Scientific Programming 11 (2003) 133-141
10S Press

133

A Multiprogramming Aware OpenM P

| mplementation

Vasileios K. Barekas, Panagiotis E. Hadjidoukas, Eleftherios D. Polychronopoul os and

Theodore S. Papatheodorou

High Performance Information Systems Laboratory, Department of Computer Engineering and Informatics,

University of Patras, Rio 26500, Patras, Greece

Tel.: +30 61 993805; Fax: +30 61 997706; E-mail: {bkb,peh,edp,tsp} @hpclab.ceid.upatras.gr;

http: //mmww.hpclab.ceid.upatras.gr

Abstract. In this work, we present an OpenMP implementation suitable for multiprogrammed environments on Intel-based
SMP systems. This implementation consists of a runtime system and a resource manager, while we use the NanosCompiler to
transform OpenM P-coded applications into code with calls to our runtime system. The resource manager acts as the operating
system scheduler for the applications built with our runtime system. It executes a custom made scheduling policy to distribute
the available physical processors to the active applications. The runtime system cooperates with the resource manager in order
to adapt each application’s generated parallelism to the number of processors allocated to it, according to the resource manager
scheduling policy. We use the OpenMP version of the NAS Parallel Benchmark suite in order to evaluate the performance of
our implementation. In our experiments we compare the performance of our implementation with that of acommercial OpenMP
implementation. The comparison provesthat our approach performs better both on adedicated and on aheavily multiprogrammed

environment.

1. Introduction

TheOpenMP Application Programming Interface[9]
providesasimple and portable model for programming
a wide range of parallel applications on parallel plar-
forms. Everyoneis able to use this quite simple stan-
dardin order to parallelize applications without paying
attention on the underlying architecture. The OpenMP
APl is portable across a wide range of parallel plat-
forms, including small-scale SMP servers, scalable cc-
NUMA multiprocessors and clusters of workstations.
The simplicity of this model derives from the fact that
the programmer does not need to worry about the de-
tails of the underlying platform or the operating system
mechanisms. The programmer simply inserts direc-
tivesinto the original sequential codein order to anno-
tate loops and sections of code that can be executed in
parallel. TheOpenM P support istransparent to the user
through an OpenM P-capable compiler and the neces-
sary runtime support. The compiler interpretsthe user-
inserted directives into appropriate runtime calls that

I SSN 1058-9244/03/$8.00 [1 2003 —10S Press. All rights reserved

enablethe application to executein parallel by multiple
threads using a fork/join execution model. For every
part of the code that has to be executed in parallel, a
group of threadsis created and achunk of thetotal work
is assigned to each thread according to a pre-defined
scheduling scheme. Thesethreadsare scheduled onthe
available physical processors by the operating system
scheduler.

On the other hand, multiprocessor systems are also
used as multiprogrammed compute servers, where sev-
era userssubmit parallel and sequential CPU-intensive
applications. Thethreads of al these applications con-
tend for systems's available resources, especialy the
processors and the memory. Since general-purposeop-
erating system schedulers are designed to deal with se-
guential applications, they fail to achieve good perfor-
mance when workloads consisting of multiple paral-
lel applications run on the system. This fact is due to
the scheduler ignorance about the nature of the parallel
applications and their real requirements. It is there-
forecrucial to provideefficient mechanismsthat enable

134 V.K. Barekas and P.E. Hadjidoukas / A Multiprogramming Aware OpenMP Implementation

parallel applications to achieve robust performance in
multiprogrammed environments.

An efficient way to achieve better performance with
OpenMP applications that are executed in multipro-
grammed environments is the employment of a so-
phisticated runtime system. The runtime system en-
ables parallel applications to adapt themselves to the
resources made available for them by the operating
system. Using this runtime system, parallel applica-
tions exploit the amount of parallelism that matchesthe
number of processors that the operating system sched-
uler allocates to them. This approach requires close
collaboration between the operating system scheduler
and the runtime system, in order to keep each part in-
formed about the requirements and/or the decisions of
the other part. Although the OpenMP standard already
makes provision for the use of dynamic parallelism,
several OpenM Pimplementationseither do not support
it or they support it in a very limited way. In those
implementations, the runtime system creates and uses
as many threads as each application initially requests,
without taking into account the variations of the system
workload during the execution time. Thisis dueto the
limitations that the operating system schedul er set, and
thelack of collaboration between the scheduler and the
runtime system.

In this paper, we present an OpenMP implementa-
tion consisting of a runtime system and an independent
resource manager, which plays the role of the operat-
ing system scheduler. The resource manager provides
to the runtime system the functionality needed in or-
der to adapt the application parallelism to the available
resources. The collaboration between these two parts
make our implementation capable to support the exe-
cution of OpenMP applicationsin a multiprogrammed
environment. We utilize the NanosCompiler [2] to
transform the original OpenM P-coded applicationsinto
appropriate code that have calls to our runtime sys-
tem. The runtime system is based on the NTLib mul-
tithreaded runtime library [3]. NTLibisahighly opti-
mized library developed for the Windows NT/2000 op-
erating system, which provides lightweight user-level
threads and the necessary support to run parallel ap-
plications on Intel-based SMP systems. We have ex-
tended the runtime library in order to support the code
that the compiler injectsin the original OpenM P-coded
application. The resource manager we usein thiswork
is based on a portable resource manager [4], which is
implemented as a loadable kernel-mode driver. The
resource manager communicates with the applications
through a shared memory area, lying between the op-

erating system kernel space, where the resource man-
ager runs and the user space, where the applications
run. The implementation of the resource manager as
aloadable kernel module provides, several advantages
such as portability and efficiency. So, we can take ad-
vantages of an in-kernel implementation avoiding the
need to modify and/or recompile the kernel. The orig-
inal resource manager was extended in order to adapt
its behavior to the peculiarities of OpenMP applica-
tions when they are executed in a multiprogrammed
environment.

The runtime system in combination with the re-
source manager provides an environment capable to
efficiently execute OpenM P applications on multipro-
grammed systems. The functionality of our environ-
ment is provided transparently to the programmer of
the OpenMP applications. In order to evaluate our ap-
proach we have used the OpenM P implementation of
the NAS Parallel Benchmarks suite [5]. The experi-
ments on a quad-processor SMP system show that our
implementation has a significantly better performance
than acommercial OpenM P implementation, bothon a
dedicated and on a multiprogrammed environment.

On a multiprogrammed environment, we also per-
form better both in the turnaround time of the severa
applicationsin the workload executed and the total ex-
ecution time of the whole workload. Furthermore, in
the case of the execution of an application on a dedi-
cated environment, using only our runtime library, we
show that it achieves comparable or better speedupsto
that of a commercial OpenMP compiler environment.
The rest of this paper is organized as follows: Sec-
tion 2 describes the features of the runtime system. In
Section 3, we present the functionality of the resource
manager. Next, in Section 4, we describehow OpenM P
applications utilize our environment. In Section 5, we
present our experiments that validate the efficiency of
our implementation. Finally, in Section 6 we provide
our conclusions together with the related work.

2. Runtime system

NTLib is a multithreaded runtime library that pro-
vides lightweight user-level threads and the necessary
support to exploit, with minimal overhead, the paral-
lelism found in applications. The lightweight threads
enable the library to efficiently exploit fine-grain par-
allelism, while its dependence-driven execution model
makes it capable to exploit multiple levels of paral-
lelism. The cost of the user-level thread primitivesis

VK. Barekas and P.E. Hadjidoukas / A Multiprogramming Aware OpenMP Implementation

135

Independent Parallel applications controllable by
application the resource manager
Application A Application B Application C
User-level
$S35 | | 33355535 | | $838888888888858 [«
descriptors
(/<\ < 4_Prc\)/(lzensjsaclnrs
User NTLib NTL|b
Kernel-level
= T DD DID y s
\S \S \
Kernel
Space A
| Resource Manager |
X
4 N'Q"'A”Oca‘ed Operating
(Operating System Sr\heduler \) i‘g‘:;?

) 4
CPU
2

Physical
Processors

Fig. 1. The resource manager cooperation with the applications and the operating system scheduler.

very low compared to other thread packages. The run-
time library exports a set of functions that supportsthe
nanothreads programming model [7]. These functions
are responsible for the thread management, the han-
dling of the ready thread queues, the control of the de-
pendenciesbetween thethreads and theinitialization of
the runtime environment. More details about the im-
plementation and the functionality of the NTLib run-
timelibrary canbefoundin[3]. The set of the exported
functions and the functionality of the library was ex-
tended in order to support the compiler-generated code
that corresponds to the original OpenMP application
code. Additionally, support wasadded to enablethe use
of the runtime functionality with applications written
in the Fortran programming language.
TheNanosCompiler utilizes user-level threadsto ex-
press multiple levels of parallel loops and parallel sec-
tions of code. However, in order to express the paral-
lelism of single-level loops the compiler uses the work
descriptor structure. We implement in our runtime sys-
tem thework descriptor structure and the necessary sup-
port functions, based on the proposed implementation
in[8] with the appropriate modificationstofit in our un-
derlying architecture. A work descriptor structure con-
sists of a pointer to the function that encapsulates the
work to be executed and its arguments. Work descrip-
tors provide a very efficient mean to distribute work
among the participating processors. For each single-
level parallel loop, the master processor creates awork
descriptor and initializes it for the specific loop. Then,

the master processor distributes the work descriptor to
all save processors that participate in the execution of
the specific loop, by copyingit to aspecific memory lo-
cation for each processor. Each slave processor, checks
its memory location in order to find a work descriptor,
and execute it. The part of the work descriptor that
each processor executes, is determined by the function
arguments, the number of processors participating in
the execution and the processor-own identifier.

The runtime library executes the created threads
based on a dependence-driven execution model, in or-
der to ensure the correct execution order of the created
threads and to alow the efficient exploitation of mul-
tiple levels of parallelism. For each thread, we keep
information about its dependencieswith other threads.
When a thread finishes its execution, it satisfies one
input dependency on each one of its successors. When
athread creates a new thread, the dependencies of the
creator thread must be preserved. For this reason, we
must increase by one the creator thread dependencies
and declare it as the successor of the new thread. By
thisway, we can create multiplelevel s of nested threads
making thus easy the representation of multiple levels
of parallelism found in awide range of applications.

The main responsibility of the runtime library is
to control the generated parallelism, ensuring that it
matches the number of processors allocated by the op-
erating system to each application. In other words, the
runtime library implements dynamic program adapt-
ability to the available resources by adjusting the

136 V.K. Barekas and P.E. Hadjidoukas / A Multiprogramming Aware OpenMP Implementation

amount of the generated parallelism. The scheduling
policy of the operating system is concerned with the al-
location of physical processorsto the applications cur-
rently running in the system. Theruntimelibrary coop-
erates with the operating system scheduler, running in
order to achieve the desired adaptation. In our imple-
mentation, we use an external resource manager to play
therole of the operating system scheduler. The operat-
ing system provideskernel-level threadsto the runtime
system, asthe kernel abstraction of physical processors
on which applications can execute. These kernel-level
threads play the role of the virtual processors, which
will execute the application’s user-level threads.

3. Resource manager

In this section, we present the functionality provided
by the resource manager to the runtime system. The
resource manager isimplemented as aloadable kernel -
mode devicedriver; this gives us the ahility to start and
stop its execution at our will. The primary responsibil-
ity of the Resource M anager isto keeptrack of all appli-
cations running on the system and to apply for them a
user-defined scheduling policy. The scheduling policy
mainly determines the number of physical processors
that will be allocated to each application. In order to
achieve this, a shared memory area that is maintained
between the applicationsand the resource manager, acts
as the communication path between them. At its ini-
tiali zation phase, the manager creates a shared memory
section, which is mapped in the address space of each
application that utilizes the runtime system. For each
active applicationin the system, thereis someinforma-
tion in the shared memory area, where both the appli-
cations and the manager have access. The information
kept in the shared area concerns the actual parallelism
of the application at each time, the virtual processors
identifiers that the application uses and other useful
data. The resource manager based on this information
calculates the number of physical processors that will
be all ocated to each application each time, and controls
the execution of the virtual processors. When an ap-
plication starts, it maps the shared memory areain its
private address space. Next, the application’smain vir-
tual processor createstherest virtual processorsin sus-
pended mode and registers them into the shared area,
making them accessible from the resource manager and
enabling thus their manipulation from it. After this
point, the control of the application’svirtual processors

has passed exclusively to the resource manager, which
isresponsible for their execution.

The resource manager, based on the information in
the shared memory area, appliesauser-defined schedul -
ing policy to distribute the available physical proces-
sors across the registered applications. The scheduling
policy is executed periodically at a fixed time interval
called scheduler quantum. Both the scheduling policy
and the scheduler quantum are user-defined and can be
changed dynamically at runtime. The scheduling pol-
icy determines the number of processors that will be
alocated to each application during the next schedul-
ing quantum and which physical processors they will
be. The latter is decided based on a per-application
history that records the processors on which the appli-
cation runs during the previous quanta. Additionally,
it decides which virtual processors will run on these
physical processors, in order to preserve the affinity.
The resource manager applies the scheduling policy
decisions on the virtual processors of the applications,
by allowing some of them to run by resuming their ex-
ecution, while preventing some others by suspending
them. Eventually, resource manager maintainsthetotal
number of running virtual processors across all appli-
cations, equal to the number of physical processorsin
the system. The running applications cooperate with
the resource manager during their execution period in
order to minimize their execution time by avoiding the
idling of physical processors while exists some appli-
cation that could execute useful work on them. Before
entering a parallel region, each application informs,
through the shared memory area, the resource manager
about its requirements reflecting the actual degree of
paralelism that it can exploit in this region. The re-
source manager responds to the application’s require-
ments and allocates physical processorsto it according
to the current scheduling policy. The application re-
ceives, through the shared memory area, the resource
manager’s decisions and tries to match the parallelism
that it will generate to the number of physical proces-
sors currently allocated to it. Based on the require-
ments of all the applications and the scheduling policy,
the resource manager decides about physical processor
reallocations between the applications. The removal
of a physical processor from an application means the
blocking of the associated virtual processor, while the
assignment of a physical processor to an application
means the unblocking of an application’s virtual pro-
cessor and its binding to the specific physical proces-
sor. This reallocation procedure can block a virtual
processor at an unsafe point, for example while being

VK. Barekas and P.E. Hadjidoukas / A Multiprogramming Aware OpenMP Implementation 137

Dedicated Environment - Speedup

O Nanos
EPGI

Application / Number of Processors

Fig. 2. The speedup that the applications achieve on adedicated execution environment.

inside a critical section, preventing the application to
make progressonitscritical path. Inorder to eliminate
these undesirable preemptions, each virtual processor
checks for any non-safely preempted virtual processor
whenever it reaches a safe-point, whereit isknown that
the application and runtime synchronization constrains
are satisfied. If such a virtual processor is found, the
currently running virtual processor yields its physical
processor to the preempted one.

Thegeneral design of theresource manager allowsits
collaboration with the native operating system sched-
uler. The resource manager controls the execution of
the virtual processors (kernel threads) of the applica
tions built with our runtime library, by allowing some
of them to run, with preventing some others. It does
not disturb the kernel threads of the rest applications
that are executed in the same time on the system. The
virtual processors that the resource manager allows to
run contend with the kernel threads of the other appli-
cationsfor the physical processors. The operating sys-
tem scheduler decides which of the virtual processors
that are allowed to run, will actually run onthe physical
processors. By this way we treat al the running appli-
cations with fairness, without violating the operating
system scheduling policy primitives. The collaboration
of the resource manager with the several applications
running on the system and its cooperation with the op-
erating system scheduler is depicted in Fig. 1. In this
Figure we have three applications, the first one of them
isindependent, while the other two are controllable by
the resource manager. Resource manager scheduling
policy decidesto grant two physical processorsto each

oneof itsapplications. But the operating system sched-
uler ignores it and schedules on physical processor 1
a kernel-level thread of the independent application.
More details about the design and the implementation
of the resource manager can be found in [4].

4. OpenMP application transfor mation

In this section, we describe how applications with
OpenMP directives use the functionality offered by our
environment. We use the NanosCompiler to compile
applications that are parallelized with OpenMP direc-
tives. NanosCompiler front-end is capable to convert
applications with OpenMP directives into equivalent
applicationsthat usecallsto our runtimelibrary in order
to express the annotated parallelism.

Each application, duringitsinitializationinformsthe
resource manager about the maximum parallelism that
it is capable to exploit during its execution. When
NanosCompiler reaches a combined paralel work-
sharing construct (OVP PARALLEL DO), whichisthe
common case in the applications examined in this pa-
per, it generates two functions that substitute the con-
struct and its body. The first function replaces the par-
allel congtruct, while the second function contains the
code of the parallel loop body. In thefirst function, the
compiler inserts code that consults the resource man-
ager, to find out how many physical processors are al-
located to the application in order to execute this re-
gion. The number of processors that are allocated to
the application is determined through the shared mem-

138 VK. Barekas and P.E. Hadjidoukas / A Multiprogramming Aware OpenMP | mplementation

Multiprogrammed Environment - Average Execution Time

10000
ONanos—
EPGI [
1000
T
E
— 100 -
c
S
5
8
>
w
10 A
l -
112)| 4 8 1| 2 1 8
BT EP FT MG SP

Application / Degree of Multiprogramming

Fig. 3. The average turnaround times of the applications in each workload on a multiprogrammed execution environment.

ory area, that the resource manager uses for the com-
munication with the application. The first function is
executed exclusively by the master processor, which
creates a work descriptor structure that represents the
body of the parallel loop. Thiswork descriptor speci-
fies the second compiler-generated function as the one
that represents the loop that must be executed in paral-
lel. Next, the master processor distributes the created
work descriptor to all the available processors includ-
ing itself. Thework descriptor is distributed by coping
it to a per-processor specific memory location. At this
point, the master virtual processor suspends the execu-
tion of thefirst functionin order to executeits own part
of the work descriptor. Each one of the slave proces-
sors, whenever it becomes idle, it searches for a new
work descriptor into its own memory location. Each
processor calculates the work descriptor chunk that it
will execute, based on its identifier and the total num-
ber of processors participating in the execution of this
region. When all processors finish the work descrip-
tor execution, the master virtual processor resumes the
execution of the suspended function, while the slave
processorsremainidle.

When the compiler arrives at a parallel region con-
struct (OMP PARALLEL), it again generatestwo func-
tions that substitute the parallel region code. Addi-
tionally, in this case the compiler generates another
onefunctionfor each work-sharing construct (OMP DO
or OVP SECTI ON) that exists inside the parallel re-
gion. In this case the master processor does not cre-
ate a simple work descriptor structure that al avail-
able virtual processors executes. Instead, it creates

as many user-level threads as the number of the allo-
cated physical processors. The created threads are ex-
ecuted on the available processors through their local
ready queues. Each one of these threads, execute the
compiler-generated functions that represent the work-
sharing constructs that resides into the parallel region.
The original implementation of the resource man-
ager was designed to work with general parallel appli-
cations, where no distinction is made between the pro-
cessors of the application, since all of them are consid-
ered equal. Some modifications in the resource man-
ager design were required in order to work properly
with the fork/join model of the OpenMP applications.
Thismodel definesamaster processor, which executes
different code than the other processors. Since this
code belongs to the critical path of the application the
resource manager must treats the master processor with
more responsibility. This means that the master pro-
cessor must be aways running, independently of the
number of physical processors assigned to the applica-
tion at any time. So, in the extreme case under mul-
tiprogramming, where a single physical processor is
shared among several OpenMP applications, the only
virtual processor that each application executes on this
physical processor, each time, is its master processor.
So, each application executes through its critical path,
if later another physical processor becomes availableto
the application some of the other slave processors will
be assigned for execution on this physical processor.

VK. Barekas and PE. Hadjidoukas / A Multiprogramming Aware OpenMP | mplementation 139
Table 1
The average execution times of the applications on a dedicated execution environment
proc. BT CG EP FT MG SP
Nanos PGI Nanos PGl Nanos PGI Nanos PGI NAnos PGI Nanos PGI
1 102.9 107.7 16.6 18.6 52.3 62.0 9.0 114 16.2 16.2 2728 309.7
2 53.8 58.3 13.4 133 279 313 55 6.9 10.8 10.0 1901 2034
4 323 122.2 13.0 135 151 164 42 5.6 8.2 20.0 1555 406.1

5. Performance evaluation

In this section we present the experiments that we
have conducted in order to evaluate the performance
of our implementation. In our experiments we used
the NAS Parallel Benchmarks suite, parallelized with
the OpenMP programming model. The NAS Paral-
lel Benchmarksis one of the most well known bench-
marking suite, written in Fortran 77, and is often used
for the performance eval uation on multiprocessors sys-
tems. In all experiments we used the class W prob-
lem sizes for al the applications. All the experiments
were performed on aquad-processor 200 MHz Pentium
Pro system equipped with 512 MB of main memory,
running the Windows 2000 operating system.

We compare the performance obtained by the appli-
cations built using our environment (the NanosCom-
piler, the runtime system and the resource manager)
against the performance obtained when we built them
with the PGl Workstation compiler version 3.2 [11].
The PGl Workstation isacommercial compiler product
which supportsthe OpenM P standard. It takes asinput
either C or Fortran code parallelized with OpenMP di-
rectives and produces the final executable. In order to
produce the final executable for the intermediate code
that the NanosCompiler front-end outputs, we linked it
withthe NTLib library using the Intel Fortran compiler
version 4.5 [6]. The NAS Parallel Benchmarks suite
consists of seven applications, each one of them solv-
ing a different problem. In our experiments we run all
of them, except the LU application that the PGI com-
piler could not build. We performed two kind of ex-
periments, in the first set of experimentswe executed a
singleinstance of an application on adedicated system.
In the second set, we ran each application on a multi-
programmed environment, which we simulated by run-
ning multiple instances of the same application. For
each application, we built two versions, one with the
PGI compiler and one with our implementation and we
compared their performancein the two experiments.

In our first experiment, we measured the execution
timefor each version of the applications on a dedicated
system with 1, 2, and 4 processors. We executed each
application 5 times, the average execution times are

presented in Table 1, while the equivalent speedups of
the applicationsfor each case are depicted in Fig. 2.
Asitisshownin Table 1, both versions of all the ap-
plications scale similarly when they are executed with
up to two processors. On the four-processor execution
three of the six application built with the PGI compiler
failed to scale as well as the Nanos versions. More
specifically, for the execution of BT, MG and SP on
four processors there is a slowdown over the sequen-
tial execution and the variation between the execution
times is quite high. We believe that this is due to the
incorrect stack alignment of the datainto the code that
the PGI compiler produces or a problem into the run-
timelibrary that the PGI compiler uses. Theremaining
three applications CG, EP and FT it seemsthat they are
not affected by the same problem and they scalewell on
any number of processors. On the contrary, the Nanos
version of all the applications achieve good speedup in
all cases. Even though the Nanos versions achieve bet-
ter executiontimein all the cases, their speedupiscom-
parable to the PGI version. The conclusions from this
experiment is that our implementation achieves com-
parable or even better speedupsto that of acommercial
OpenMP compiler, on a dedicated execution environ-
ment. Additionally, our implementation is more reli-
able and more stable than the PGl compiler, achieving
robust performance with every application we tested.
In our second experiment, we compare the perfor-
mance of our implementation on a multiprogrammed
environment. In order to simulate a multiprogrammed
environment in our system we ran several workloads,
each one consisting of multiple instances of the same
application. In each workload, all the instances were
started simultaneously, at the sametime. Eachinstance
of the application assuming that it is running on adedi-
cated machine requested four processors from the sys-
tem. The number of instances that we run in each
workload determines the degree of multiprogramming
that we want to achieve. We run workloads with mul-
tiprogramming degree of 1, 2, 4, and 8 for each ap-
plication. For our implementation, we executed the
workloads while the resource manager was running in
the system in order to schedule the running applica-
tionsontheavailablephysical processors. Theresource

140 VK. Barekas and P.E. Hadjidoukas / A Multiprogramming Aware OpenMP | mplementation
Table 2
The average turnaround times of the applications in each workload on a multiprogrammed execution environment
Ins. BT CG EP FT MG SP

Nanos PGl Nanos PGI Nanos PGl Nanos PGI NAnos PGI Nanos PGI
1 317 1073 12.6 139 14.9 16.5 38 5.9 7.8 14.7 152.5 399.3
2 60.7 1437 26.5 53.7 29.3 339 7.3 9.3 15.3 515 308.5 516.2
4 1175 189.2 531 1117 57.0 68.3 141 180 309 1040 621.2 764.3
8 2358 315.2 106.4 1574 106.3 1311 285 30.0 614 166.1 12458 13879

manager ran with a time-sharing version of the DSS
scheduling policy [10] and a scheduling quantum of
120 msec, which matches the quantum used by the op-
erating system scheduler for the kernel-level threads.
For the PGI version, we executed the workloads with-
out the resource manager. In this case the operating
system scheduler was responsible for the scheduling of
the applications on the available processors. We ran
each workload 5 times, and we measured the average
turnaround time for all the instancesin each workload.
The measured times for each case are presented in Ta-
ble 2. In Fig. 3 the measured times are depicted using
alogarithmic scale for the time axis.

As shown in Table 2 and Fig. 3 the workloads with
the Nanos version applications achieves much lower
turnaround times. More specificaly, when we use
the resource manager to coordinate the execution of
the multiprogramming workloads, the turnaround time
scaleslinearly to thedegree of multiprogramming. This
means that when we run a workload with multipro-
gramming degree 2 it requires approximately twice the
time of auni-programmingworkload. Inthe PGI case,
the workloads fail to scale well, because the operating
system scheduler does not schedule them efficiently,
since it has no knowledge about the requirements of
their applications. The workloads of the three PGI-
compiled applications that did not scale well on the
dedicated execution, now achieve superlinear scaling
as the multiprogramming degree increases. This hap-
pens because the extra instances fill in the time inter-
vals that the processors otherwise would be left idle,
since each instance does not manage to fully utilize all
of its processors. However, in any case our implemen-
tation achieves better turnaround times for the applica-
tions participating in the workloads. The improvement
ranges from 6% to 63% less time that the PGI case.
Additionally, in the Nanos case the deviation of the
turnaround time between the instances in each work-
load as well asthetotal execution time of al the work-
loads is also smaller than in the PGI case. This second
experiment shows the performance advantages and the
stability of our implementation when it is used in a
heavily multiprogrammed environment, where several
applications compete for the system resources.

6. Releated work and conclusions

As far as we know, there is only one related work
in this subject, and none for the Windows operating
system. In [1], the authors compare the performance
of aruntime system and a modified Linux kernel with
that of OmniMP, a research OpenMP compiler. They
achieve similar results to us, since the OmniMP com-
piler is totally unaware about multiprogramming. Our
work differs in that we use an independent resource
manager, implemented as a kernel loadable module, to
play therole of the operating system scheduler, instead
of modifying the kernel. Moreover, our approach is
more flexible without losing the performance advan-
tages and more portable since it can be easily installed
in new systems, by simply loading our module.

Aswehave stated, several OpenM Pimplementations
does not efficiently support application execution on a
multiprogrammed environment. 1n these implementa-
tion, the OpenM P feature for dynamic parallelism has
been ignored or not efficiently implemented. Our re-
sults confirm this statement, since our implementation
performs better that the commercial PGl implemen-
tation on a multiprogrammed environment. Further-
more, our experiments shows that our implementation
achieves better performance even when it is used on
a dedicated system. The immaturity of the OpenMP
implementationsis also shown from the fact that 3 of
the NAS Benchmarksfail to scale with morethat 2 pro-
cessors, when compiled with the PGI compiler and run
on adedicated system. The PGl Workstation compiler
that we use in this work, does not support this feature
of the OpenMP standard. But, neither the OpenMP
version of the NAS Parallel Benchmarks that we use
in this work were written to use this feature. So our
results would not have change if we were using an ap-
plication or a compiler that support the dynamic par-
alelism feature. Our approach is completely transpar-
ent for the programmer of the original OpenM P-coded
application, and does not depend on the OpenM P stan-
dard feature for dynamic paralelism. In the future,
we plan to use this feature in our implementation as a
way to givethe resource manager a hint, toward amore
efficient processor scheduling.

VK. Barekas and PE. Hadjidoukas / A Multiprogramming Aware OpenMP | mplementation 141

Acknowledgements

We would like to thank our colleagues Christos
Antonopoulos and loannis Venetis for their valuable
help in the compilation of the NAS Parallel Bench-
marks. Thiswork was partially supported by G.S.R.T.
research program 99EA-566.

References

(1

(2

(3l

4

C. Antonopoulos, I. Venetis, D. Nikolopoulos and T. Pap-
atheodorou, Efficient Dynamic Parallelism with OpenMP on
Linux SMPs, in Proc. of the 2000 international Conference on
Parallel and Distributed Processing Techniques and Applica-
tions, Las Vegas, Nevada, June, 2000.

E. Ayguadé et al., NanosCompiler: A Research Platform for
OpenMP Extensions, in Proc. of the First European Workshop
on OpenMP, pp. 27-31, Lund, Sweden, September, 1999.

V. Barekas, P. Hadjidoukas, E. Polychronopoulos and T. Pa-
patheodorou, Nanothreads vs. Fibers for the Support of Fine
Grain Parallelism in Windows NT/2000 Platforms, in Proc.
of the Third International Symposium on High Performance
Computing, pp. 146-159, Tokyo, Japan, October, 2000.

P. Hadjidoukas, V. Barekas, E. Polychronopoulos and

(9]

(€l

(8l

(9

[10]

[11]

T. Papatheodorou, A Portable Kernel-Mode Resource Man
ager on Windows 2000 Platforms, in Proc. of the Twelth
IASTED International Conference Parallel and Distributed
Computing and Systems, Las Vegas, Nevada, November,
2000.

H. Jin, M. Frumkin and J. Yan, The OpenMP |mplementation
of NAS Parallel Benchmarks and its Performance, Technical
Report NAS-99-011, NASA Ames Research Center, October,
1999.

Intel Corporation, Intel Fortran Compiler, Available at:
http://devel oper.intel.com.

X. Martorell, J. Labarta, N. Navarro and E. Ayguade, A
Library Implementation of the Nano-Threads Programming
Model, in Proc. of the 2nd Euro-Par Conference, Lyon, pp.
644649, August, 1996.

X. Martorell et a., Thread Fork/Join Techniques for Multi-
level Parallelism Exploitation in NUMA Multiprocessors, in
Proc. of the 13th ACM International Conference on Super-
computing, Rhodes, June, 1999.

OpenMP Architecture Review Board, OpenMP Specifica-
tions. Available at: http://www.openmp.org.

E. Polychronopouloset al., An Efficient Kernel-Level Schedul-
ing Methodol ogy for Multiprogrammed Shared Memory Mul-
tiprocessors, in Proc. of the 12th International Conference
on Parallel and Distributed Computing Systems, Fort Laud-
erdale, Florida, August, 1999.

Portland Group Inc, Web site. http://www.pgroup. com.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

