dimension
n/2:

Zm =

n
2 −1∑
l=0

zl · ωml
n
2

, 0 � m � n
2 − 1. (7)

With Eqs (6) and (7), the DFT of length n has been
replaced by two DFTs of length n/2, plus the com-
putation of yl and zl, the so-called Gentleman-Sande
butterfly. Figure 1 depicts the annotated butterfly sym-
bol with the three arithmetic operations involved: a
complex addition, a complex subtraction, and the mul-
tiplication with a corrective factor, the twiddle factor
ωl

n.
Since the length n is assumed to be a power of 2, n/2

is a power of 2 again. The same sequence of rewrite
steps just described can therefore be applied to the two
sub-DFTs of length n/2. Generally speaking, at each
stage, 2i DFTs of length 2n−i can be decomposed into
2i+1 DFTs of length 2n−i−1, at the cost of n additions
and n/2 multiplication. Thus, the total number of op-
erations of a DIF amounts to n/2 · log2n multiplica-
tions and n · log2n additions. Figure 2 illustrates the
recursive decomposition into smaller DFTs for the case
n = 8, reducing an 8-point DFT first to a 4-point DFT
and finally to the computation of an DFT of length 2.

On a historical note, the DIF FFT goes back to the
decimation-in-time (DIT) algorithm, the historically
first FFT [3]. DITs and DIFs are dual to each other
in the sense that a DIT can be obtained from a DIF
by performing its computation and data movements in
reverse order, and vice versa. Together, they constitute
the two predominantly used FFTs.

2.3. DIF algorithms

As the mathematical derivation in the last subsec-
tion suggests, a DIF algorithm is a divide-and-conquer
algorithm. Figure 3 lists its skeleton, a nest of three
loops.

One of the interesting properties of a DIF is that it
can be performed in-place. The price for such storage
efficiency, however, is a permutation of either the input
or the output data. As Fig. 2 shows, the repeated re-
ordering presented in Eq. (3) results in the bit-reversal

xl

xl +

yl

-1

wl
n  zln

2

Fig. 1. Gentleman-Sande butterfly.

of the output, that is, the element on position i has been
swapped with the element at position j, where i is ob-
tained from j by writing j in binary form and reversing
its bits. However, the realization of the DIF that the
flow graph in Fig. 2 suggests, is not the only possible
one. Bit-reversing the output can be avoided if the input
is already given in bit-reversed form or if butterflies and
permutations are intertwined. In the notation of Chu
and George [2] we therefore distinguish the following
three kinds of DIF algorithms.

– In a DIFNR (Fig. 2), the input is given in natural
order and the output is bit-reversed. The innermost
loop of the DIF, the butterfly loop (see Fig. 3),
initially has length n/2 and decreases by a factor
of 2 in each step. A disadvantage of the DIFNR

is that the twiddle vector has to be loaded into the
innermost loop.

– In a DIFRN , the input is bit-reversed while the
output is in natural order. The DIFRN requires an
initial permutation of the input but has the advan-
tage that the twiddle factor in the innermost loop is
constant, so that the load of the twiddle container
can be hoisted out. In contrast to a DIFNR, the
inner loop initially has length 1 and is increased by
a factor of 2. Figure 4 shows its flow graph. Some
hardware supports bit-reversed arithmetic directly.

– In a DIFNN , both the input and the output are
in natural order since the DIFNN performs the
permutation during the computation, without an
extra permutation step. A DIFNN needs, how-
ever, an auxiliary container, thus is the most space-
expensive DIF. The DIFNN is sometimes called
ordered DIF, its flow graph given in Fig. 4.

Our DIF library contains an algorithm, DIFNRN ,
which is a DIFNR with subsequent bit-reversal and
can thus be thought of as an in-place ordered DIF. De-
spite the quite different computational characteristics
of these 4 algorithms, we will see that the component-
based approach allows for a great amount of sharing.
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Fig. 2. The flow graph of a complete DIF decomposition of an 8-point DFT. Figure redrawn from Oppenheim & Schafer [21], Fig. 9.20.

Fig. 3. The control flow of a radix-2 DIF algorithm.

2.4. Twiddle factors

The second computationally intense part of a DIF,
besides the loop nest just discussed, is the computa-
tion of the twiddle factors. Obviously, the trigono-
metric functions involved are expensive, but there
are several ways to take advantage of the symme-
try of complex roots of unities and other identities of
the sine and cosine functions. For FFTs of length
n = 2k a widely used algorithm is Singleton’s algo-
rithm [28], which introduces two auxiliary constants,
C = 1− 2sin2(π/n) and S = sin(2π/n), to compute
the value of cos((k+1)·2π/n) and sin((k+1)·2π/n),
respectively, from the values of cos(k · 2π/n) and
sin(k · 2π/n).

For the cache behavior of a DIF, and an FFT in gen-
eral, it it also important to choose the right storage
model for a twiddle set. Given a twiddle container of
size 2y , the recursive nature of a DIF implies that each
step accesses only half of the twiddle factors the pre-

vious step did. If the twiddle factors are stored so that
they are accessed with a power-of-2-stride, the run time
of the DIF can suffer from well-known memory bank
conflicts, a bank “busy-wait” situation that occurs when
the number of banks is a power of 2 [12]. Instead of
reusing a twiddle factor across several recursion steps,
an alternative storage model therefore is to store mul-
tiple copies of twiddle factors and to arrange them so
that the twiddle container always is traversed with a
stride of 1. Obviously, the disadvantage of this storage
model is that the container doubles in size.

3. Lifting the DIF

At first glance, it might seem as if the different DIF
algorithms and storage models discussed in the previ-
ous section required implementations entirely disjoint
from each other. The component-basedapproach, how-
ever, allows for a great amount of code sharing. In this
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Fig. 4. The flow graph of a DIFRN (left) and a DIFNN (right) 8-point FFT. Figures redrawn from Oppenheim and Schafer [21], Figs 9.22, 9.23.

section we lift the Gentleman-Sande butterfly and the
twiddle data structure and introduce the components
resulting from this lifting process. To briefly reiterate
what we said in the introduction, the idea behind a pa-
rameterized butterfly is to be able to obtain different
implementations merely by specializing one or more of
the butterfly’s parameters. As we will see, five quite
different kinds of abstractions are involved in its param-
eterization. Starting with the non-generic butterfly in
Fig. 5, we remove all unnecessary restrictions, step by
step and, to avoid over-generalization, in a way that al-
ways allows regaining the original code simply through
appropriate parameter bindings. Although lifting itself
by no means depends on C++, we illustrate the result-
ing components with the corresponding interfaces in
our C++ implementation.

3.1. Parameterization by element types

First, we claim the “hard-wiring” of the type
complex be an unnecessary restriction. Especially
in an object-based programming style users often de-
fine their own complex data type. Instead of using the
complex type that is provided by the implementation
language, users might want to vary, e.g., the underlying
real type, the precision, or the storage model; and for
those complex types, the butterfly should work in the
same way as for the built-in one. As the first step to-
wards a generic butterfly, therefore, we lift the restric-
tion to one particular complex type and replace the type
complex by a type parameter. The declarations in
line 1 and 3 of Fig. 5 thus become parameterized dec-
larations and the two arrays w and in become parame-
terized arrays. Obviously, the original implementation
can be regained by binding the new type parameter to
the original type complex.

3.2. Parameterization by data representations

Next, we look at the arrays themselves. Figure 5
shows that altogether three kinds of operations are per-
formed on them: they hold data, allow for random ac-
cess, and allow for traversal. These three operations,
by no means, are specific to the data structure of an
array but characterize random access containers in gen-
eral. Data types like vector and deque, for exam-
ple, meet the very specification, thus should be usable
as well. But, how do we add a level of indirection
without performance penalty?

The Standard Template Library (STL) introduces it-
erators for this purpose. Operationally speaking, iter-
ators define protocols for container traversal and ele-
ment retrieval. One distinguishes 5 iterator categories,
characterized by the direction, step-size, read or write
access as well as the asymptotic costs of each opera-
tion. It is easy to see that these 5 categories form a
partial order.

What makes iterators important in the context of
components is that they serve as interfaces to containers
and thereby control which types of containers to admit
as actual parameters. If an algorithm is expressed in
terms of iterator movements rather than operating di-
rectly on the container, this algorithm works for all con-
tainers that support the respective iterator category. At
the same time, it excludes all containers with “weaker”
iterators. The term “weaker” thereby refers to seman-
tic as well as performance requirements. Since each
iterator operation includes an upper bounds for its cost,
which in turn depend on the underlying container, a
more specialized iterator category implicitly requires a
more specialized, faster underlying container, and thus
restricts the set of containers an iterator can be associ-
ated with.
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Fig. 5. A monomorphic Gentleman-Sande butterfly in pseudo-C.

For example, if, in the case of the DIF, we lifted
arrays to a generic container type or even introduced a
type parameter as in the previous step, we would fail
to keep the efficiency promise of the DIF. It would be
possible, for example, to use a list container, which
is a data structure too slow for a DIF. However, if we
express the generic DIF in terms of the random access
iterator category [1], which requires random access in
constant time, it must not be run with a list data type
or other containers that are too general to define this
iterator category.

As the second lifting step of the butterfly we there-
fore specify operator[] as an operation of a ran-
dom access iterator instead of a container operation.
The declarations in line 1 and 3 of Fig. 5 are replaced
by declarations of iterator variables, the integer addi-
tion in line 9 then becomes an adjustment of the stride
of the twiddle iterator. Figure 6 lists the interface of
the function call operator that encapsulates the arith-
metic operations of the Gentleman-Sande butterfly; the
associated containers are defined outside the butterfly
class. Decoupling algorithms and containers via iter-
ators also offers possibilities for code reuse at an al-
gorithmic level. The same butterfly and the same data
containers, for example, can be used for both backward
and forward FFTs. All one needs to do is to refine the
connecting iterator from a plain random access iterator,
which retrieves an element as-is, to one that performs
a combined retrieval-conjugate operation.

3.3. Parameterization by scaling factors

The third abstraction we want to introduce is the ab-
straction from the scaling factor. As discussed in Sec-
tion 2, three scaling factors are common; the monomor-
phic butterfly in Fig. 5 implicitly uses the scaling factor
1. To equally support all scaling factors we encapsu-
late each scaling operation in a function object, that
is, an object that can be called as a function [1], and
introduce a type parameter, say ScaleFactor, that
can bind any of the scaling function objects. The but-

terfly can then be expressed in terms of an instance of
the ScaleFactor parameter and, again without any
code changes, specialized to the original, monomor-
phic butterfly; see Fig. 7 for the interface. To avoid
the overhead of a function call thereby, it is important
to use function objects instead of functions since the
former ones can be inlined, at least in C++.

3.4. The lifted butterfly

Putting together the results so far,Fig. 8 lists the body
of the Gentleman-Sande butterfly in its generic version.
To summarize, from a monomorphic version for one
particular constellation of types we have obtained a
version with a three-dimensional parameter space:

Complex Type × Input Container × Scaling.

It is worth emphasizing that each dimension of the
parameter space is conceptually unlimited – any com-
plex type, input container, or scaling factor that meets
the requirements specified can serve as component,
even those that might not exist at FFT design time.
In contrast, macros, the alternative to templates in C,
usually require the FFT designer to determine the set
of all possible choices up-front. Many C implemen-
tations can therefore offer a choice, e.g., between the
types double and float for the representation of
the complex type, but none of them permits complex
numbers that are user-defined and none of them permits
user-defined containers.

3.5. Parameterization by algorithms and storage
models

Applying the abstractions of the previous subsection
we can lift a traditional twiddle array to a parameter-
ized twiddle container. However, the computation of
the twiddle factors itself can be parameterized – two
powerful abstractions are outstanding yet. The first is
the abstraction from the algorithm for twiddle com-
putations, the second the abstraction from the storage
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Fig. 6. Parameterization by array-like data structures through decoupling and interfacing via random access iterators.

Fig. 7. Parameterization of the Gentleman-Sande computation.

Fig. 8. A generic in-place Gentleman-Sande butterfly in pseudo-C++.

model of the twiddle container. Both abstractions are
more fundamental than any of the previous ones since
they refer to implementation features, and they are typ-
ically not available in traditional object-oriented pro-
gramming environments. For the reusability and flexi-
bility of a system, however, it is important that users can
replace implementation modules as easily as others.

STL suggests using container adaptors, that is, con-
tainers that are parameterized by other containers, en-
capsulate their specifics and thereby provide a uni-
form interface across different containers. Therefore,
if we further lift a parameterized twiddle container to
an adaptor to a twiddle set, which exposes access func-
tions to the twiddle set but hides all data and func-
tions specific for the underlying algorithm, it becomes
transparent to other parts of the DIF how the twiddle
set has been computed. At the same time, it becomes
possible to support different twiddle computations by
instantiating the adaptor in different ways.

The logic of a common interface further extends to
the twiddle set and the access its adaptor provides. As
discussed in Section 2.4, twiddle sets can be stored
in different ways, e.g., as a single copy that has to
be traversed several times or in multiple copies that
have to be traversed only linearly. If we would not
encapsulate their storage model, the code in the but-

terfly would have to take each different model into ac-
count and for example reset an iterator for one stor-
age model, but not reset it for another. It would then
be impossible to use the same butterfly for twiddle
sets that are stored differently. In illustration of the
two adaptors needed, Fig. 9 shows the singleton
adaptor, which encapsulates the computation of the
twiddle set, and the adaptor twiddle container,
which hides the twiddle set as well as its storage lay-
out. Obviously, the singleton adaptor can bind
twiddle container’s TwiddleSet parameter.
Together, the two adaptors yield the required trans-
parency.

3.6. Multiple butterflies

Up to this point we implicitly assumed to deal with
in-place DIFs. We have shown that the generic but-
terfly in Fig. 8 can be specialized to the non-generic
DIFNR we started with, and we could show the very
same for the DIFRN . For an ordered DIF, however,
this genericity goes too far. Keeping two containers
and using them alternately to store intermediate results,
a DIFNN works in fact so differently from a DIFNR

that we are not able to regain its monomorphic butter-
fly by just specializing the generic one in Fig. 8. A
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Fig. 9. Parameterization by twiddle sets and their storage models (class twiddle container); various parameterizations of the twiddle
computation (class singleton).

Fig. 10. Parameterization by different DIF computations.
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Fig. 11. The architecture of the DIF library.

second generic butterfly is needed, therefore. Starting
this time with a DIFNN , we have to repeat the various
steps of lifting and, with arguments similar to the ones
presented, determine the right level of abstraction. We
skip the details here, but refer to the documentation on
the project web page [24]. To provide a uniform inter-
face we add another layer of abstraction and implement
the two different algorithms as different specialization
of the class template stages (see Fig. 10).

4. Component architecture

During the lifting process we identified five cate-
gories of components that constitute the DIF frame-
work: algorithms, containers, iterators, function ob-
jects, and adaptors. We now give an overview of the

architecture of the DIF library and its three levels: the
implementation level, the library extension level, and
the user’s level. These three levels are disjoint so that,
for example, no user ever is required to touch an imple-
mentation component or to even know about it. In the
following we briefly discuss the three levels; for a full
specification of each of the currently 120 components
we refer to the project home page [24].

Figure 11 illustrates the four major functional units
of the DIF library: the input and output data to the left
of the figure, the computation and storage of the twid-
dle set to its right, the butterfly computation on top,
and on bottom a control unit that defines the skeleton
of the different DIF algorithms as sketched in Fig. 10.
Organizing the majority of tasks at the implementa-
tion level, this control unit is further broken down into
a set of 3 classes (see Fig. 12), which closely col-
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Fig. 12. Core components at the implementation level.

Fig. 13. Parameterization of the DIFNR class, with default bindings to a traits class for type configurations.

laborate. In short, the class stages constructs one
block loop object per stage,which in turn constructs
one butterfly loop object per block, which, fi-
nally, for each butterfly in the block, “invokes” the
function object that encapsulates the Gentleman-Sande
computation.

A characteristic of our implementation is that, based
on the techniques of meta-programming and compile-
time polymorphism [6,32], the recursive division into
sub-FFTs takes place at compile time. In particular,
the top-level dispatcher class stages can “call” itself
recursively at compile time by statically incrementing
the template parameter that represents the current stage.
As a consequence, the code of the whole computation
can be laid out at compile time. Dividing a block into 2
smaller ones, determining the right input for each but-
terfly and all the organizational steps that contribute as
constant factors to the run time of other implementa-
tions, are done at compile time in our implementation,
therefore do not incur any run-time costs. The overall
performance of the DIF library, thus, correlates closely
to the mathematically identified FFT cost.

At the library extension level, most components are
of conceptual nature. Concepts, one of the key innova-
tions of STL, are specifications of the functionality of a
component, its parameters, and its complexity; they are
not types themselves but models of types. Separating
the specification from an implementation, concepts al-
low library designers to program in a type-independent
way as well as to extend a library by different imple-
mentations: every type that models a concept can serve
as its realization. For example if a library designer
wants to add a new algorithm for the computation of
a twiddle set, s/he consults the conceptual description
of the Twiddle Set and then designs the new twiddle
set type so that it complies with the interface and the
performance guarantees required by the concept. Core
concepts of the DIF framework include Butterfly, Twid-
dle Set, Twiddle Container, and Bitreversal Container.

At the user’s level,finally, there are two kinds of com-
ponents: classes that specialize a parameter of a DIF al-
gorithm and auxiliary types that help organizing the pa-
rameter space. The first kind of types includes twiddle
set computations, storage models of twiddle contain-
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Fig. 14. An example main program of a DIFNR computation.

Table 1
Input/output order variants

DIF algorithm Input order Output order

dif nr natural reversed
dif rn reversed natural
dif nn natural natural
dif nrn natural natural

ers, scale factors, butterflies, and toggles that determine
the normalization, direction, and meaning of forward
and backward FFT. The second kind of types mostly
consists of so-called traits [19], or interface classes, a
standard idiom in library design that allows users to
package type configurations and to redefine them trans-
parently to the caller’s code. In illustration of the traits
technique, Fig. 13 lists the trait fft computation,
which wraps up some of the implementation data types
of a DIF. Because of this wrapper layer, the code of
the DIF need not operate directly on any of the imple-
mentation types, but can be expressed in terms of the
interface type definitions the traits class provides. As a
consequence, types can be redefined without affecting
the DIF code, just by changing their definition in the
trait class. Figure 13 also shows how DIF algorithms
rely on traits classes to establish default bindings.

In the component-based setting just presented, the
responsibility of a user might seem to grow with each

additional parameter. With traits, however, and, at
least in C++, default parameters, the parameter space
stays quite manageable. Figure 14 list an example
main program in C++, where the length of the FFT
is the only parameter users have to supply. Of course,
users can overwrite any default parameter whenever
they wish, as we have just explained.

5. Empirical results

For each of the four DIFs in our library we mea-
sured its run time, the size of its executable, and the
compilation time needed. The first two measurements,
run time and binary size, typically are of interest to the
end user of the library, while the third kind of measure-
ments, compilation times, matter for developers. Since
there are famous examples of C++ template programs
that take hours to compile, it is important to show that
software development with the DIF library in fact is
practical.

To summarize the main test results, dif nr, as ex-
pected, is the algorithm with the best run-time perfor-
mance. Interestingly on the other hand is thatdif nrn
outperforms dif nn, which implies that it is faster to
perform an ordered DIF as a composition of DIFNR
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Table 2
Test platforms

Thinkpad 600e Origin 2000 Enterprise 450

No. of Processors 1 8 4
Processor Celeron MIPS R10000 UltraSPARC-II

366 Mhz 195 MHz 480 MHz
Cache L1: 32Kb L1: 64Kb L1: 32Kb

L2: 128Kb L2: 4Mb L2: 8Mb
(130 MHz)

Memory 160Mb 1.5Gb 4Gb
Operating System Redhat Linux 8.0 IRIX64 6.5 SunOS 5.8

Table 3
Compilers and compile flags

Compiler Compile flags

Thinkpad Intel C++ 7.1 -O3 -Ob2 -mp -tpp6
600e -mcpu=pentiumpro

-march=pentiumii -ip -ipo -ansi
Origin 2000 MIPSpro 7.3.1.3m -O3 -IPA -mips4 -Ofast -r10000
Enterprise GCC 3.2 -O3 -fomit-frame-pointer
450 -mcpu=ultrasparc -mtune=ultrasparc

-finline-functions

Table 4
Sizes of executables (Kb)

Input size = 23 Input size = 221

dif-nr dif-rn dif-nn dif-nrn dif-nr dif-rn dif-nn dif-nrn

MIPS 66 76 69 69 95 105 104 98
GCC 72 78 78 72 112 118 128 112
Intel 700 720 728 712 s 792 804 932 800

with subsequent bit-reversal than to directly perform
the ordered DIFNN . Also as expected, the sizes of the
binaries grow sub-linearly, very slowly, with the input
size. Finally, the compilation times are mostly below
30 seconds even for large input sizes, thus quite accept-
able. One interesting observation is that dif nn, the
algorithm with the slowest run time, is also the most
expensive algorithm to compile. The following subsec-
tions describe the test setup and present the test results
in more detail.

5.1. Test setup

In the FFT literature, it is common to measure per-
formance in MFLOP units. MFLOPs scale the execu-
tion time by the theoretical number of floating point
operations for a radix-2 FFT of length n. They are
defined as follows:

5 · n log2 n/( time for one FFT in µs).

In the graphs of the performance measurements (see
Section 5.2), the run time is expressed in MFLOPs.
For the interpretation of the performance graphs it is

important to keep in mind that higher MFLOP numbers
are better than lower ones.

We tested each algorithm with 3 compilers, each on
a different platform. Table 2 summarizes the charac-
teristics of each platform, including the operating sys-
tem, while Table 3 lists the compilers and compila-
tion flags used. We varied the input size in steps of
powers of 2: the smallest input size is 23, which is
the smallest possible input size for the Singleton al-
gorithm (see Section 2.4); the largest input size de-
pends on the memory available, thus varies platform-
dependently between 221 (on a machine with 160 Mb
memory) and 226 (on a machine with 4 Gb memory).

We tested each input size multiple times. Since the
impact of possible noise is higher for small inputs with
short execution times we repeated the tests for small
input size more often than the ones for larger sizes: for
an input size in the range 23 � 2x � 210, we repeated
each test 1000 times. For an input size between 211 �
2x � 214, the number of repetitions was 100, for an
input size between 215 � 2x � 217 it was 30 times; for
218 we repeated the tests 10 times, for the following
pairs of input sizes 5 times and 3 times, respectively,
and for all input sizes above 222 two times.
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Fig. 15. Run time of 4 different DIFs, compiled with MIPSpro/MIPS.

Independently, we tested different bindings of
the parameters for the DIF components. For the
tests presented here, the container for the input
data as well as the container for the twiddle num-
bers was of type std::vector, its element type
std::complex<float>; the twiddle computation
was done via the fftl:singleton class. We fur-
thermore used the single storage model for twiddle
numbers and the scaling factor 1.

The Celeron machine ran in a controlled environ-
ment and was dedicated to our tests. The other two
machines, Origin 2000 and Enterprise 450, are multi-
user machines with multiple processors. Since we use
only one processor when running the tests, it seems
safe to assume that the impact of any other processes is
minimal.

5.2. Test results

We first discuss the results of the run-time tests, then
the results of the compile-time tests. The sizes of the
binaries are listed in Table 4.

5.2.1. Run times
The results of the run-time tests are summarized in

the Figs 15–17, which plot the number of MFLOPs
against the size of the input vector.

As said in the introduction of this section, the graphs
confirm, at least in the MIPS and GCC/Sparc tests, that
the fastest algorithm is dif rn. The same is true in the
Intel/Celeron test, however, only for input size � 216,
and then, dif rn is faster only by less than 1 MFLOP.

Not surprisingly, all tests agree that dif nn per-
forms worst. This algorithm, as one might recall, com-
putes an out-of-place DIF. It requires a second container
and performs alternating updates of the two contain-
ers, thus can be expected to be slower than the in-place
DIFs. As we emphasized already earlier, it is almost
always faster to perform an ordered DIF as a compo-
sition of DIFNR with subsequent bit-reversal than to
directly perform the ordered DIFNN . In the MIPS and
Intel/Celeron tests, the trade-off between the two out-
of-place DIFs, dif nn and dif nrn, is at input size
211. On GCC/Sparc, we can observe the trade-off point
for the input size 25.

The relative performance of the 4 algorithms is the
same for MIPS and GCC/Sparc. For the Intel/Celeron
tests, on the other hand, the run times are for the most
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Fig. 16. Run time of 4 different DIFs, compiled with GCC/Ultra Sparc.

part too close to each other (mostly less than 1 MFLOP
apart) to allow for a meaningful ranking. The overall
shapes of the graphs for the 4 algorithms are similar to
each other as well as across the three tests, with a peek
performance around the input size of 211 (for MIPS, 29

for GCC/Sparc, 212 for Intel/Celeron).
The overall speed,finally, is the best in the MIPS tests

where we reach up to 150 MFLOPS. Roughly speaking,
the performance in the MIPS tests is between 2–3 times
faster than in the GCC/Sparc tests and between 15 (for
the peek values) to 6 (for larger values) than in the
Intel/Celeron tests. Since the MIPS processor is much
slower than the Sparc, it seems to be the MIPS compiler
that is responsible for the better performance. On the
other hand, and surprisingly, the Intel/Celeron times are
significantly better than the times on the MIPS platform
for small input sizes.

5.2.2. Compilation times
The results of the compilation-time tests are summa-

rized in Fig. 18. Perhaps the most important result is
the overall compilation time. As we noted already in
the introduction, the compilation times do not exceed
30 seconds even for large input sizes; the only excep-
tion is dif nn on GCC/Sparc. We can therefore claim
that software development with the DIF library is fea-

sible. Another positive result is the overall sub-linear
behavior of the compilation time. In contrast to sev-
eral template programs elsewhere that face exponential
compilation times, our implementations scale in this
regard.

On all machines, the algorithm dif nn takes the
longest time to compile. As in the case of the run-time
measurements, this behavior can be expected for an
out-of-place DIF, which requires extra data structures.
Since one can observe that its compilation times, rela-
tive to the ones for the other algorithms, are best on the
MIPS, a little worse on GCC/Sparc, and many times
slower on Celeron/Intel, cache size again seems to be
an important factor.

The graphs in Fig. 18 also show two unexpected
results. For one, we expected the compilation times
for dif nr and dif rn to be almost identical, since
these algorithms are very similar in structure. How-
ever, this is the case only in the Celeron/Intel tests. In
the MIPS and GCC/Sparc tests, the compilation times
not only differ noticeably but also are separated by the
measurements for dif nrn, which is an algorithm of
a very different structure. Second, the MIPS compiler
exhibits a strange but consistent irregularity for small
values. While the first phenomenon might be just co-
incidence, we have currently no good explanation for
the second one.



S. Schupp / Lifting a butterfly – A component-based FFT 305

1

2

3

4

5

6

7

8

9

10

11

2 4 6 8 10 12 14 16 18 20 22

E
xe

cu
tio

n 
tim

e 
(M

F
LO

P
S

)

log(n)

Test results for the Intel compiler

dif-nr
dif-rn
dif-nn

dif-nrn

Fig. 17. Run time of 4 different DIFs, compiled with Intel/Celeron.

6. Related and future work

With its different kinds of parameterization, includ-
ing the parameterization with implementation features,
our DIF library is strongly influenced by STL and there-
fore closest to other scientific libraries in the spirit of
STL, most notably Blitz++ and POOMA [31,23]. In
Blitz++, however, the FFT is merely an exercise in
meta-programming without much emphasis on compo-
nents, while POOMA meanwhile seems to have ceased
its support for an FFT. Although the POOMA user’s
guide describes a class template for multi-dimensional,
parallel FFT, its distribution (pooma-2.2.0) lacks the
respective code. The MTL [26,27], finally, was the
first library we are aware of that, for matrices, made
different storage types first-class components.

In a more general sense our work is related to the
current trend we see in scientific programming, to move
from lower programming languages such as Fortran and
C to higher ones, which support classes and other mech-
anisms for abstraction. An important step in this direc-
tion is the Vector, Signal, and Image Processing Library
(VSIPL) [33], an open industry standard that achieves

portability across different memory and processor ar-
chitectures through an object-based style, which en-
ables the encapsulation and abstraction from different
memory models and array representations. Version 1.1
of VSIPL is written in C but the standardization forum
is currently discussing bindings to C++. In fact, the
number of both open-source and commercial libraries
that now provide implementations in C++ or Java, or
at least interface higher languages, long has exceeded
a size that would allow giving a complete reference.
We therefore only point out the recent interest in the
field of digital signal processing, the major applica-
tion of FFTs, to develop compilers for DSP processors
in C++ rather than in special-purpose languages, and
these compilers rely on FFTs that are written in C++
(see, e.g. [22,5]).

For the further development of our own DFT project
we identified the following three next steps. First, we
want to complement the current DIF algorithms by the
corresponding decimation-in-time (DIT) ones. Since
DITs and DIFs are dual to each other, we expect their
implementations to parallel each other. Whether after
lifting and at a yet higher level of abstraction, DIFs
and DITs could be further unified, is another inter-
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Fig. 18. Compile times in seconds for MIPSpro/MIPS (left), GCC/Ultra Sparc (middle), and Celeron/Intel (right); figures rotated by 900.

esting topic, about which, however, we currently can
speculate only. Second, we need to separately imple-
ment small-size DFTs, both for efficiency reasons and
to be able to handle input of arbitrary size. As a con-
sequence, we also need to extend our current meta-
program so that it can statically select among the dif-
ferent decompositions into sub-FFTs that will then be
possible. Third, we need to work on optimizations of
the library. We plan on applying techniques of program
transformation, in particular for arithmetic operations
with constant values. Program transformation allows
for optimizations that are decoupled from the actual
code, thus extensible for example by optimizations de-
manded by new user-defined types and their arithmetic.
Our goal is to reach execution times that are on a par
with the FFTW package (“Fastest Fourier Transform
in the West”), an open source implementation that has
proved to be competitive with vendor-tuned implemen-
tations [9].
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