
Scientific Programming 11 (2003) 191–198 191
IOS Press

A tool for performance modeling of parallel
programs

J.A. Gonzáleza, C. Rodrı́gueza,∗, G. Rodrı́gueza, F. de Sandea and M. Printistab

aDpto. Estad́ıstica, I.O. y Computación, Universidad de La Laguna, La Laguna, 38271, Spain
Tel.: +34 922 318187; Fax: +34 922 318170; E-mail: casiano@ull.es
bUniversidad Nacional de San Luis, Ejército de los Andes 950, San Luis, Argentina
E-mail: mprinti@unsl.edu.ar

Abstract. Current performance prediction analytical models try to characterize the performance behavior of actual machines
through a small set of parameters. In practice, substantial deviations are observed. These differences are due to factors as memory
hierarchies or network latency. A natural approach is to associate a different proportionality constant with each basic block,
and analogously, to associate different latencies and bandwidths with each “communication block”. Unfortunately, to use this
approach implies that the evaluation of parameters must be done for each algorithm. This is a heavy task, implying experiment
design, timing, statistics, pattern recognition and multi-parameter fitting algorithms. Software support is required. We present
a compiler that takes as source a C program annotated with complexity formulas and produces as output an instrumented code.
The trace files obtained from the execution of the resulting code are analyzed with an interactive interpreter, giving us, among
other information, the values of those parameters.

1. Introduction

Most of the approaches to performance analysis and
prediction fall into two categories: Analytical Model-
ing and Performance Profiling. Analytical methods use
models of the architecture and the algorithm to predict
the program runtime. The analysis can be independent
of the target architecture. Among the analytical mod-
els, the Bulk Synchronous Parallel (BSP) model [14] is
one of the most popular. Profiling may be conducted
on a parallel system to recognize current performance
bottlenecks. Performing measurements require spe-
cial purpose hardware and software and, since the tar-
get machine is used, the measurement method can be
highly accurate [4,6,8,11,12]. Although much work
has been developed in Analytical Modeling and in Par-
allel Profiling, sometimes there seems to exist a divorce
between them. Analytical modeling is considered to
be too theoretical to be accurate in practical cases and
profiling analysis is criticized for a lack of generality.

∗Corresponding author.

This work explores a hybrid approach, proposing an
analytical model supported by a profiling tool. The
class of parallel algorithms whose performance behav-
ior can be predicted includes the Bulk Synchronous Par-
allel Algorithm class. The efficient expression of some
common parallel paradigms, like farms and pipelines,
is difficult in the scope of a flat-data-parallel global-
barrier Bulk Synchronous Programming software like
the BSPlib [9]. To overcome these limitations, the
Paderborn University BSP library (PUB [11]) offers
the use of collective operations, processor-partition op-
erations and oblivious synchronization. In addition to
the most common features of BSP, PUB provides the
capacity to partition the current BSP machine into sev-
eral subsets, each of which acts as an autonomous BSP
computer with their own processor numbering and syn-
chronization points. The authors of the BSP Worldwide
Standard Library report claim that an unwanted conse-
quence of group partitioning is a loss of accuracy [7,
p. 18].

Another novel feature of PUB is the oblivious
synchronization. It is implemented through the
bsp oblsync(bsp,n) function, which does not re-

ISSN 1058-9244/03/$8.00  2003 – IOS Press. All rights reserved

192 J.A. Gonźalez et al. / A tool for performance modeling of parallel programs

P1P0

ti
m

e

w

w

2w

2w

Lb

Lb

g*h

g*h

Fig. 1. BSP prediction accuracy.

turn until nmessages have been received. Although its
use mitigates the synchronization overhead, it implies
that different processors can be in different supersteps
at the same time. The BSP semantic is preserved in
PUB by numbering the supersteps and by ensuring that
the receiver thread buffers messages that arrive out of
order until the correct superstep is reached.

Figure 1 illustrates the impact of the second im-
provement, oblivious synchronizations, in prediction
accuracy. The diagram corresponds to an applica-
tion running on a 2-processor machine in 2 supersteps.
White areas correspond to computation while black ar-
eas stand for communication. During the first super-
step, processor P1 performs a task heavier (2w) than
that performed by processorP0 (w). After an exchange
operation (w) and an oblivious synchronization, the sit-
uation is inverted and processor P0 does the lighter
part compensating the former imbalance. Finally, there
is another oblivious exchange between processors P0
and P1 (w). While the actual time is 5w, the BSP pre-
diction corresponding to a global synchronous barrier
is 6w.

There are other sources of inaccuracy. One comes
from characterizing the computing time W through a
single parameter s, considering that all the elementary
local operations take the same quantity of time (called
time step). Significant differences are observed in prac-
tice, partly due to the separate nature of the operations
(number of floating point arithmetic operations, num-
ber of memory transfers, etc.) involved [15, p. 123].
Another comes from characterizing the communication
time through two single parameters g and L, consider-
ing that any h-relation takes the same amount of time,
independently of the particular communication pattern

involved [10]. In [13] we studied the impact of such
patterns on the h-relation time.

A more realistic (but more difficult) alternative is to
associate a different proportionality constant with each
basic block (maximal segment of code without jumps),
and analogously, to associate different latencies and
bandwidths with the same h-relation, depending on the
pattern. Still this approach does not suffice to have ac-
curate predictions. Most modern microprocessors have
at least two levels of cache. Furthermore, operating
systems use main memory as a cache for a larger virtual
address space for each process and translate between
virtual addresses used by a program and the physical
addresses required by the hardware. Memory is di-
vided into blocks called pages. To keep the overhead
of address translation low, the most recently used page
addresses are cached in a translation lookaside buffer
(TLB). While an L1 cache hit typically takes 2 or 3
cycles, a TLB miss requiring only reload of the TLB
can take of the order of 2000 cycles [2, p. 3]. The
assumption that a constant number of machine instruc-
tions takes constant time is an oversimplification. To
suppress such simplification implies the introduction
of a finite (but perhaps large) number of parameters.
These parameters are not only architecture dependent,
but also reflect algorithm characteristics. Such param-
eter evaluation is a heavy task, implying experiment
design, timing, statistics and multi-parameter fitting al-
gorithms. It does not seem reasonable to ask the algo-
rithm designer to carry out by hand such tasks for every
program developed.

We address the problem of how to relax the num-
ber of parameters without introducing an unbearable
complexity. The resulting model, called OBSP* is in-
troduced in the following section. The third section
presents CALL, a prototype of a software tool for the
modeling, analysis and prediction of parallel and se-
quential programs. The tool consists of a “pragma”
language extending C, its associated compiler and a
profiler/analyzer interpreter of the trace files generated
by the instrumented target. The analyzer provides the
values of the communication and computation con-
stants, establishes the segments where the values of the
constants are valid and facilitates the prediction of the
performance of the algorithm for any input values.

2. The OBSP* Model

As in ordinary BSP, the execution of a PUB program
on a BSP machineX = 0, . . . , P − 1 consists of super-

J.A. Gonźalez et al. / A tool for performance modeling of parallel programs 193

steps. However, as a consequence of the oblivious syn-
chronization, processors may be in different supersteps
at a given time. Still it is true that:

– Supersteps can be numbered starting at 1.
– The total number of supersteps R, performed by

all the P processors is the same.
– Although messages sent by a processor in super-

step s may arrive to another processor executing
an earlier superstep r < s, communications are
made effective only when the receiver processor
reaches the end of superstep s.

Let us assume in first instance that no processor par-
titioning is performed in the analyzed task T . If the
superstep s ends in an oblivious synchronization, we
define the set Ωs,i for a given processor i and superstep
s as the set:

Ωs,i = {j ∈ X | processor j sends a message
(1)

to processor i in superstep s} ∪ {i}
while Ωs,i = X when the superstep ends in a global
barrier synchronization. Processors in the set Ωs,i are
called “the incoming partners of processor i in step s”.
Usually it is accepted that all the processors start the
computation at the same time. The presence of partition
functions forces us to consider the most general case in
which each processor i joins the computation at a differ-
ent initial time ξi. Denoting by ξ = (ξ0, . . . , ξP−1) the
vector for all processors, the OBSP* time Φs,i(T,X, ξ)
taken by processor i ∈ X executing task T to finish its
superstep s is recursively defined by the formulas:

Φ1,i(T,X, ξ)

= max{W1,j + ξj | j ∈ Ω1,i}
+(g ∗ h1,i + L), i = 0, . . . , P − 1,

Φs,i(T,X, ξ) (2)

= max{Φs−1,j(T,X, ξ) +Ws,j | j ∈ Ωs,i}
+(g ∗ hs,i + L),

s = 2, . . . , R, i = 0, . . . , P − 1

where constant R denotes the total number of super-
steps andWs,j denotes the time spent in computing by
processor j in step s. The value hs,i is defined as the
number of bytes communicated by processor i in step
s, that is:

hs,i = max{ins,j @ outs,j | j ∈ Ωs,i},
(3)

s = 1, . . . , R, i = 0, . . . , P − 1

Table 1
Sets ΥAi

, i = 0, 1, 2

A0 basically refers to the setup of the outer loop
A1 corresponds to statements j<N;j++ and i=0
A2 stands for i<N;i++ and a[i][j] = 0

and ins,j and outs,j respectively denote the number
of incoming/outgoing bytes to/from processor j in the
superstep s. The @ operation is defined as max or
+ depending on the input/output capabilities of the
network interface.

2.1. Parameter evaluation

Notice that, in general, what the “algorithm design-
er” provides is a formula fs,j(N,M, . . .) that gives the
total number of operations performed by processor j in
superstep s in terms of the input parametersN,M,

As an example, the analysis of the sequential code in
Fig. 3, give us f1,0(N) = A0 +A1 ×N +A2 ×N2.

What is the meaning of the constantsA0, A1, . . . An?.
Assuming that the processors have an instruction set
{I1, . . . , It} of size t, where the i-th instruction Ii takes
time pi, an approximation of the timeWs,j is given by
the formula:

Ws,j 	
∑
i=1,t

ws,i,j ∗ pi

where ws,i,j is the number of Ii instructions executed
by processor j in step s.

The actual situation is more complex than this, since
the time pi is a random variable that takes a small
number of different values. If, for instance, I i is a
memory access, we may have two or three different
values of pi according to the number of misses and
hits. The same statement applies for communication
constants g and L.

Each constant Ai is associated with the cost of a set
ΥAi of statements (see Table 1). Of the three “con-
stants” in the example of Fig. 3, only A2 manifestly
“varies” with the size of the input N . The other two
do not change so noticeably, since their instructions are
related with scalar accesses and only exploit tempo-
ral locality. Therefore, we will have that the formula
f1,0(N) predicts the behavior with acceptable accuracy
if we use two or three different values forA2: one cor-
responding to small values of N (large percentage of
cache hits) and the others to larger values of N .

The idea proposed here is to have a tool that, having
the formula f1,0(N) = A0 + A1 × N + A2 × N2

as input, automatically finds the sets ℵAi of different

194 J.A. Gonźalez et al. / A tool for performance modeling of parallel programs

Fig. 2. The CALL environment. The ? stand for optionality.

1. for(j=0;j<N;j++)
2. for(i=0;i<N;i++)
3. a[i][j] = 0;

Fig. 3. Matrix initialization.

Table 2
Sets ℵAi

ℵA0 = {(A0, N ∈ [2,∞)}
ℵA1 = {(A1, N ∈ [2,∞)}
ℵA2 = {(A0

2, N ∈ [2, C0]), (A1
2, N ∈ (C0,∞])}

values and intervals of the input variableN where each
of these values apply (see Table 2).

Once these sets ℵAi have been evaluated, they can
be used for prediction.

The tool will use a “machine database” that extends
the well-known BSP table with entries (s, g, L). This
database contains a vectorial detailed description of the
architecture, including the costs of different memory
access times, the costs of different floating point op-
erations, etc. This database can be generated by an
“architecture analyzer” program working much in the
same way as the bsp probe program included with
the BSPlib library.

From this database and the knowledge of the sets
ΥAi the tool, through the analysis of the statements,
can guess the values of the sets ℵAi in the architectures
included in the database.

Observe that the formula f1,0(N) = A0 +A1×N+
A2 ×N2 will still be valid if we exchange the loops in
lines 1 and 2 in Fig. 3. But, since the current access to
a[i][j] at line 3 will change its “stride” from N to
1, the gain in locality will produce much lower values
for A2 and a higher value of C0. The number of oper-
ations in both algorithms are the same, the instructions
involved are the same, but the two constants A2 are
significantly different.

This example illustrates that, to predict the perfor-
mance in other architectures it is not enough to have the
knowledge of ΥAi and the database: the instrumenta-
tion also has to collect run time information about the
percentage of cache misses.

Locality and the order of memory accesses affects
the values of the sets ℵAi . Roughly speaking, and as a
previous step, the programmer has to be aware of choos-
ing among the several semantically equivalent orders,
one that minimizes the Ai parameters with strongest
impact on the “complexity” formula.

2.2. Processor sets in PUB

At any time, processors are organized in a hierarchy
of processor sets. A processor set in PUB (also called
a BSPobject) is implemented through a data structure
named t bsp.

Let Q ⊆ X be a set of processors (i.e. a BSP ob-
ject) executing task T . When processors in Q exe-
cute functionbsp partition(t bsp *Q, t bsp
*S, int r, int *Y), the set Q is divided in r
disjoint subsets Si such that,

Q = ∪0�i�r−1 Si,

S0 = {0, . . . , Y [0] − 1},
Si = {Y [i− 1], . . . , Y [i] − 1},
1 � i � r − 1

After the partition step, each subgroup S i acts as
an autonomous BSP computer with its own processor
numbering, message queue and synchronization mech-
anism. The time that processor j ∈ Si takes to finish
its work in task Ti executed by the BSP object Si is
given by

J.A. Gonźalez et al. / A tool for performance modeling of parallel programs 195

ΦRi,j(Ti, Si,Φs−1,j + w∗
s,j)

such that j ∈ Si,

i = 0, . . . , r − 1,

whereRi is the number of supersteps performed in task
Ti and w∗

s,j is the computing time executed by proces-
sor j before its call to the bsp partition function
in the s-th superstep of original set Q. Observe that
subgroups are created in a stack-like order. Functions
bsp partition and bsp done produce no com-
munication. This implies that different processors in
a given subset can arrive at the partition process (and
leave it) at a different time. From the point of view
of the parent machine, the code executed between the
call to bsp partition and bsp done behaves as
computation (i.e. like a call to a subroutine).

3. An OBSP* environment for performance
prediction

The CALL system consists of a translator (called
call), a run time library (cll.h) and an analyzer in-
terpreter (llac). Although it can be used for the anal-
ysis of sequential programs, it gives also support for
the prediction of PUB, OpenMP and MPI parallel pro-
grams. More than a prediction tool, it is a performance
measurement and modeling tool. It can be used to con-
firm or reject the predictive accuracy of a given per-
formance model, not just OBSP*. The OBSP* model
needs the CALL tool to be feasible, but the tool itself
is independent of the performance model.

The run time library makes use, if installed, of the
PAPI library [2]. Figure 2 shows the execution sys-
tem of CALL. From a sequential or parallel C pro-
gram annotated with call pragmas, the call com-
piler produces two files containing the necessary code
(*.cll.c) and structures (*.cll.h) to save variable
values, to time the corresponding code and to produce
the reports required by the llac analyzer. Once the
program has been compiled and executed, the llac in-
terpreter allows the programmer to play with the result-
ing data, considering subsets, transformations of them
or merging them with other data coming from other
experiments. The llac analyzer deduces the values of
the parameters involved, the segments where they are
valid, the variation of these parameters with the input
values, predicts the behavior of the different experi-
ments under study and allows their graphic visualiza-
tion. It also warns the user when the lack of accuracy

1. #pragma cll parallel PUB gbsp\
procs = 1:32:2

...

2. #pragma cll for(N=1024; N<262144; N*=2)
3. initialize(N, a);
4. Roots(N/2, W);

5. #pragma cll sync f f[0]+f[1]*log(P)+\

f[2]*(N/P)*log(N/P)+f[3]*N*(P-1)/P

6. parDandCFFT(A, a, W, N, 1, D, gbsp);
7. #pragma cll end f

8. #pragma cll end for
...

9. #pragma cll report all

Fig. 4. The fft experiment.

is due to possible errors in the proposed model (errors
in the proposed formula).

To exemplify the combined use of the OBSP* model
and the CALL tool to predict the time spent by PUB
programs we have chosen the Fast Fourier Transform
(FFT) algorithm. The Fourier Transform (FT) decom-
poses a function into its different-frequency sinusoidal
components. In 1965, Tukey and Cooley [3] proposed
a Discrete Fourier Transform algorithm with a number
of computations of orderO(N× log(N)). It is a divide
and conquer algorithm based on the fact that the trans-
formation of a digital signal can be obtained by com-
bining the transforms of its even and odd components.
Although it is not a requirement, the expression of the
algorithm is simplified using a signal size, N that is a
power of two. Line 1 in Fig. 4 warns the call com-
piler that this is a BSP parallel program using PUB. The
optional argument gbsp points to the t bsp object
describing the BSP machine. This information will be
used by the report clause in line 9. When executed, the
code generated from this line will collect all the statis-
tics sampled in the different processors, routing them
to processor 0, where they will be dumped on the cor-
responding output file fft.cll.0.dat. The sec-
ond clause procs = 1:32:2 makes the compiler
generate a batch script to run the program for different
numbers of processors.

Lines 2 and 8 produce a loop to sample the algo-
rithm behavior for different values of N . Since CALL
pragmas are identified by a defined prefix, they are ig-
nored by a C compiler. One of the goals of CALL is to
allow developers to use the same source code base for
building their application and the instrumented code.

Lines 5 to 7 in Fig. 4 define a “call experiment”.
The optional clause sync at the beginning of the ex-
periment definition (line 5) indicates the need to syn-
chronize the processors before starting the experiment.

196 J.A. Gonźalez et al. / A tool for performance modeling of parallel programs

1.void parDandCFFT(Complex *A, Complex *a, Complex *W,int N,int stride,t_bsp *gbsp) {
2. /* variable declarations */
3. if (bsp_nprocs(gbsp) > 1) {
4. if (N==1) {A[0].re = a[0].re; A[0].im = a[0].im;}
5. else {
6. #pragma cll A A[0]
7. n = N/2; size = n * sizeof(Complex); B = A; C = A + n;
8. #pragma cll end A
9. #pragma cll B B[0]
10. subgroup[1] = bsp_nprocs(gbsp);
11. subgroup[0] = (bsp_nprocs(gbsp)/2);
12. bsp_partition(gbsp, &bsp_new, 2, subgroup);
13. #pragma cll end B
14. if(bsp_pid(gbsp)<subgroup[0]) {
15. parDandCFFT(B, a, W, n, stride * 2, &bsp_new);
16. #pragma cll C C[0]
17. partner = bsp_pid(&bsp_new) + subgroup[0];
18. bsp_done(&bsp_new);
19. #pragma cll end C
20. #pragma cll D D[0] + D[1] * size
21. bsp_hpsend(gbsp, partner, B, size);
22. bsp_oblsync(gbsp, 1);
23. #pragma cll end D
24. #pragma cll E E[0] + E[1] * n
25. C = (Complex *)bspmsg_data(bsp_getmsg(gbsp, 0));
26. #pragma cll end E
27. } else {
28. parDandCFFT(C, a + stride, W, n, stride * 2, &bsp_new);
29. #pragma cll C C[0]
30. partner = bsp_pid(&bsp_new);
31. bsp_done(&bsp_new);
32. #pragma cll end C
33. #pragma cll D D[0] + D[1] * size
34. bsp_hpsend(gbsp, partner, C, size);
35. bsp_oblsync(gbsp, 1);
36.
37. #pragma cll E E[0] + E[1] * n
38. B = (Complex *)bspmsg_data(bsp_getmsg(gbsp, 0));
39. #pragma cll end E
40. }
41. #pragma cll F F[0] + F[1] * n
42. combine(A, B, C, W, n);
43. #pragma cll end F
44. }
45. } else
46. #pragma cll G G[0] + G[1] * N * log(N)
47. seqDandCFFT(A, a, W, N, stride);
48. #pragma cll end G
49. }

#pragma ll end D

Fig. 5. Parallel Fast Fourier Transform.

The CALL compiler will insert a barrier in the gen-
erated code. The following identifier is the name of
the experiment. Thus, the name of the experiment
defined in line 5 is f. Then follows the complexity
formula for Φ2,i(FFT,X, 0). Any call complexity
formula must be in canonical form, i.e. has to be a
sum of terms made of complexity constants multiplied
by expressions. More general, the experimental con-
stant must be the only multiplicative constant in each
term. This constraint is due to singularities appearing
in the multidimensional fit algorithm [5] used by the
interpreter.

For each experiment, the front end call compiler
generates the code to time it and to save its state for
later report and treatment.

Starting from the trace files generated during the
execution, the back end llac analyzer determines the
values ofℵf [0], ℵf [1], ℵf [2] andℵf [3]. For this example,
the input variables are N and P . Generally speaking,
usually there will be values of f [0], f [1], f [2] and
f [3] for small values of N and P , different values for
medium sizes and may be a third for larger values.
When predicting the time for a concrete value (say
N = 1024, P = 32) the programmer does not need

J.A. Gonźalez et al. / A tool for performance modeling of parallel programs 197

Table 3
Real and predicted times for the FFT on the CRAY T3E (2 Mega-
Complex)

PROCS. TIME OBSP* ERROR %

1 11.7748 11.8096 −0.30
2 6.0036 5.8943 1.82
4 3.2120 3.0908 3.77
8 1.8939 1.7735 6.36

16 1.2750 1.1644 8.68
32 0.9664 0.8919 7.71

to be concerned with the exact parameter values. The
llac system will choose the appropriate parameter
values of f [0], f [1], f [2] and f [3] (the one for the small
range of N and P = 32 for the example) to obtain a
more precise prediction. However, a large number of
intervals (more than 3) on a given variable (N , P , . . .)
may possibly imply an error in the complexity formula.
In such case, llac issues a warning message.

The recognition of the intervals ofℵf [i] of the param-
eters f [i] implies the use of heuristic statistical tech-
niques. An ordinary multidimensional linear fit is per-
formed over the preprocessed sample. If the errors
are larger than a fixed “error threshold”, the variable
space is divided in two. The point that maximizes the
variation of the error is chosen as splitting point. This
process is repeated until the errors obtained are under
the error threshold or the number of intervals exceed a
“number of intervals threshold”.

The user can participate, influencing any of the
phases, including the preprocessing. Although most
of the information can be reported through CALL
pragmas, the llac user can complement and include
any additional information. For example, to specify
through a graphical interface the sets of statements ΥAi

associated with the experiment parameters Ai.
The code in Fig. 5 is a PUB implementation of the

FFT algorithm annotated with CALL pragmas. It has
as input a vector of complex numbers a, the vector
W containing the N -th pre-computed roots of unity,
the number N of elements, the stride determining a
subproblem of the original problem and the pointer
to the data structure, gbsp defining the current BSP
machine. We assume that both the input data and the
result vector A are replicated in each processor.

Let’s denote by FFT the code presented in Fig. 5.
At each level d − 1 of the recursion, there is a PUB
machine Xd−1 that executes two OBSP* supersteps.
The time spent by a processor i ∈ X d−1 to perform
the first superstep, Φ1,i(FFT,Xd−1, ξd−1), consists
of four computational blocks and one communication:

1. Input signal division into its even and odd com-
ponents (line 7). Since the input data is repli-

cated on each processor, this operation can be
implemented over the same vector a. Variable
stride indicates the separation between logical
consecutive elements in the input vector. This
computation takes constant time A[0].

2. The BSP machineXd−1 is partitioned in two sub-
machines Xd

j with j = 0, 1 (lines 10-12). Un-
der the assumption that the number of processors
in Xd−1 is a power of 2, each submachine has
the same number of processors. A PUB machine
partition operation takes constant time B[0].

3. While one of the submachines computes the
transformation of the even components, the other
does the same with the odd terms. These compu-
tations correspond to the recursive calls in lines
15 and 28 respectively. The times required by
each of these submachines to perform their com-
putations are given by Φ2,i(FFT,Xd

j , ξ
d−1
i +

A[0]+B[0]). Here d is the recursion depth,X d
j is

the set of processors in the current BSP machine,
ξd−1
i is the time when the calling FFT started and
w∗

1,i = A[0]+B[0] denotes the computation per-
formed by the machine X d

j in the current super-
step before the submachine begins its computa-
tion.

4. When a submachine finishes its task, each pro-
cessor determines its communication partner and
then rejoins to the father group (lines 17–18 and
30–31 respectively). This operation is performed
in constant time C[0].

5. A communication bounds the superstep. Partial
results are exchanged between partner processors
(lines 21–22 and 34–35). Each processor has to
wait only for a message from its partner. Under
the assumption that the input signal size is a power
of 2, the h-relation is the same for all the proces-
sors. We work with the h-relation definition as
the sum of incoming and outgoing message sizes.

h1,i = size = N ∗ sizeof(Complex),
(4)

Ωs,i = {i, partneri}
Therefore, the time for the first superstep is:

Φ1,i(FFT,Xd−1, ξd−1)

= max{Φ2,k(FFT,Xd, ξd−1
k

(5)
+A[0] +B[0]) + C[0]

| k ∈ Ω1,i} +D[1] ∗ size+D[0]}
The second superstep deals with the combination

phase. It consists of two computational blocks and no
communication is required.

198 J.A. Gonźalez et al. / A tool for performance modeling of parallel programs

– In the first block (lines 25 and 38), the message re-
ceived from the partner is retrieved from the com-
munication library buffer to the process memory.
This requires time E[0] +E[1] × n.

– The combination itself is performed by the call to
routine combine in line 42. This computation
takes time proportional to the signal size, that is
F [0] + F [1] × n.

Thus, the formulas for the second superstep are:

Ωs,i = {i}
Φ2,i(FFT,Xd−1, ξd−1

i)
(6)

= Φ1,i(FFT,Xd−1, ξd−1
i)

+E[0] + F [0] + (E[1] + F [1])n

This recursive process follows until only one pro-
cessor remains in theBSP submachine. These single-
processor machines only perform one superstep. No
communication is needed and the computations consist
of the call to seqDandCFFT in line 47, which trans-
forms a signal with sizeN/P using a sequential version
of the same algorithm. The computational complex-
ity is O(N

P log N
P), and is approximated by the linear

expression:

Φ1,i(FFT, S0, ξ0)
(7)

=G[0] +G[1]
N

P
log

(
N

P

)

Since all processors start the computation at the same
instant ξlog(P)

i = 0. Using successively Eqs (5), (6)
and (7), leads to expression:

Φ2,i(FFT,X, ξ)

= log(P)(A[0] +B[0] + C[0] +E[0])

+G[0] +G[1](N/P) log(N/P)
(8)

+ log(P)F [0] + F [1]((P − 1)/P) ∗N
+D[1]((P − 1)/P) size + log(P)D[0]

4. Results

Table 3 presents the results for a 2 mega complex
FFT. The sizes used to obtain the ℵf [i] sets are the
ones shown in line 2 of Fig. 4. The curious decreasing
observed when going from 16 to 32 processors, is likely
due to the addition of two compensating errors, that is,
an over-estimation of one term and the under-estimation
of another.

Acknowledgments

We would like to thank Centro de Investiga-
ciones Energéticas, Medioambientales y Tecnológicas
(CIEMAT). This research has been partially supported
by Comisión Interministerial de Ciencia y Tecnologı́a
under project TIC1999-0754-C03.

References

[1] O. Bonorden, B. Juurlink, I. von Otte and I. Rieping,
The paderborn university BSP (PUB) library-design, imple-
mentation and performance, in International Parallel Process-
ing Symposium & Symposium on Parallel and Distributed Pro-
cessing(IPPS/SPDP), 1999.

[2] S. Browne, J. Dongarra, N. Garner, G. Ho and P. Mucci, A
portable programming interface for performance evaluation
on modern processors, The International Journal of High Per-
formance Computing Applications(2000), 189–204.

[3] J.W. Cooley and J.W. Tukey, An algorithm for the machine
calculation of complex fourier series, Mathematics of Compu-
tation 19 (1965), 297–301.

[4] A. Espinosa, T. Margalef and E. Luque, Automatic perfor-
mance evaluation of parallel programs, in Proc. Of the 6th
Euromicro Workshop on PDP,IEEE CS, 1998, pp. 43–49.

[5] D.E. Groom et al., Statistics, The European Physical Journal
C15 (2000), http://pdg.lbl.gov/2000/statrppbook.pdf.

[6] T. Fahringer and H. Zima, Static parameter based performance
prediction tool for parallel programs, in: International Con-
ference on Supercomputing, ACM Press, 1993, pp. 207–219.

[7] M. Goudreau, J. Hill, K. Lang, B. McColl, S. Rao, D.
Stephanescu, T. Suel and T.A. Tsantilas, Proposal for the
BSP worldwide standard library,http://www.bsp-worldwide.
org/standard/stand2.htm, 1996.

[8] M. Heath and J. Etheridge, Visualizing the performance of
parallel programs, IEEE Software8(5) (1991), 29–39.

[9] J. Hill, W. McColl, D. Stefanescu, M. Goudreau, K. Lang, S.
Rao, T. Suel, T.A. Tsantilas and R.H. Bisseling, BSPlib: The
BSP programming library, Parallel Computing24(14) (1998),
1947–1980.

[10] B.H.H. Juurlink and A.G. Wijshoff, The E-BSP model: In-
corporating general locality and unbalanced communication
into the BSP model, in International Euro-Par’96 Conference,
(Vol. II), Springer-Verlag, 1996, pp. 339–347.

[11] J. Labarta, S. Girona, V. Pillet, T. Cortes and L. Gregoris, Dip:
A parallel program development environment, in: Euro-Par,
(Vol. II), 1996, pp. 665–674.

[12] W.E. Nagel, A. Arnold, M. Weber, H.C. Hoppe and K.
Solchenbach, VAMPIR: Visualization and analysis of MPI
resources, Supercomputer12(1) (1996), 69–80.

[13] C. Rodriguez, J.L. Roda, D.G. Morales and F. Almeida, h-
relation models for current standard parallel platforms, in 4th
International Euro-Par Conference,Springer-Verlag, 1998,
pp. 234–243.

[14] L.G. Valiant, A bridging model for parallel computation, Com-
munications of the ACM33(8) (1990), 103–111.

[15] A. Zavanella and A. Milazzo, Predictability of bulk syn-
chronous programs using mpi, in 8th Euromicro PDP,2000.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

